MAINE DEPARTMENT OF TRANSPORTATION HIGHWAY/BRIDGE PROGRAM GEOTECHNICAL SECTION AUGUSTA, MAINE

GEOTECHNICAL DESIGN REPORT

For the Replacement of:

ROUTE 2 RETAINING WALL SKOWHEGAN, MAINE

Prepared by: Kalia Breskin, P.E. Senior Geotechnical Engineer

> Reviewed by: Karen Gross Geotechnical Engineer

Penobscot County

WIN 19153.00

Soils Report No. 2013-13

March 5, 2013

Skowhegan Wall PIN 19153.00 March 1, 2013

DESIGN SUMMARY

The purpose of this report is to present subsurface information and make geotechnical recommendations for the replacement of a stone wall in Skowhegan which retains US Route 2 at a height of 6-feet above the Kennebec River. Sheet 1, the location map, shows the location of the wall. This wall appears to have been built before the 1954 reconstruction of Route 2 in Skowhegan. The wall is west of the intersection of Route 201, and approximately 600-feet upstream from a dam on the River. The speed limit is 25 mph in this location, and the wall is on the inside of a curve, behind a curb and sidewalk. There is presently no guardrail above the wall between Route 2 and the river, and stone posts of the pedestrian fence have fallen in many places. Sheets 2 and 3 show photographs of the wall taken in 2008 and 2010. The eastern half of the wall in this area has tipped outward, indicating instability. The western portion of this wall appears to have been rebuilt by MDOT Maintenance staff since the original construction, however MaineDOT has no records of the work. The altered portion of the wall will not be rebuilt as part of this project. The portion of the wall to be rebuilt extends from Station 213+07 to Station 215+25 at the eastern end of the existing wall, for a length of 218 feet.

Route 2 is a Priority 1 Highway Corridor. The existing highway in this area has 12-foot lanes and 8-foot shoulders. The distance from the existing curb to the face of the wall is approximately 8-feet in most places. In this construction, shoulders and sidewalks will be narrowed to 5-feet to allow the installation of a guardrail behind the sidewalk.

The existing wall appears to have been built on a stone base, and riprap covers the slope between the wall and the river. It is estimated that the base of the stone wall must be at least 6-feet wide for it to have had adequate stability to have lasted since construction.

A pedestrian fence will be built on top of the wall at a distance greater than 3-feet from the face of the guardrail. A reinforced concrete cap will be constructed on top of both existing and new walls to support the new pedestrian fence. The cap will be a uniform thickness over the existing wall, but both thickness and reinforcement will vary to match the elevation at the back of the sidewalk on the new section of wall.

Twenty-four stone fence posts remain on the portion of wall that will not be rebuilt; they will be removed for construction of the concrete cap described above, so that a fence meeting current code requirements can be built. In the area of new wall construction, the existing stone wall will be removed to approximately elevation 155.3-feet for construction of a concrete leveling pad for the new portion of retaining wall.

The water level in the Kennebec River below this wall is controlled by the dam downstream, with a minimum elevation of 155.3 feet according to the FERC permit held by Florida Power and Light. All construction will be above this elevation, and much of the leveling pad will be built on the lower portion of the existing stone wall in order to stay above the FERC water level. It is common for the dam operator to drop the water level in the late summer and fall to allow for maintenance activities, and this construction

will be done while the water is low to prevent the need for a cofferdam for this construction.

Subsurface Investigation – A single boring to determine soil properties was drilled in February, 2011, at the edge of the existing roadway. A solid stem auger was used, and Standard Penetration Testing was done.

Existing Soils - Soils encountered included medium dense sands, with small amounts if silt and trace gravel. Wet soils were found 6.8-feet below ground surface, at Station 213+42, 15.7 feet Left. These appear to be the fill soils used when the existing wall was built. The boring was terminated 12-feet below ground surface; no refusal was encountered. Laboratory testing was not done on these samples.

Retaining Wall Design and Construction – A retaining wall meeting the requirements of Special Provision 635, Precast Concrete Block Gravity Wall will be built. The retaining wall has been designed by MaineDOT to support a 125 psf pedestrian load. The impact load from a vehicle collision with the guardrail was not considered in the design. There is no crash history in this location, and if the guardrail were to experience a direct impact, maintenance or repair of a portion of the wall may be needed. The new leveling pad will be built on the lower portion of the existing stone wall to stay above river level.

The manufacturer's standard 28-inch deep blocks will be used to allow space for installation of a guardrail behind the sidewalk. The face of curb will be 17-feet Left, the back of the guardrail posts will be 24-feet left, and the back of the upper 28" block will be approximately 25.25-feet left. Care will be needed during construction layout of the wall and guardrail to make sure this space is available. The block wall will have a maximum height of 6-feet.

Reinforcement geogrid will be placed at heights of 1.5-feet, 3-feet and 4.5-feet above the base of the wall. From Station 215+00to Station 215+25 where the cap thickness allows this, "middle" blocks should be used in place of the standard "top" block and reinforcement geotextile should be used above this block. The reinforcement geogrid will be embedded for a length of 6-feet measured from the face of the block. Upper layers of geogrid will be pierced by the guardrail posts, and added length has been included for loss of strength from guardrail installation.

The manufacturer's "Cobblestone" face pattern will be required on the blocks. The blocks should be tinted grey to minimize the visual difference between the existing stone wall and the new blocks.

Retaining Wall Cap and Fence – An 18-inch wide cap will be built on top of the new and existing walls to support a pedestrian fence. The cap will be a uniform thickness of 3-inches on top of the existing stone cap. The bulk of the cap on the new wall will be in the area of the top block intended for landscaping. This portion of the cap will have varying thicknesses to follow the profile at the back of the sidewalk. The height of the cap above the face of the wall is given in the following table; five additional inches of

concrete will fill space in the top retaining wall blocks. A detail showing the cap is included as Sheet 5.

Station	Elevation at face	Thickness at face
	of wall	of cap (inches)
213+25	161.85	3.6
213+50	161.74	2.3
213+75	161.70	1.8
214+00	161.65	1.2
214+25	161.72	2.1
214+50	161.86	3.8
214+75	162.22	8.1
215+00	162.57	12.3
215+25	162.99	17.3

Two longitudinal #4 steel reinforcing bars with 2-inches of cover at the top, spaced well apart will be required from the beginning of the wall to Station 214+70. Beyond this Station, an additional layer of steel will be required. This section will have two #4 bars near the bottom of the cap and two #4 bars with 2-inches of cover, transverse bars will be required spaced 2-feet on center.

Fence posts will be drilled and grouted for a depth of 12-inches into the cap and stones at the top of the existing wall, or into the cap and top retaining wall blocks as needed. These holes will be approximately 6-inches in diameter.

Construction Considerations – Contractor should coordinate work with the owners of the dam downstream to ensure that the work can be done while the water is low. Care will be needed during excavation of the existing wall to protect the lower wall that is to be used as a base for the new construction. Limited space is available for guardrail installation, so accurate layout of both the wall and the guardrail will be essential. Reinforcement steel within the concrete cap should be spaced to avoid fence post locations.

Attachments

Sheets	
Sheet 1 - Location Map	
Sheets 2 and 3 - Photographs	
Sheet 4 - Boring Location Plan	
Sheet 5 – Fence Post and Wall Cap Details	
Appendices	
Appendix A - Boring Log	
Appendix B – Calculations	
Appendix C – Retaining Wall Design	

Sheet 1

Map Scale 1:16000

The Maine Department of Transportation provides this publication for information only. Reliance upon this information is at user risk. It is subject to revision and may be incomplete depending upon changing conditions. The Department assumes no liability if injuries or damages result from this information. This map is not intended to support emergency dispatch. Road names used on this map may not match official road names.

Date:3/5/2013

Username: kitty.breskin

Division: GEOTECH

...\GEOTECH\MSTA\001_Geoplan1.dgn

Filename:

	STATE OF MAINE DEPARTMENT OF TRANSPORTATION	019153.00	WIN 19153.00 HIGHWAY PLANS
A MODE STRATED DENVE CRAYEL D	SKOWHEGAN <u>DOTTON</u> <u>DOTTON</u> <u>DOTTON</u> <u>OFFORMENTIAL</u> <u>DEFORMENTIAL</u> <u>DEFORMENTIAL</u> <u>DEFORMENTIAL</u> <u>DEFORMENTIAL</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u> <u>DATE</u>		
	C	4	

CONCRETE BLOCK WALL DETAIL

Skowhegan Wall PIN 19153.00 March 1, 2013

Appendix A Boring Log

	Main	e Dep	artment	of Transportat	tion	F	Proje	ct:	Retain	ing Wal	1 Investagation	Boring No.:	HB-SK	OW-101
		-	Soil/Rock Exp	loration Log ARY UNITS		l	_oca	tion	: Sko	whegan,	Maine	PIN:	1915	53.00
Drill	er:		MaineDOT		Elevatio	 on ((ft.)		161	0		Auger ID/OD:	5" Dia	
Ope	rator:		Giguere/Giles		Datum:		()		NA	vD88		Sampler:	Standard Split S	Spoon
Loa	aed Bv:		K. Breskin		Rig Typ	be:			CM	E 45C		Hammer Wt./Fall:	140#/30"	-P
Date	Start/Fi	inish:	2/24/2011-2/2	4/2011	Drilling	Me	tho	1:	Soli	d Stem	Auger	Core Barrel:	N/A	
Bori	ng Loca	tion:	213+42, 15.7	ft Lt.	Casing	g ID/OD: N/A			0	Water Level*:	8.2 ft bgs.			
Ham	mer Effi	iciency Fa	actor: 0.84		Hamme	er T	ype:		Automa	atic 🖂	Hydraulic 🗆	Rope & Cathead □		
Defini D = S MD = U = T MU = V = In MV =	tions: plit Spoon S Unsuccess hin Wall Tu Unsuccess isitu Vane S <u>Unsuccess</u>	Sample sful Split Spo ibe Sample sful Thin Wal Shear Test sful Insitu Va	oon Sample attemp I Tube Sample att ne Shear Test atte	R = Rock C SSA = Solic ot HSA = Hollo RC = Roller empt WOH = wei WOP = wei empt WOP = wei Sample Information	ore Sample I Stem Auger ow Stem Aug Cone ght of 140lb. ght of rods eight of one p	r jer ham <u>perso</u>	imer on			$S_u = Insi$ $T_v = Poc$ $q_p = Unc$ N-uncorr Hammer $N_{60} = SI$ $N_{60} = (H)$	tu Field Vane Shear Strength (psf) ket Torvane Shear Strength (psf) sonfined Compressive Strength (ksf) ected = Raw field SPT N-value Efficiency Factor = Annual Calibrati PT N-uncorrected corrected for ham ammer Efficiency Factor/60%)*N-ur	Su(lab) WC = v LL = Lit PL = Pl mer efficiency G = Gr ncorrected C = Co	= Lab Vane Shear Si vater content, percent quid Limit astic Limit asticity Index ain Size Analysis nsolidation Test	rrength (psf)
Depth (ft.)	Sample No.	Pen./Rec. (in.)	Sample Depth (ft.)	Blows (/6 in.) Shear Strength (psf) or RQD (%)	N-uncorrected	na	Casing	Blows	Elevation (ft.)	Graphic Log	Visual De	scription and Remarks		Laboratory Testing Results/ AASHTO and Unified Class.
0							SS.	A	160.33	00000000000000000000000000000000000000	5" PAVEMENT. Fine to coarse SAND, some	gravel, off auger flight.	0.67-	
									158.50		Frost depth at 3.5 ft bgs.		2.50-	
- 5 -	1D	24/12	5.00 - 7.00	9/10/15/8	25 35	5			154.00	6 00 00 00 0 00 00 00 0 00 00 00 0 00 00	Brown, damp, medium dens	e, SAND, little silt, trace g	ravel.	
									154.20		Dark brown, wet, SAND, so	me silt, trace gravel, off au	6.80- ger flight. 	
- 10 ·	2D	24/6	10.00 - 12.00	2/3/3/2	6 8	3		/			Wet SAND, little silt, trace g	gravel.		
									149.00		Bottom of Exploration	a at 12.00 feet below grou	12.00- nd surface.	
											NO REFUSAL	5		
- 15 ·														
- 20 -														
_ 25 _														
<u>Rem</u>	arks:													
Stratif	ication line	s represent a	approximate boun	daries between soil types; trans	sitions may b	e gra	adual.					Page 1 of 1		

Boring No.: HB-SKOW-101

Skowhegan Wall PIN 19153.00 March 1, 2013

Appendix B Calculations

Retaining Wall Active Earth Pressures:

Effective active earth pressure coefficient:

Rankine Theory - Active Earth Pressure from MaineDOT Bridge Design Guide Section 3.6.5.2, pg 3-7

- $\beta := 0 \cdot \deg$ slope angle of backfill soils from horizontal
- $\phi_a := 34 \cdot \text{deg}$ assumed effective friction angle for dense gravely sand

$$K_a := tan \left(45 \cdot deg - \frac{\Phi_a}{2} \right)^2$$
 $K_a = 0.28$

Service Limit State Bearing Resistance - Native Granular Soils:

Nominal and factored Bearing Resistance

Presumptive Bearing Resistance for Service Limit State ONLY

Reference: AASHTO LRFD Bridge Design Specifications 5th Edition Table C10.6.2.6.1-1 Presumptive Bearing Resistances for Spread Footings at the Service Limit State Modified after US Department of Navy (1982)

Type of Bearing Material: SAND, little silt, trace gravel (Fill)

Consistency In Place: medium dense

<u>Bearing Resistance:</u> Ordinary Range (ksf) 4 - 8 medium dense to dense

Recommended Value of Use: 5 ksf

Recommended Value:

 $5 \cdot \mathbf{ksf} = 2.5 \cdot \mathbf{tsf}$

Note: This bearing resistance is settlement limited (1 inch) and applies only a the service limit state.

Characteristics of Native Soils at foundation level

Gray-brown, wet, loose gravelly fine SAND (fill)

wc := 0.225	estimated water content
e := 0.6	estimated void ratio
$\gamma_{\text{W}} \coloneqq 62.4 \text{pcf}$	unit weight of water
sp := 2.65	estimated specific gravity

saturation $sat := \frac{(wc \cdot sp)}{e}$

total unit weight

$$\gamma_t := \frac{(\mathsf{sp} + \mathsf{sat} \cdot \mathsf{e}) \cdot \gamma_{\mathsf{w}}}{(1 + \mathsf{e})} \qquad \qquad \gamma_t = 126.6 \cdot \mathsf{pcf}$$

saturated unit weight

$$\gamma_{\text{sat}} \coloneqq \frac{(\text{sp} + e) \cdot \gamma_{\text{w}}}{(1 + e)} \qquad \qquad \gamma_{\text{sat}} = 127 \cdot \text{pcf}$$

sat = 0.9938

Strength Limit State Bearing Resistance - Native Granular Soils:

Nominal and factored Bearing Resistance for box culvert and wingwall base slab

Assumptions

- 1. Box culvert will be embedded 1.0 feet below streambed $D_f := 1.0 ft$
 - 2. Assumed parameters based on granular fill

Moist unit weight	$\gamma_{\text{m}} \coloneqq 124 \text{pcf}$
Saturated unit weight	$\gamma_{\textbf{S}}\coloneqq 127 \textbf{pcf}$
Angle of internal friction	$\varphi_{\textbf{b}} \coloneqq 34 \textbf{deg}$
Undrained shear strength	c := 0
Depth to groundwater	$D_w \coloneqq 0ft$

3. L > B, so use Terzaghi strip foundation equations

Terzaghi shape factors	B := 12ft
	s_c := 1.0
Meyerhof bearing capacity	$\mathbf{s}_{\gamma} \coloneqq 1.0$
factors	N _c := 35.47
	N _q := 23.2

$$N_{\gamma} := 22.0$$

Effective stress at footing level

$$\begin{split} \textbf{q}_{\text{eff}} &\coloneqq \textbf{D}_{\text{w}} \cdot \boldsymbol{\gamma}_{\text{m}} + \left(\textbf{D}_{\text{f}} - \textbf{D}_{\text{w}}\right) \cdot \left(\boldsymbol{\gamma}_{\text{s}} - \boldsymbol{\gamma}_{\text{w}}\right) \\ \textbf{q}_{\text{eff}} &= 65 \cdot \textbf{psf} \end{split}$$

Nominal Bearing Resistance

$$q_{nom} := c \cdot N_c \cdot s_c + q_{eff} \cdot N_q + 0.5 \cdot (\gamma_s - \gamma_w) \cdot B \cdot N_\gamma \cdot s_\gamma$$

 $\textbf{q}_{\text{nom}} = 10.026 \cdot \textbf{ksf}$

Resistance Factor from LRFD Table 10.5.5.2.2-1, pg 10-32 $\Phi_b := 0.45$

 $q_{factored} := q_{nom} \cdot \Phi_b$ $q_{factored} = 4.512 \cdot ksf$

For this project, the Strength limit state controls. Factored Bearing Resistance of 4.5 ksf should be used.

Skowhegan Wall PIN 19153.00 March 1, 2013

Appendix C Retaining Wall Design

AASHTO 98 ASD DESIGN METHOD skowhegan wall MSEW(3.0): Update # 10.2

PROJECT IDENTIFICATION

Title:	skowhegan wall
Project Number:	
Client:	
Designer:	klb
Station Number:	

Description:

Company's information:

Name: Street:

Telephone #: Fax #: E-Mail:

D:\skowhegan 019153\MSEW1.BEN Original file path and name: Original date and time of creating this file: Wed Feb 13 15:27:34 2013

PROGRAM MODE:

DESIGN of a SIMPLE STRUCTURE using GEOTEXTILE as reinforcing material.

DESIGN DATA

Minimum factor of safety against pullout, Fs-po Minimum factor of safety against direct sliding, Fs-sliding Maximum allowable eccentricity ratio at each reinforcement level, e/L Minimum factor of safety against compound and overall failure, Fs-comp-static Minimum factor of safety against compound and overall failure, Fs-comp-seismic							
Prescribed minimum resistive length to prevent pullout, $Le = 3.28$ ft. Prescribed minimum normalized length of each layer is: $L/Hd = 0.70 -> L = 4.20$ ft. Prescribed minimum absolute total length of each layer is: $L = 6.00$ ft.							
BEARING CAPACITYBearing capacity is controlled by general shear.Maximum permissible eccentricity ratio (soil), e/LMinimum factor of safety with respect to ultimate bearing capacity (Meyerhof approach)Bearing capacity coefficients:Nc = 55.63N γ = 66.19							
SOIL DATA							
REINFORCED SOIL Unit weight, γ Design value of internal angle of friction, ϕ	120.0 lb/ft ³ 34.0 °						
RETAINED SOIL Unit weight, γ Design value of internal angle of friction, ϕ	120.0 lb/ft ³ 34.0 °						
FOUNDATION SOIL (Considered as an equivalent u Equivalent unit weight, $\gamma_{equiv.}$ Equivalent internal angle of friction, $\phi_{equiv.}$ Equivalent cohesion, c equiv.	niform soil) 135.0 lb/ft ³ 37.0 ° 0.0 lb/ft ²						

Water table does not affect bearing capacity

LATERAL EARTH PRESSURE COEFFICIENTS

Ka (internal stability) = 0.2827 (if batter is less than 10°, Ka is calculated from eq. 15. Otherwise, eq. 38 is utilized) Inclination of internal slip plane, $\psi = 62.00^{\circ}$ (see Fig. 28 in DEMO 82). Ka (external stability) = 0.2827 (if batter is less than 10°, Ka is calculated from eq. 16. Otherwise, eq. 17 is utilized)

SEISMICITY

Not Applicable

n 3.0 MSEW

INPUT DATA: Geotextiles (Equally spaced single type reinforcement)

D A T A		Geotextile type #1	Geotextile type #2	Geotextile type #3	Geotextile type #4	Geotextile type #5
Tult [lb/ft]		68510.0	N/A	N/A	N/A	NI/A
Durability reduction factor DEd		2.00	IN/A	N/A	IN/A	IN/A
		2.00	IN/A	IN/A	IN/A	IN/A
Installation-damage reduction factor, RFId		3.00	N/A	N/A	N/A	N/A
Creep reduction factor, RFc		5.00	N/A	N/A	N/A	N/A
Fs-overall for strength		1.50	N/A	N/A	N/A	N/A
Coverage ratio, Rc		1.000	N/A	N/A	N/A	N/A
Friction angle along geotextile-soil interface.	ρ	24.22				
Pullout resistance factor F*	F	0 67·tarø				
Scale-effect correction factor, α		0.6				

on 3.0 MSEW Version 3.0 MSEW Version 3.0 MSEW

Variation of Lateral Earth Pressure Coefficient With Depth

Ζ	K / Ka	0.	.0	1.0	2.0 ^k	C/Ka 3.0
0 ft 3.3 ft	1.00 1.00	0 Z [ft] 6.6				
6.6 ft 9.8 ft 13.1 ft	1.00 1.00 1.00	9.8		_		
16.4 ft 19.7 ft	1.00 1.00	16.4				
		26.2				
		32.8				

INPUT DATA: Facia and Connection (Design)

FACIA type: Facing enabling frictional connection of reinforcement (e.g., modular concrete blocks, gabions) Depth/height of block is 2.33/1.50 ft. Horizontal distance to Center of Gravity of block is 1.20 ft. Average unit weight of block is $\gamma_f = 140.00$ lb/ft³

To-static, To-seismic = connection force, static and superimposed dynamic component, respectively.

Geotextile Type #1		e Type #2	Geotextil	e Type #3	Geotexti	le Type #4	Geotextile Type #5		
CKU (-)	0	CKU	0	CKU	0	CRU	0	CKU	
0.90									
506.1 0.90 N/A			N/A		N/A		N/A		
Type #1	Geotextil	e Type #2	Geotextil	e Type #3	Geotexti	le Type #4	Geotextil	e Type #5	
CRs ⁽³⁾	σ	CRs	σ	CRs	σ	CRs	σ	CRs	
0.00 0.90	N/A		N/A		N/A	N N	N/A		
	Гуре #1 CRu ⁽²⁾).90).90 Гуре #1 CRs ⁽³⁾).00).90	Type #1GeotextilCRu (2) σ 0.900.90N/AType #1GeotextilCRs (3) σ 0.000.90N/A	Type #1Geotextile Type #2CRu (2) σ 0.900.900.90N/A	Type #1Geotextile Type #2GeotextileCRu σ CRu σ 0.90N/AN/A0.90N/AN/AType #1Geotextile Type #2GeotextileCRs σ CRs σ 0.000.90N/AN/A	Type #1 CRu (2)Geotextile Type #2 σ Geotextile Type #3 σ Geotextile Type #3 σ CRu0.90 0.90N/AN/AType #1 CRs (3)Geotextile Type #2 σ Geotextile Type #3 σ 0.00 0.90N/AN/A	Type #1Geotextile Type #2Geotextile Type #3GeotextileCRu σ CRu σ CRu σ 0.90N/AN/AN/AN/AType #1Geotextile Type #2Geotextile Type #3GeotextileCRs (3) σ CRs σ CRs0.000.90N/AN/AN/A	Type #1 CRu $^{(2)}$ Geotextile Type #2 σ Geotextile Type #3 σ Geotextile Type #4 σ Geotextile Type #4 σ 0.90 0.90N/AN/AN/AType #1 CRs $^{(3)}$ Geotextile Type #2 σ Geotextile Type #3 σ Geotextile Type #4 σ 0.00 0.90N/AN/AN/A	Type #1Geotextile Type #2Geotextile Type #3Geotextile Type #4GeotextileCRu σ CRu σ CRu σ 0.90N/AN/AN/AN/AN/A0.90N/AN/AN/AN/AN/AType #1Geotextile Type #2Geotextile Type #3Geotextile Type #4GeotextileCRs(3) σ CRs σ CRs σ CRs0.000.90N/AN/AN/AN/AN/A	

 $^{(1)}$ σ = Confining stress in between stacked blocks [lb/ft 2]

⁽²⁾ CRu = Tult-connection / Tult-geotextile

⁽³⁾ CRs = Tpo-connection / Tult-geotextile

D A T A (for connection only)	Type #1	Type #2	Type #3	Type #4	Type #5
Product Name		N/A	N/A	N/A	N/A
Durability reduction factor, RFd	2.00	N/A	N/A	N/A	N/A
Creep reduction factor, RFc	5.00	N/A	N/A	N/A	N/A
Overall factor of safety: connection break, Fs	1.50	N/A	N/A	N/A	N/A
Overall factor of safety: connection pullout, Fs	1.50	N/A	N/A	N/A	N/A

INPUT DATA: Geometry and Surcharge loads (of a SIMPLE STRUCTURE)

Design height, Hd	6.00	[ft]	{ Embedded depth is E = 0.00 ft, and height above top of finished bottom grade is H = 6.00 ft }
Batter, w	3.8	[deg]	-
Backslope, β	0.0	[deg]	
Backslope rise	0.0	[ft]	Broken back equivalent angle, $I = 0.00^{\circ}$ (see Fig. 25 in DEMO 82)

UNIFORM SURCHARGE

Uniformly distributed dead load is 0.0 [lb/ft ²], and live load is 125.0 [lb/ft ²] NOTE: Tmax is NOT affected by live loads.

DESIGNED REINFORCEMENT LAYOUT:

SCALE:

0 2 4 6[ft]

ion 3.0 MSEW Version 3.0 MSEW

REINFORCEMENT LAYOUT AND DESIGN CRITERIA

LEGEND:	 (1) Connection strength (2) Geotextile strength (3) Pullout resistance (4) Direct sliding (5) Eccentricity 	$\stackrel{}{\otimes}$	Satisfactory Unsatisfactory

Bearing capacity: $\sqrt{}$ Foudation Interface: Direct sliding $\sqrt{}$ Eccentricity $\sqrt{}$

#	Gec Elevation [ft]	tex Length [ft]	t i l e Type (1) #	(2)	(3)	(4)	(5)	 #	Gec Elevation [ft]	tex Length [ft]	t i Type #	l e (1)	(2)	(3)	(4)	(5)
1 2	1.50 3.00	6.00 6.00	N/A $\sqrt{N/A}$ N/A	$\sqrt[]{}$	$\sqrt[]{}$	$\sqrt[]{}$	$\sqrt[]{}$	 3	4.50	6.00	N/A	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

3.0 MSEW Version 3.0 MSEW Version 3.0 MSEW Version 3.0 MSEW

ion 3.0 MSEW V

on 3.0 MSEW

Version 3.0 MSEW Version 3.0 MSEW Version 3.0 MSEW Version 3.0 MSEW

BEARING CAPACITY for DESIGNED LAYOUT

	STATIC	SEISMIC	UNITS
(Water table does not affect bearing capacity	y)		
Ultimate bearing capacity, q-ult	13541	N/A	[lb/ft ²]
Meyerhof stress, $\sigma_{\rm V}$	1046.3	N/A	[lb/ft ²]
Eccentricity, e	0.47	N/A	[ft]
Eccentricity, e/L	0.119	N/A	
Fs calculated	12.94	N/A	
Base length	3.98	N/A	[ft]

on 3.0 MSEW Version 3.0 MSEW Version 3.0 MSEW Version 3.0 MSEW Ver

SCALE:

ISEW Version 3.0 MSEW Version 3.0 MSEW Version 3.0 MSEW V

Ver

MSEW V

DIRECT SLIDING for DESIGNED LAYOUT (for GEOTEXTILE reinforcements)

Specified Fs-static = 1.500

Along reinforced and foundation soils interface: Fs-static = 2.232

#	Geotextile Elevation [ft]	Geotextile Length [ft]	Fs Static	Fs Seismic	Geotextile Type #	Product name
1	1.50	6.00	2.829	N/A	N/A	
2	3.00	6.00	3.695	N/A	N/A	
3	4.50	6.00	5.285	N/A	N/A	

ECCENTRICITY for DESIGNED LAYOUT

At interface with foundation: e/L static = 0.1470; Overturning: Fs-static = 3.06

#	Geotextile Elevation [ft]	Geotextile Length [ft]	e / L Static	e / L Seismic	Geotextile Type #	Product name
1	1.50	6.00	0.0338	N/A	N/A	
2	3.00	6.00	0.0163	N/A	N/A	
3	4.50	6.00	0.0050	N/A	N/A	

RESULTS for STRENGTH

Live Load NOT included in calculating Tmax

#	Geotextile Elevation [ft]	Tavailable [lb/ft]	Tmax [lb/ft]	Tmd [lb/ft]	Specified minimum Fs-overall static	Actual calculated Fs-overall static	Specified minimum Fs-overall seismic	Actual calculated Fs-overall seismic	Product name
1	1.50	2284	372.1	N/A	1.500	6.138	N/A	N/A	
2	3.00	2284	152.7	N/A	1.500	14.961	N/A	N/A	
3	4.50	2284	85.9	N/A	1.500	26.597	N/A	N/A	

RESULTS for PULLOUT Live Load NOT included in calculating Tmax

NOTE: Live load is not included in calculating the overburden pressure used to assess pullout resistance.

#	Geotextile Elevation [ft]	Coverage Ratio	Tmax [lb/ft]	Tmd [lb/ft]	Le [ft] see NOTE	La [ft] E)	Avail.Static Pullout, Pr [lb/ft]	Specified Static Fs	Actual Static Fs	Avail.Seism. Pullout, Pr [lb/ft]	Specified Seismic Fs	Actual Seismic Fs
1	1.50	1.000	372.1	N/A	5.30	0.70	1545.3	1.500	4.153	N/A	N/A	N/A
2	3.00	1.000	152.7	N/A	4.60	1.40	894.3	1.500	5.858	N/A	N/A	N/A
3	4.50	1.000	85.9	N/A	3.90	2.10	379.4	1.500	4.418	N/A	N/A	N/A

RESULTS	s fo	or CO	ONI	NEC	ΤI	10	I	(stat	tic	co	nc	litio	ons)

Live Load NOT included in calculating Tmax

#	Geotextil Elevation [ft]	eConnection 1 force, To [lb/ft]	Reduction factor for connection break,	Reduction factor for connection pullout,	Available connection strength, Tc-break	Available connection strength, Tc-pullout	Available Geotextile strength, Tavailable	Fs-overa connecti strength	all on	Fs-overa connection pullout	ill on	Fs-overa Geotexti strength	all ile	Product name
			CRu	CRs	criterion [lb/ft]	criterion [lb/ft]	[lb/ft]	Specified	Actual	Specified	Actual	Specified	Actual	
1 2 3	1.50 3.00 4.50	372 153 86	0.90 0.90 0.90	0.54 0.36 0.18	6167 6167 6167	37205 24803 12402	2284 2284 2284	1.50 1.50 1.50	16.57 40.39 71.81	1.50 1.50 1.50	99.98 162.4 144.4	1.50 7 1.50 1 1.50	6.14 14.96 26.60	

on 3.0 MSEW Version 3.0 MSEW Version 3.0 MSEW Version 3.0 MSEW