





### BUILDING RESILIENCY ALONG MAINE'S BLUFF COASTLINE

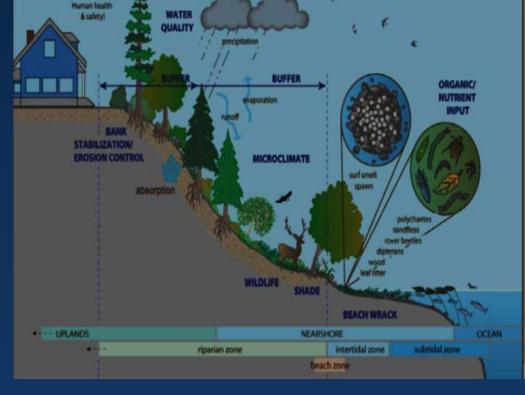
Developing a Decision Tree and Coastal Stabilization Alternatives Along Maine's Casco Bay

Presented by Troy Barry, Fluvial Geomorphologist Introducing Green Infrastructure for Coastal Resilience May 17, 2017

#### Building Resiliency Along Maine's Coastline

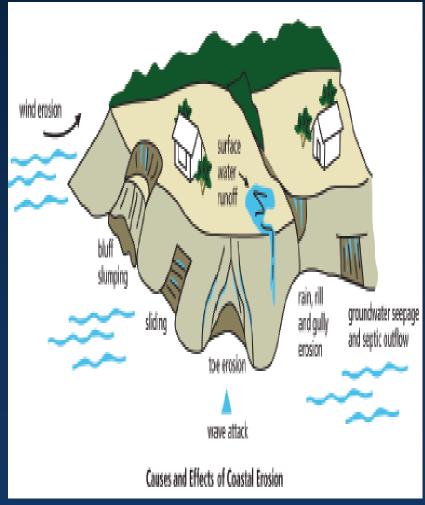
- Casco Bay Shorelines & Erosion
- Traditional Shoreline Stabilization Practices
- Case Studies
  - Upland Riparian Intertidal
- Living Shoreline or Soft Stabilization approach
   Biomimicry
- Shoreline Management Assessment (SMA)

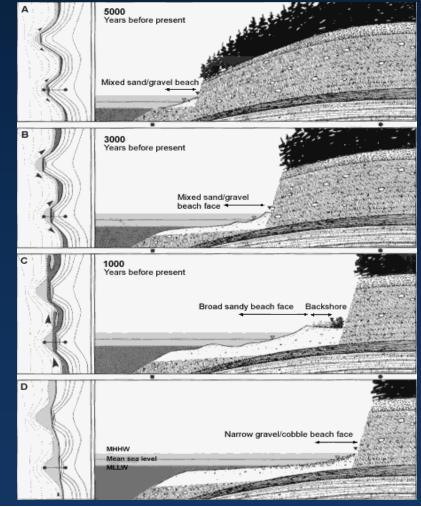



## Shoreline Types:

set back

#### • Marsh


Balanced sediment input & vegetation


- Mudflat
  - Shallow nearshore
- Rock Dominated
   Intermittent
- Sediment Bank
   Riparian zone
- Pocket Beach
   Shallow intertidal





# Factors Contributing to weathering and erosion of bluffs







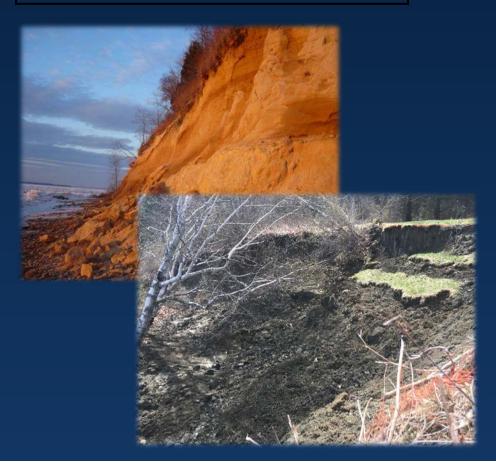
#### **Erosion Rates and Risk**



#### Slight Erosion: 0-2 ft/y

#### Low Erosion: 2-4 ft/y

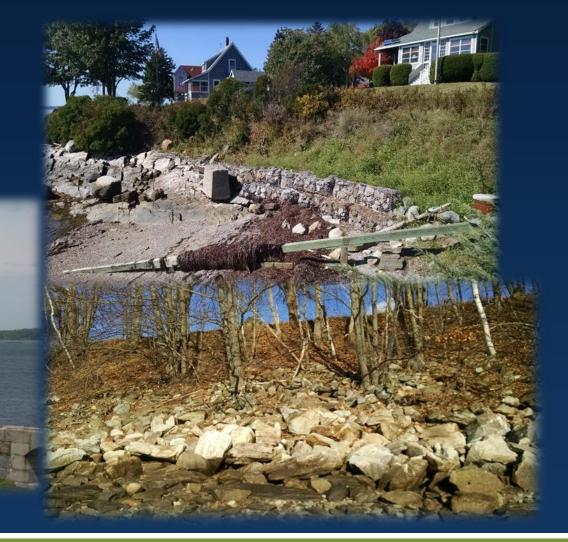





#### Erosion Rates and Risk



#### Moderate Erosion: 4-8 ft/y


#### High Erosion: 8+ ft/y





#### **Traditional Stabilization Practices**

- Riprap
- Bulkheads
- Jetties & Groins





### **Traditional Stabilization Changes**

- Accelerated Erosion
- New deposition pattern
- Turbidity
- Energy deflection
- Sediment interference
- Degrading fish habitat
- Aquatic & Terrestrial connectivity loss





### **Case Studies**

- Bustins Island, Freeport
- Mitchell Field, Harpswell
- Mackworth Island, Falmouth
- 17 Webb Field, Brunswick





Case Study 1: Bustins Island, Freeport



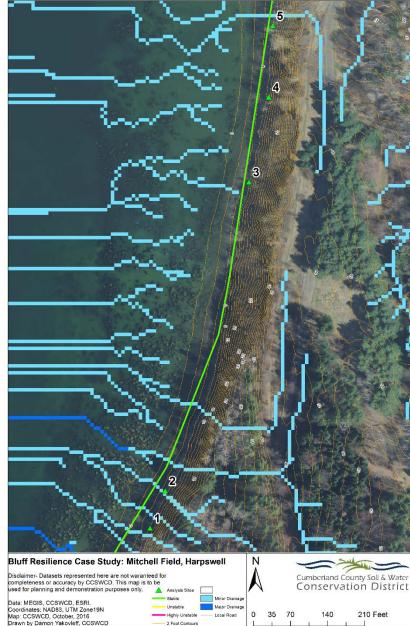








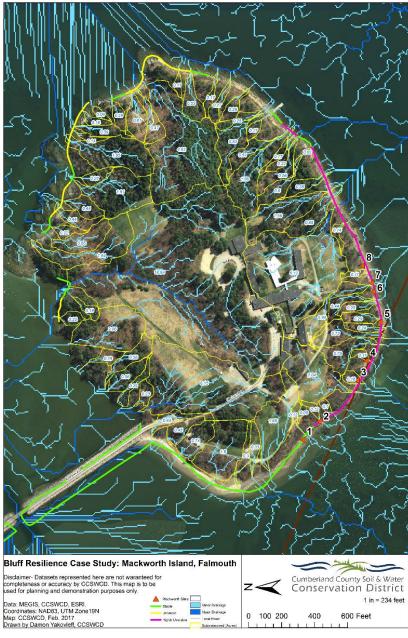
#### **Vegetation vs Riprap**


Living Shoreline w/ Vegetation

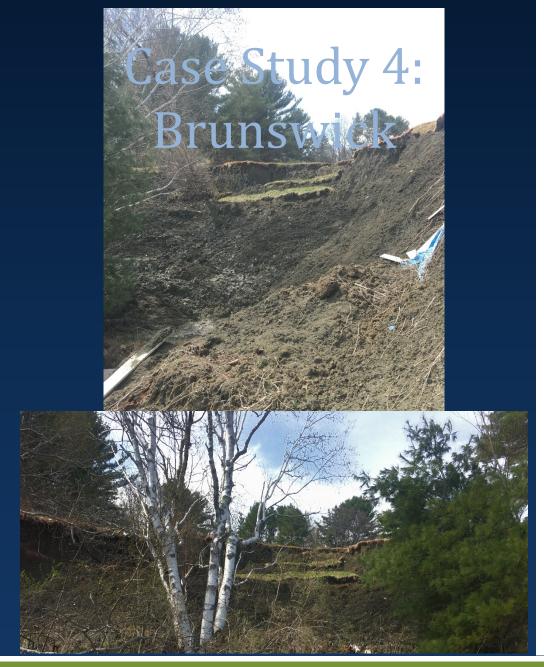
Hardened Shoreline

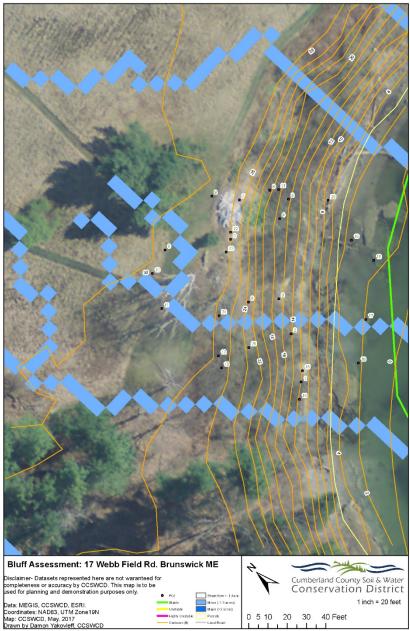


#### Case Study 2: Mitchell Field







#### Case Study 3: Mackworth Island













### Fluvial Geomorphic Principles

- Fluvial geomorphology interactions between bluff form and fluvial processes
- Upland Riparian Intertidal are complex interrelationships
- Independent variables upland discharge, geology, soils, landform, fetch, bathymetry and climate
- Dependent variables bluff slope stability, width, height, pattern change through complex feedback mechanisms
- Changes in any independent variables or dependent variables initiate adjustment processes in one or more of the dependent variables



#### Intent to provide guidance:

- Reconnaissance Level Assessment (RLA)
   Desktop Review, Instability Rating
- Prediction Level Assessment (PLA)
  - Focus Areas: Upland Riparian Intertidal
- Design Level Assessment (DLA)
  - Conceptual Design
  - Living Shoreline and/or Soft Stabilization approach





- 12 Parameters
- Good (1): 1-15
- Fair (2): 16-27
- Poor (3): 28-36



#### INSTABILITY ASSESSMENT RATING DATA SHEET

Rater(s):

Poor

materials. No rip-rap or hardened structures

installed

Fair

Shoreline:

Photo(s):

Bluff/Tidal Marsh/Mud Flat/Low Bank:

Good

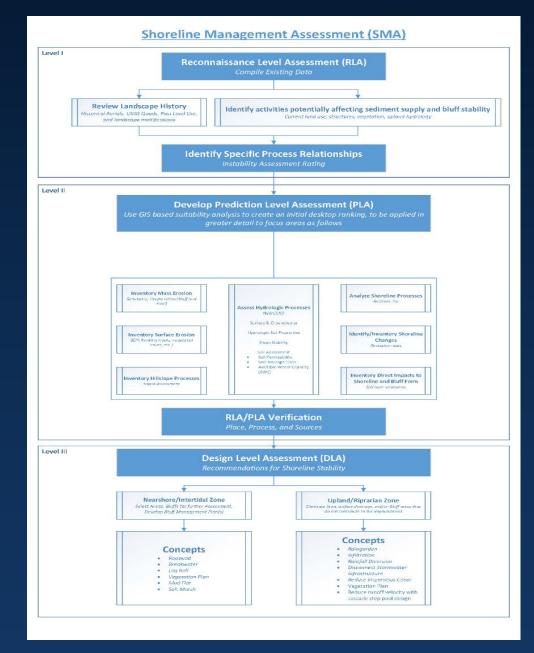
Overall Bluff Condition

12 Biology / Landscape Connectivity

Date

| BLUFF ASSESSMENT |                                                                               |                                                                                                                                                             |                                                                                                                                                                |                                                                                                                                                                     |                   |
|------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
|                  | Category / Parameter /<br>Measurement Method                                  | Good (1)                                                                                                                                                    | Description of Bluff Condition                                                                                                                                 |                                                                                                                                                                     | Rating<br>(1/2/3) |
|                  | Weasurement Wethod                                                            | Good (1)                                                                                                                                                    | Fair (2)                                                                                                                                                       | Poor (3)                                                                                                                                                            | (1/2/3)           |
| 1                | Hydrology / Runoff / Ponding                                                  | No alteration of upland drainage draining to<br>project area. Drainage of bank has not been<br>modified.                                                    | Minimal overland drainage changes above shoreline site.<br>Does not adversely affect hydrology or result in<br>concentrated flow (point discharge)             | Surface drainage is reporting to the study site and has an<br>adverse affect on bank site. Water is ponded above the<br>bank. Seepage may be present.               |                   |
| 2                | Hydrology / Runoff / Concentrated Flow                                        | No apparent concentrated flow or<br>channelized flow from adjacent land use                                                                                 | Some concentrated flow/channelizing directed to site,<br>however, measures are in place to protect resources                                                   | Concentrated flow/channelization tobank site and no<br>treatments are in place                                                                                      |                   |
| 3                | Hydrology / Runoff / Land Use Change                                          | Upland area is primarily native vegetated<br>(>70%) mix of shrubbery and trees. Trees<br>larger than 12" diameter are a minimum of<br>20' from top of bank. | Land development occurring or active agricultural<br>practices occurring in upland area, vegetated area 20 -<br>70%. 12" diamter trees 5-20' from top of bank. | Land use is urban or primarily active agricultural practices<br>(> 70%), vegetated area <20%. 12° diamter trees 5° or less<br>to top of bank, roots may be exposed. |                   |
| 4                | Hydrology / Runoff / Distance to Roads                                        | No roads in or adjacent to site (20' or closer).<br>No proposed roads in or adjacent to site in 10<br>year plan.                                            | No roads in or adjacent to site (20' or closer). No more<br>than one major road proposed in 10 year plan.                                                      | Roads located in or adjacent to site boundary (5-20')<br>and/or roads proposed.                                                                                     |                   |
| 5                | Hydrology / Runoff / Seepage                                                  | Upland runoff as a result of rainfall patterns,<br>geology, and soils does not result in seepage<br>in bank.                                                | Upland runoff as a result of rainfall patterns, geology, and<br>soils results in seepage in < 10% of the bank                                                  | Upland runoff as a result of rainfall patterns, geology, and<br>soils is resulting in seepage from > 10% of the bank.                                               |                   |
| 6                | Geomorphology / Riparian Vegetation                                           | >80% of contributing shoreline length has<br>>25 ft corridor width - dense vegetation                                                                       | 50 - 80% of contributing shoreline length has >25 ft<br>corridor width - average vegetation                                                                    | <50% of contributing shoreline length has >25 ft corridor<br>width - low denisity vegetation                                                                        |                   |
| 7                | Geomorphology / Sediment Supply                                               | Low soil erosion - bank erosion shows no<br>recent change or loss. There are few<br>runnels/gulleys present on the bank face.                               | Moderate soil erosion. Bank erosion is occuring, visual<br>change and loss. There are several runnets/gulleys on the<br>bank face < 0.5' deep.                 | High soil erosion - bank erosion is occuring, change is<br>measurable. There are numerous runnels/guilleys > 0.5'<br>deep                                           |                   |
| 8                | Bank Slopes                                                                   | Slopes range from 3 to 8%.                                                                                                                                  | Slopes 8 to 20%.                                                                                                                                               | Slopes 20% and greater or underout.                                                                                                                                 |                   |
| 9                | Bank Height vs. High Tide Elevation                                           | High Tide Elevation is at or near Top of Bank                                                                                                               | High Tide Elevation is 1/3 below Top of Bank                                                                                                                   | High Tide Elevation > 1/3 below Top of Bank                                                                                                                         |                   |
| 10               | Soil Properties: Particle Size / Stratification                               | Bedrock and boulders make up the bank. Or,<br>cohesive soil types (sand/gravel mix) mixed<br>evenly.                                                        | No bedrock or boulders, cohesive solis (sandigravel mix)<br>are dominant and mixed equally. Clay to very story sandy<br>loam.                                  | Solis are non-sohesive and/or highly stratified. Sandigravel<br>mix with larger percentage of sand, sandy loam, silt.                                               |                   |
| 11               | Density of Roots/Bank Surface Protection/%<br>of Total Bank Height with Roots | Surface Protection = 80-100%. Root Density<br>in Bank = 80-100%. Root depth/Bank Height<br>= 1.0-0.9                                                        | Surface Protection = 55-70%; Root Density = 55-70%;<br>Root depth/Bank Height = 0.5-0.99                                                                       | Surface Protection < 55%; Root<br>depth/Bank Height < 0.5                                                                                                           |                   |
| 12               | Biology / Landscape Connectivity                                              | Shoreline of project and adjacent area to<br>project area has native bank and vegetation                                                                    | Shoreline of project and adjacent area has native<br>venetation and bank materials but is impaired by invasives                                                | Shoreline of project and/or adjacent area is hardened by a<br>concrete headwall or rin-ran or other structure. Limited                                              |                   |

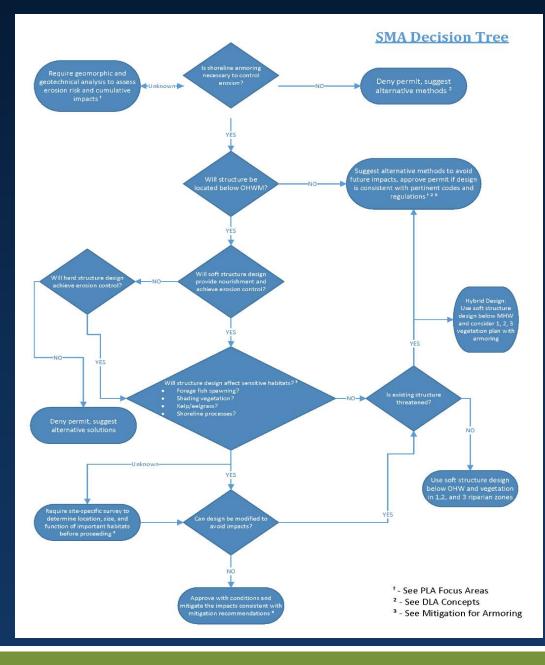
egetation and bank materials but is impaired by invasives


and/or rip-rap and/or hardened structure installed.

Total Ratings

concrete headwall, or rip-rap or other structure. Limited

vegetation present.


### Shoreline Assessment Management (SMA)







### SMA Decision Tree

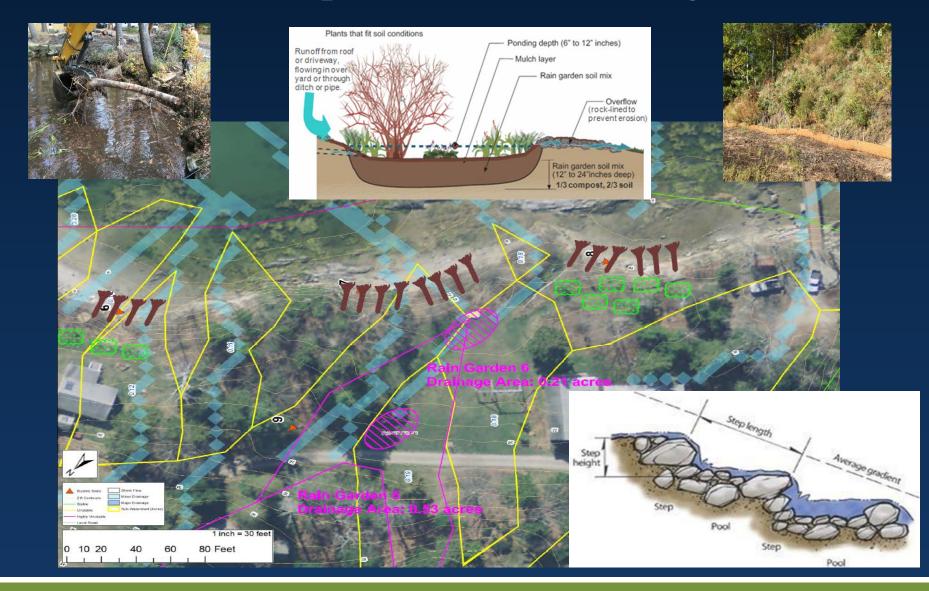


#### DRAFT



### Ecological Advantages of Living Shorelines

- Shallow water habitat = higher abundance and diversity of aquatic species both nearshore and offshore.
- Maintain a link between aquatic and upland habitats, providing shoreline access for wildlife and recreation.
- Maintains natural aesthetic.




Physical Advantages of Living Shorelines

- Improve water quality by settling sediments and filtering pollution.
- Absorb wave energy, storm surge and flood waters.
- Maintain natural shoreline dynamics and sand movement.
- Costs comparable to "structural" options



#### **Conceptual Biomimicry**





### Living Stabilization

- What works for ME
  - Each site is unique
    - RLA-PLA-DLA
  - Ecological & Physical advantages
  - Project
    implementation,
    Collaboration &
    Monitoring
- Guidelines









#### Troy Barry, M.S. P.Eng District Engineer – Fluvial Geomorphologist

#### Ph: (207) 892-4700 E-Mail: <u>tbarry@cumberlandswcd.org</u>

Developing a Decision Tree and Coastal Stabilization Alternatives Along Maine's Casco Bay

Introducing Green Infrastructure for Coastal Resilience May 17, 2017