

The YardScaping Partnership

- •Allen, Sterling & Lothrop
- •Bar Mills Ecological
- •Breakwater School
- •Carroll Associates, Landscape Architects
- •Casco Bay Estuary Partnership
- •City of Portland
- •Congress of Lake Associations
- •Friends of Casco Bay
- •Friends of Scarborough Marsh
- •Gnome Landscapes, Design & Masonry
- •Jacobs Edwards and Kelcey
- •Kennebunkport Conservation Commission
- •LakeSmart Program
- •Libby's Landscaping and
- Greenhouse
- Lisa Cowan, studioverde landscape
 Southern Maine Community architecture + design
 Maine Board of Pesticides Control
 Think Blue Maine Program
 Maine Department of Agriculture
 Town of Brunswick
 University of Maine Cooperative

Extension

Environmental Protection

•Maine Landscape & Nursery Association •Maine Organic Farmers & Gardeners Association •Maine Soil & Water Conservation Districts •Maine State Planning Office •Maine Volunteer Lake Monitoring Program Natural Resources Conservation Service •New England Organics •O'Donal's Nurseries •PJC & Company Ecological Land Care •Portland Trails •Shaw Brothers Construction •Skillin's Greenhouses

The Partnership is very diverse!

www.yardscaping.org

YardScaping

- A new paradigm?
 - Some call it "Sustainable Landscaping" or "Ecological Landscaping"
- We want to keep it simple
- http://youtu.be/cwaSKjymQDc

YardScaping Mission

YardScaping hopes to inspire Maine people to create and maintain healthy landscapes through ecologically based practices that minimize reliance on water, fertilizer and pesticides.

LOW MAINTENANCE PLANTS

You can grow low maintenance plants like these in *your* yard.

The trees, shrubs and perennials you see here:

- resist pest problems
- ♦ thrive in Maine
- are non-invasive
- grow back each year
- require less water
- require less fertilizer

Want to get involved or learn more? Visit www.yardscaping.org

Maine pesticide use more common than perceived

rethrins

•No endorsement intended or implied

Have we finally hit the top of the curve?

BayScaping Project

- Friends Of Casco Bay did some detective work in 2001, 2002, 2003, 2005, 2006, 2008 and 2009
- Sampled runoff water from intensive lawn care areas in Cumberland, S Portland, Westbrook, Falmouth, Yarmouth, Brunswick, Freeport, Portland and Cape Elizabeth & Back Cove area

Friends of Casco Bay Sampling

Pesticide residues detected in surface water

- Diazinon up to (2.6 ppb)**
- 2,4-D up to (36.4 ppb)
- Dicamba up to (4.1 ppb)
- MCPP up to (26 ppb)
- MCPA up to (0.45 ppb)
- Clopyralid up to (0.91 ppb)
- Propiconazole up to (0.075 ppb)
- Chlorothalonil up to (0.22 ppb)
- Found Excess Nitrogen & Phosphorous in most samples
- Pesticide residues detected in sediments
 - Bifenthrin up to (37 ppb)
 - Permethrin up to (47 ppb)

•**Values in red exceed Aquatic Life Criteria

USGS National Water Quality Assessment

Science for a changing world

- Sampled urban streams
 - Insecticides occurred more frequently in urban streams than they did in agricultural area streams
 - Herbicides detected in 99% of Urban stream samples
 - Phosphorous found at same levels as in agricultural streams
 - 70% of those samples exceeded the EPA level for causing excessive algal growth

The Ten-ets of YardScaping

- Promote buffers
 - Promote appropriate plants native plants and non-invasive alien plants
 - Reduce lawn area
- Reduce runoff
 - Reduce reliance on pesticides, fertilizers and water
 - Promote low input lawns and landscapes
 - Promote YardScape diversity
 - Create wildlife habitats Right plant, right place, right use
 - Commonsense pest management (IPM)

LOW INPUT YARD CARE

When it comes to gardening, less is usually more.

Low input yards require a little more brain, a lot less brawn and leave you with more free time:

- plant drought and pest tolerant plants
- mow lawns at the highest setting and leave the clippings
- replace lawn with shrubs or wildflowers

Want to get involved or learn more? Visit www.yardscaping.org

Use site appropriate, noninvasive plants

- Native plants are often well adapted
 - Fewer problems, less work, more rewards, but not all are problem free, e.g., viburnums
 - Invasive plants are easy to grow but crowd out native vegetation
 - Our local forest habitats are changing rapidly
 - Invasive plants can ruin wildlife habitat
 - Invasive plants harbor more infected deer ticks

Wild Columbine

Viburnum Leaf Beetle

Oriental Bittersweet

Right plant, right place, right purpose

- Choose plants based on the site conditions not just for their color
- Select plants that thrive under existing conditions rather than trying to alter the conditions to meet the needs of a plant
- Minimize disturbance of the existing landscape

Wild Cranberry Bog

Right plant, right place

Beach plum – dry sunny site

Partridgeberry – wet shady site

Staghorn Sumac – large open dry bank

Where to learn more

www.yardscaping.org/plants/index.htm

YardScaping Gardens at Back Cove

PLANT CHOICE

Plants thrive in the proper climate, soil and sun exposure.

Plant a plant where its needs and your needs are met:

- plant natives whenever possible
- don't plant invasive alien species
- choose plants that provide homes, food and shelter for wildlife
- put plants in the right climate, soil and sun exposure

Use a diversity of plants & grasses

- Less noticeable damage from pests and disease
- Incorporate many layers of plant types
 - Trees
 - Shrubs
 - Ground covers
 - Perennials, and
 - Lawns

Create wildlife habitats

Diversity and plant layers go hand in hand with habitat creation

Add nectar and fruit producing plants

Add water, walls, feeders, woody debris

Reduce lawn area

Reduces

- Water & air pollution
- Water usage
- Maintenance
- Costs

Gives

More free time

Mower exhaust = 11 cars' exhaust

One hour of mowing = driving 400 miles

Mowers spew 87 lbs of greenhouse gases and 40 pounds of other pollutants annually

Use low input plant varieties

- No-mow fescue vs
 Kentucky bluegrass
- Pagoda dogwood vs flowering cherry
- River birch vs paper birch

Protect lakes & streams with buffers

 Preserve existing landscape

- Winding paths
- Don't mow to the water's edge
- Leave the duff

Reduce runoff

- Reduce amount of impervious (hard) surfaces
- Create rain gardens or install rain barrels
- Direct water into vegetated areas
- Irrigate properly and only when needed

Reduce reliance on pesticides, fertilizers and water

- Grow plants that are resistant to insects & diseases
- Use plants that tolerate low fertility
- Use drought resistant plants

White Fir

Sweet Fern

Use common sense pest

management

- Integrated pest management
 - Know your pest
 - Pick it, trap it or exclude it
 - Know the good bugs
 - Mow, prune or water
 - Use pesticides as last resort

MANAGE PESTS WISELY

Weed, insect and disease control products present both risks and benefits.

Follow these simple steps to protect people, pets, plants and watersheds:

- know the pest
- pull, squash or trap it
- use control products as a last resort, *if at all*
- spot treat only
- protect beneficial organisms

Want to get involved or learn more? Visit www.yardscaping.org

Creating Healthy Maine Lawns

Maximize Benefits

Minimize Risk

Practice Integrated Pest Management

Starting from scratch

- Where do you need a lawn?
 - Keep the lawn area as small as possible
- Proper grading and drainage
 - Remove topsoil before making grade changes
 - Should be around a 1 2 % grade away from the home, avoid steep grades
 - Avoid wet areas, if a lawn must be planted in wet areas, install drainage tiles

When's the best time?

- If water is available, sod can be installed anytime
- Seeding is best done from August 15 – September 30
 - High soil temps, less weed emergence
- Seeding in May or June is less desirable
 - Low soil temps, large weed flush at same time grass emerges

Harvest Moon = best seeding time

Soil, Soil, Soil

- At Least 4 6 inches of sandy loam topsoil!
- Do a soil test

- Take 10 15 samples/1000 sq ft
- Take samples about 6 inches deep
- Mix samples together in bucket and send about a 2 cup composite sample to soil lab

Adjust the soil

- Adjust soil nutrient, pH and OM conditions as indicated by soil test
 - Slow release N fertilizer
 - 1LB/1000 sq ft or less of N,
 - 1LB/1000 sq ft of P,
 - K only needed if deficient
 - 50LB/1000 sq ft of lime
 - 1 2 inches of finished compost as needed

Soil Test Results

Soil Nutrient Low Medium Optimum Excessive Phosphorus XXXXXXXXXXXXXXXXXXXX Potassium XXXXXXXX Calcium XXXXXX Magnesium XXXXXXXXX Soil pH XXXXXXXXXXX Org. Matter XXXXXXXX

Site preparation before planting

- Minimize soil disturbance as much as possible
- Use solarization
- Use pre-emergent herbicide
- Kill existing turf and slit seed through the dead turf

Choose the right grass varieties for Maine

	Kentucky Bluegrass	Perennial Ryegrasses	Tall Fescue	Fine Fescue
Growth habit	Rhizotamous	Bunch	Bunch	Bunch
Leaf texture (blade width)	Medium-Fine	Medium	Coarse	Very Fine
Establishment from seed	Slow (approx. 30–90 days)	Fast (approx. 14–21 days)	Fast to Average (21–30 days)	Average (21–50 days)
Seeding rate	1 to 2 lb./1,000 ft. ²	5 to 9 lb./1,000 ft. ²	5 to 9 lb. /1,000 ft. ²	3 to 5 lb./1,000 ft. ²
Annual nitrogen fertilizer	3 to 4 lb./1,000 ft. ²	2 to 6 lb./1,000 ft. ²	2 to 4 lb./1,000 ft. ²	1 to 2 lb./1,000 ft. ²
Drought tolerance	Poor	Poor	Some	Some
Shade tolerance (min. 4 hr. of		See Sty	Constant of	
direct sun)	Poor	Poor	Good	Excellent
(traffic)	Good	Good	Good	Poor
Insect tolerance	Some	Some	Excellent	Good
Disease tolerance	Some	Some	Good	Good

Plant or over-seed with low maintenance grass types

- Fine Fescues 40 50%
 - Creeping Red
 - Hard
 - Chewings
- Tall Fescue
- Common Kentucky Bluegrass
- Endophyte enhanced perennial rye or fescues
- Plant grass seed in late summer/early fall
- Avoid sod

Example Mix

40% Endophyte Enhanced Creeping Red Fescue 10% Southport Chewings Fescue
30% Endophyte Enhanced Perennial Ryegrass 20% Kenblue KBG

Sustainable landscapes cost less long term

Garden/Garden — A Comparison in Santa Monica Santa Monica, California, U.S.A.

Project Facts

- Santa Monica imports more than 90 percent of its water from Northern California and the Colorado River, more than 400 miles away.
- In 2004, the city of Santa Monica constructed two 1,900square-feet demonstration gardens on two adjacent front yards to demonstrate the many benefits of sustainable gardens. The "Traditional Garden" incorporates commonly used exotic species and lawn while the "Native Garden," the sustainable alternative, uses exclusively native California plants.
- The native garden cost \$16,700 to install compared \$12,400 for the traditional garden. Despite its higher initial cost, the native garden's lower maintenance requirements translate into \$2,200 per year in cost savings.
- The native garden uses 77 percent less water, produces 66 percent less waste, and requires 68 percent less labor than the traditional garden.

Low Maintenance Lawn Benefits — 2000 CMHC study of 30 residences

- Residents with lowmaintenance lawns spent
 - 50 per cent less time,
 - 85 per cent less money, and
- used
 - 50 per cent less fuel,
 - 85 per cent less fertilizer,
 - 100 per cent less water and
 - 100 per cent less pesticides per year

Adapted from Ecological Outlook. 2000. "Residential Landscapes: Comparison of Maintenance Costs, Time and Resources" CMHC: Ottawa.

http://www.cmhc-schl.gc.ca/en/burema/gesein/abhose/abhose_076.cfm

How about *low/no* mow grass? How about adding clover?

Low Input Lawn Demonstration Sites

- 3 plantings in fall of 2004
 - Southern Maine
 Community College, S.
 Portland
 - Pine Tree State
 Arboretum, Augusta
 - Rogers Farm, University of Maine, Orono

BayScaper Mix

Seed or sod?

- Sod is generally high input Kentucky BG
 - Needs lots of H_20 & N
 - Not shade tolerant
 - Good for slopes, But?
- Seed is more flexible
 - Can adjust for shade
 - Less inputs, etc

Water is essential at this stage

 Seed or sod must be watered until it is established

- •Keep seed moist throughout the day
 - -May have to water 2 3 times/day
 - -Keep top 1/2 inch of soil moist

–Takes KBG & Fescues about 3 weeks to fully germinate

Mow after grass is established

- Once grass reaches 2 inches it is time to cut it
- Mowing at this stage reduces weeds
- Cut to 1^{1/2} inches for the first 3 mowings

• Then mow at $2^{1/2} - 3$ inches

Maintenance of established lawns

- Mowing
- Watering
- Aeration & Dethatching
- Soil Amendments
- Pest Management

Start from the ground up

- Minimum of 4 6 inches topsoil
- Soil test every 1 3 years

Soil

a lawn's

foundation

Nutrient tips

- Soil test
- Measure carefully
- How much
 - 1 2 lbs N/1000 sq ft
 - 0 1 lb for low input grasses
- When
 - late August mid November
 - not when ground is frozen

Soil Test Results

Soil Nutrient Phosphorus Potassium Calcium Magnesium Soil pH Org. Matter

Nutrient tips Con't

- Adjust soil pH to 6.0 7.0 with lime
 - Pelletized dolomitic limestone preferred unless soil test shows excess magnesium
- Unless soil test indicates deficiency, skip the phosphorous!

 Apply potassium only when a soil test indicates need

Select slow release fertilizers

Fertilizer Name	Analysis	Source of N	<u>Moisture</u> Dependence	<u>Low</u> <u>Temperature</u> <u>Response</u>	<u>Residual</u> <u>N</u> <u>Activity</u>	<u>Salt index</u> (per N unit)	Leaching Potential					
Quickly Available												
Ammonium- nitrate	33-0-0	ammonium nitrate	minimal	rapid	4-6 weeks	3.2	high					
Ammonium- sulfate	21-0-0	ammonium sulfate	minimal	rapid	4-6 weeks	3.3	high					
Ammonium- phosphate	18-46-0	diammonium phosphate	minimal	rapid	4-6 weeks	1.6	high					
<u>Urea</u>	46-0-0	urea	minimal	rapid	4/6 weeks	1.6	moderate					
Slow-Release												
Sulfur-coated urea	22-38% N	urea	moderate	moderately rapid	10-15 weeks	not applicable	low					
ONCE	24-25% N	urea, nitrate, ammonium nitrate	moderate	moderately rapid	15-38 weeks	not applicable	low					
Slowly-soluble												
IBDU	31-0-0	isobutylidine diurea	high	moderately rapid	10-16 weeks	0.2	low					

Select slow release fertilizers

Fertilizer Name	Analysis	Source of N	<u>Moisture</u> Dependence	<u>Low</u> <u>Temperature</u> <u>Response</u>	<u>Residual</u> <u>N</u> <u>Activity</u>	<u>Salt index</u> (per N unit)	Leaching Potential					
Ureaform reaction												
Nitroform	38-0-0	ureaformaldehyde	high	slow	10-30 weeks+	0.3	very low					
FLUF	18-0-0	urea/ureaformaldehyde	moderate	medium	6-10 weeks	not applicable	low					
Nutralene	40-0-0	methylene ureas	moderate	medium	7-12 weeks	not applicable	low					
Methylene urea	39-0-0	methylene ureas	moderate	medium	7-9 weeks	0.7	low					
Coron	28-0-0	urea/methylene ureas	minimal	moderately rapid	7-9 weeks	not applicable	moderate					
N-Sure	28-0-0	triazone/urea sol.	minimal	moderately rapid	6-9 weeks	not applicable	moderate					
Natural Organic fertilizers												
Ringers	6-1-3	blood, bone, seed meals	high	medium	10-12 weeks	0.7	low					
Sustaine	5-2-4	composted turkey waste	high	medium	10-12 weeks	0.7	low					
Milorganite	6-2-0	activated sludge	high	slow	10-12 weeks	0.7	low					

Mow properly

- Mow high 2 ^{1/2} to 3 inches
- Mow regularly
- Keep mower sharp
- Return clippings
- Vary mowing pattern

Mower exhaust = 40 small cars' exhaust

Add organic matter

- Top dress with 1/8 - 1/4 inch of compost
 - reduces thatch
 - improves nutrient and water holding capacity

- Some composts may be high in nutrients
 - use a source that has been tested
 - test the soil after application
 - watch for development of layers

- Water deeply 3/4 1^{1/2} inches per week
 - Don't water every day (use a rain gauge)
 - 1 2 times a week is best
 - Water early in the morning (to reduce disease)
- To reduce water needs allow the turf to go dormant in the summer
 - apply 1/4 1/2 inch water every 3 weeks

Let it breathe

- Keep thatch under 1/2 inch
- Cut back on pesticide use

Core aerate in the late summer or early spring

How do you use your lawn?

- Do you tread lightly? or
- Do you rough it up?
- What areas need help?

Problems are inevitable

Begin by sketching a map of your yard. Label it with the names of the weeds you find and their locations. Once you assemble this information, you can do some research and make decisions about how and when to control the weeds in your garden.

3

a, 110502121

1/1

14

Spurge &

goosegrass

Dandelion

Hairy bittercress &

shepherd's purse

Canada thistle

44

PROBLEM: Dandelion (Taraxacum officinale) scattered throughout the lawn.

SOLUTION: The best solution for dandelions is to learn to enjoy their presence, or you can hand-pull them using a dandelion weeder.

PROBLEM: Crabgrass (Digitaria spp.) and prostrate knotweed (Polygonum aviculare) in the children's play area.

SOLUTION: Define the edges of the area and add a deep layer of sand or mulch. It will keep weeds down and provide a good playing surface for children.

PROBLEM: Spurges (Euphorbia spp.) and goosegrass (Eleusine indica) in the area next to the driveway where the car backs up when leaving the garage.

SOLUTION: These plants are indicators of compacted, dry soil with low fertility. Either pave the area or stop driving over it and turn it back into lawn by aerating, fertilizing, and seeding.

PROBLEM: Hairy bittercress (Cardamine hirsuta) and shepherd's purse (Capsella bursa-pastoris) in the garden beds around the house.

SOLUTION: These are both winter annuals that prefer moist, shady spots and cool weather, so watch for them during the fall, winter, and spring, and hand-pull them before they set seed.

PROBLEM: Canada thistle (Circium arvense) on the edge of a mulch bed at the base of a tree.

SOLUTION: This has probably come over from the meadow on the other side of the driveway. It is an invasive plant that can be hand-pulled when young. Monitor for seedlings in the garden and pull them immediately.

Where are the problem areas?

- High traffic
- Compaction
- Shade
- Pest problems

#1 Killer of grass

To much shade?

- Must have at least 6 hours of direct sunlight to grow lawn grasses
- Trees in shaded areas must be thinned and lower branches pruned
- Better yet leave the trees and plant shade tolerant ground cover

Ground covers

Non-native

Periwinkle or Myrtle Full sun or shade May be invasive

Pachysandra

Full/partial shade

English Ivy Full/partial shade May be invasive

Ground Covers

Native

Bunchberry

Partial sun/shade

Wintergreen/ checkerberry Shade

Bearberry Full sun

Integrated Pest Management

• Grow stress-free turf

Is this stress free turf?

 Accept a few weeds or insects

Integrated Pest Management

Identify the pest

• Pull it out or mow it off

• Irrigate

Pest Identification is crucial

White grub rastral patterns

Japanese beetle European chafer May/June Rose beetle chafer

Integrated Pest Management

- Encourage biological controls
- Use pesticides as a last resort
- Read and follow labels
 carefully

IPM Principles and Concepts

IPM Core Concepts

- No <u>single</u> pest control method will be successful.
- <u>Monitoring</u> (sampling) of the pest is constantly needed.
- Mere presence of a pest is no reason to justify action.

IPM Principles and Concepts

IPM is NOT:

- a biological control program
- an organic program
- a pesticide free program
- the most expensive approach
- the least expensive approach

Weed Management

Common broadleaf weeds

Plantain

Hawkweed

Creeping Charlie/ Ground Ivy

Common grassy weeds

Nutsedge

Crabgrass

Quackgrass

Weed Control Approach (BASIC STRATEGY - dense, tall turf tends to reduce weed invasion)

- Mow high, 2 inches MINIMUM
- Promote root growth fertilize in early fall

 Reduce wear and compaction - encourage foot traffic away from turf; core aerify twice per year

Overseed or slit-seed open areas ASAP

Spot treatment with herbicides only when necessary

Are there alternatives?

 Corn gluten meal has demonstrated pre-emergent herbicide activity

Rather expensive and a weak herbicide

 Most action nutrient value from meal breakdown - added fertility thickens turf and reduces weed germination

- Weed flamers and spikes "Punto"
- Hot water foam and steamers

 Mostly used in cities where herbicides have been banned

Punto

Integrated Pest Management – Insect Pests

White Grubs

Chinch Bugs

stages of development. From left to right: newly hatched bug (top), after the first molt (bottom), second molt, third molt and adult chinch bug.

Insect Control Approach (BASIC STRATEGY - use resistant turf species and create deep root systems)

 Ryegrasses and fescues with endophytes are resistant to surface insects.

• Fertilize in spring & fall, reduce irrigation in summer to discourage grubs.

 Use insecticides only when monitoring indicates a need

Morning Star

- High Endophyte level for natural insect resistance (+90%)
- Excellent disease resistance
- Beautiful, dark
 green color
- Fine leaf texture
- Superb summer and fall density
- Excellent drought tolerance
- Seeding rate: 6-8 lbs./ 1,000 sq. ft.

Are there alternatives to higher risk insecticides?

 Insect parasitic nematodes are effective, but must be applied with care

 Milky disease of Japanese beetles does not affect other species of grubs. In Maine, the disease is a weak pathogen and very expensive to apply

 Endophytes provide long term, consistent control (of surface insects)

Simple slit seeding of endophytic grasses into KBG resulted in a 30 to 50% stand of endophyte - enough to control surface insects!

Classic Biocontrols

P Predators

Ants & Wasps Beetles Spiders Bugs (damsel, bigeyed, stink) Mites Others

P Parasites

Wasps

Flower Flies

P Pathogens

Bacteria Fungi Virus Entomopathogenic Nematodes
Conserving Biological Controls

I Learn to recognize biocontrols
I Provide food and habitat
I Use least toxic pesticides
I Target pesticides WHERE needed
I BE PATIENT!!

Classic Cultural Controls

P Physical/mechanical

Hand crushing Traps Barriers Syringing

Plant Resistance/Tolerance Site Plants Fertilizer & Water

White Grubs

Entomopathogenic Nematodes

Steinernema carpocapsae

S. riobravis

S. scapterisci

Heterorhabditis bacteriophora Cruiser nematodes

Insects infected with *Steinernema* nematodes are usually light tan in color.

Note the adults (larger nematodes) and the infective juveniles (the tiny nematodes forming a cloud around the grub.

Insects infected with *Heterorhabditis* nematodes are usually a reddish color.

Biorationals

Paenibacillus popillae – grub milky disease

Bacillus thuringiensis - δ-endotoxin

Saccharopolyspora spinosa -

spinosyns (=Conserve)

Normal grub (left) and a milky disease infected grub (right). Note color of blood droplet where the tip of the leg was pinched off.

Sod Webworms

Spring damage

Adult bluegrass webworm

Larva and frass

Bluegrass Billbug

Adult and larva

Larva in crown

© D.J. Shetlar, 2004

Entomopathogenic Fungi

Beauveria spp. "White" Fungus

Naturalis-T[®]

Metarhizium spp. "Green" Fungus

(Met-52 not registered in US yet)

A bluegrass billbug adult (above) and Japanese beetle larva (right) infected with *Beauveria*.

Fire ant queen with *Metarhizium anisopliae* fungus.

Hairy chinch bugs in thatch

Hairy chinch bug adults long wing & short wing forms

@ D.J. Shetlar, 2004

Hairy chinchbug control

Big-eyed bug

Lawn disease management

- Avoid sod
- Improve air circulation
- Water in early morning only
- Reduce thatch with aeration
- Plant resistant varieties
- Convert shady areas to ground covers

Dollar Spot

Red Thread

Brown Patch

Other disease-like problems

- Mushrooms
 - Buried wood
 - Infected soil
- Moss
 - Too wet
 - Too shady
 - Too acid
 - Too compacted
 - Low fertility
 - Scalping

Vertebrate problems

- Birds
 - Starlings, crows, grackles
- Moles
 - Eastern or star-nosed
- Skunks, squirrels, raccoons

If you must apply pesticides apply properly & be cautious

Only treat infested areas

 Spot treatments conserve beneficial organisms

Prevent Environmental Contamination

- Avoid misapplication to impervious surfaces
 - Use drop spreaders
 - Sweep up misapplications
 - Pervious surfaces become impervious when frozen!

Prevent Environmental Contamination

- Do not apply to saturated soils or when 0.5 inch or more rainfall expected
- Don't put pesticides and fertilizers onto sidewalks, driveways, etc.
- Reduce urban runoff install more pervious surfaces (turf, prairie, woodlots, turf pavers, etc.)

Prevent Environmental Contamination

- Choose pesticides and nutrients with low runoff potential based on their physical and chemical properties
- Use slow release N fertilizers
 - Water insoluble N, Composts, sulfur coated
- Use wettable powder pesticides, pesticides with lower water solubilities and stronger soil adsorption properties

Prevent runoff

Does it puddle up?

Does it runoff fast?

 Do you have vegetative buffers?

The beauty of buffers

 Good buffer – Reduced runoff, less pollution, cleaner water and lower maintenance too!

Conclusions of 1995 – 96 Oklahoma study

- Buffers can significantly reduce pesticide and nutrient runoff
- Untreated (no fertilizer or pesticides) turf buffers as little as 8 feet wide can significantly reduce nutrient and pesticide losses to surface waters

How will it work

 Our first project will be a demonstration area at the Back Cove in Portland

The current Back Cove plan

Site Design by: + Lisa Cowan, Landscape Architecture + Carroll Associates, Landscape Architects + Portland, Maine

Back Cove demonstration area

- It is a 2 acre +/- site that will be developed over two years
- We hope to have 4 "yards" featuring different types of landscapes
 - Rural Field & wildflowers with native trees and wildlife habitat enhancements
 - Suburban/Rural No-mow grass with native trees & shrubs
 - Urban/Suburban Very low input lawn grasses that are mowed with very low input native and non-invasive alien trees & shrubs
 - Urban YardScaping lawn mix with low input native and non-invasive alien trees & shrubs

Rural/Meadow Area

- We will try to re-establish the native coastline
- Few trees & shrubs
- Meadow areas
- Rough paths
- Bird boxes
- Wildlife shelters
- Bush hog 1x/year

Suburban/Rural

- No-mow lawn
- Maintenance free native trees and shrubs
- Mulched paths?
- Benches
- Mown 2x/year

Urban/Suburban

- Very low input grasses
- Very low input native and noninvasive alien trees & shrubs
- Stone dust paths?
- More benches
- Grass mown at 3 inches

Urban

- YardScaping grass
 mix
- Low input native and non-invasive alien trees & shrubs
- Crushed stone paths?
- Inviting archway

🛞 www.yardscaping.org

Maine.gov Agencies | Online Services | Help

🟫 🔻 C 🛛 🚼 - maine state purchasing contracts nrsc

State Search:

- 8 ×

Home | Contact Us | Get Involved | About Us

PROGRAM INFORMATION	
🥥 Why YardScape?	
🥥 Landscapes	
🥥 Lawns	
🥥 Problems	
🥥 Press Room	

Welcome to YardScaping

Page Tools

GO

-

+

for a healt

Can anything be more satisfying than a fertile carpet of green grass? How about a healthy landscape that features less lawn and beautiful plantings-all grown without the excessive use of pesticides, fertilizers, and water!

Whether you've been wringing your hands over Japanese beetles or you're tired of slaving away on your lawn, YARDSCAPING is for you.

Join the growing number of Mainers who have decided to change their yard care ways-for the health of the environment, people, and wildlife.

What's New

Portland's YardScaping Gardens at Back Cove are complete and ready for your enjoyment!

Site Map | Search YardScaping: QUICK TIPS

GotPests.org

IPM: The Yard Saver

Sustainable Plant Selection

Plants to Avoid

Native Plants: Where to buy

'em: Hiring a Landscape Professional

Ecological Yard Care Resources [PDF]

LINKS

YardScaping Experts

BayScaping

Healthy Lawncare Tips—Cumberland County Soil & Water Conservation

District Kennebunkport Conservation Commission—Lawns for

Lobsters

Grass Seed Sources

Maine Board of Pesticides Control

University of Maine Cooperative Extension

LakeSmart

Congress of Lake Associations

The Friends of Casco Bay Maine Soil and Water

Conservation Districts The University of Maine

Cooperative Extension Water Quality

ThinkBlueMaine.org

Portland Water District

PlantNative

Maine.gov | Department of Ag| Board of Pesticides Control | Site Policies

ibt @ 2004 All rights recen

× Find: contra

Find: contra

 Vext
 Previous
 Highlight all
 Match case

 WWW.yardscaping.org

http://www.gotpests.org

http://131.128.91.217/maynard_susplants/html_spl2000/index.htm

Other resources

•http://www.hort.uconn.edu/ipm/turf/htms/turfman.htm

The Homeowner's Lawn Care and Water Quality Almanac

http://www.gardening.cornell.edu/lawn/almanac

http://www.nbhta.ca/sustainable_turf_manual.htm

YardScaping... Protecting the beauty of Maine

