GEOTECHNICAL DESIGN REPORT VILLAGE BRIDGE OAKFIELD, MAINE

P.I.N. 15630.00

Prepared For:

Maine Department of Transportation 16 State House Station Augusta, Maine 04333

Prepared By:

URS Corporation 115 Water Street, Suite 3 Hallowell, Maine 04347

March 2009 W aun Ull

Wade A. Narin van Court, P.E.

TABLE OF CONTENTS

Section 1	EXE	CUTIVE SUMMARY	1-1
Section 2	INTR		2-1
	2.1	INTRODUCTION	2-1
	2.2	SCOPE	2-1
	2.3	PROJECT BACKGROUND AND PROPOSED CONSTRUCTION.	2-2
	2.4	REPORT ORGANIZATION	2-3
Section 3	SITE	CONDITIONS	3-1
	3.1	SITE DESCRIPTION	3-1
	3.2	LOCAL GEOLOGY	3-1
	3.3	SUBSURFACE INVESTIGATION PROGRAM	3-1
	3.4	LABORATORY ANALYSES	3-2
	3.5	GENERALIZED SUBSURFACE PROFILES	3-2
	3.6	GROUNDWATER CONDITIONS	3-4
	3.7	SEISMIC DESIGN PARAMETERS	3-4
Section 4	FOU	NDATION RECOMMENDATIONS	4-1
	4.1	GENERAL DISCUSSION	4-1
	4.2	SHALLOW FOUNDATION	
		4.2.1 West Abutment and Wingwall Design	4-1
		4.2.2 Lateral Earth Pressures at West Abutment	4-2
		4.2.3 West Abutment Factored Bedrock Bearing Resistance	4-3
		4.2.4 West Abutment Settlement	4-4
	4.3	INTEGRAL ABUTMENT PILE FOUNDATION	4-4
		4.3.1 Pile Design	4-5 1_7
		4.3.3 Integral abutment and Wingwall Lateral Earth Pressures	4-8
	44	SCOUR	4-8
	4 5	FROST PROTECTION	4-8
	4.6	SEISMIC DESIGN CONSIDERATIONS	
Section 5	CON	STRUCTION CONSIDERATIONS	5-1
••••••	51	EXCAVATION FOR FOUNDATIONS	5-1
	5.2	FILL PLACEMENT	5-1
	5.3	EMBANKMENT CONSTRUCTION ADJACENT TO FOUNDATI	ONS
			5-2
	5.4	RE-USE OF EXISTING EMBANKMENT SOILS	5-2
	5.5	PILE RESISTANCE AND QUALITY CONTROL	5-2
	5.6	SCOUR PROTECTION	5-3

TABLE OF CONTENTS

Appendix C

Appendix D

	5.7 EROS	ION AND SEDIMENTATION CONTROL
Section 6	LIMITATION	IS6-1
Figures		
	Figure 1	Site Locus Map
Sheets		
	Sheet 1	Boring Location Plan and Subsurface Interpretive Profile
	Sheet 2	Boring Logs
Appendices	;	
	Appendix A	Site Photographs
	Appendix B	Boring Logs

Laboratory Test Results

Supporting Calculations

This report presents the results of the geotechnical investigation performed for the Maine Department of Transportation (MaineDOT) for the proposed replacement of the Village Bridge (Bridge #2898). The MaineDOT Project Identification Number (PIN) is 15630.00. The bridge is located in Oakfield, Maine and forms the crossing over the East Branch of the Mattawamkeag River.

The objectives of the geotechnical investigation were to characterize the subsurface conditions in the proposed construction area and to develop foundation design recommendations for the proposed replacement structures.

Two test borings were drilled for the purposes of this investigation by URS Corporation (URS). At the location of the Village Bridge replacement structure, approximately 10 feet of medium dense sand fill overlies the stream deposit, which consists of approximately 5 to 10 feet of sand that, in turn, overlies the bedrock surface. The bedrock surface at the bridge location was encountered at depths varying from 15 to 20 feet below the ground surface (bgs), which correspond to approximately elevations 535 to 530 feet. The site is underlain by phyllite bedrock. Estimated groundwater levels at the time of drilling indicate that groundwater was similar to the stream elevation, at approximately elevation 540 feet.

URS understands that complete replacement of the existing, two-span bridge with a longer single span structure is proposed. The project design engineer is proposing to support the west abutment and wingwalls for the replacement bridge structure on a shallow spread footing founded on bedrock, and to support the east abutment and wingwalls on integral piles founded on bedrock.

A shallow spread footing foundation on bedrock can be used for the west abutment and wingwalls. Bedrock is approximately 15 feet below finished grade. The abutment and wingwalls shall be proportioned for all applicable load combinations in AASHTO LRFD (2008) Articles 3.4.1 and 11.5.5, and shall be designed for the relevant strength, service and extreme event limit states. The design of the west project abutment and wingwalls founded on spread footings at the strength limit state shall consider nominal bearing resistance, eccentricity (i.e., overturning), lateral sliding and structural failure.

Substructure spread footings for the west abutment and wingwalls shall be proportioned to provide stability against bearing capacity failure. The factored bearing resistance for any structure founded on competent, sound bedrock shall be investigated at the strength limit state using factored loads and a factored bearing resistance of 7 kips per square foot (ksf) for footings that are 4 to 9 feet wide and 10 ksf for footings that are 9 to 12 feet wide. This assumes a

SECTIONONE

bearing resistance factor, φ_b , of 0.45 for spread footings on bedrock, based on a bearing resistance evaluation using semi-empirical methods. A factored bearing resistance of 16 ksf (based on a resistance factor of 1.0) may be used for preliminary footing sizing and to control settlements, when analyzing the service limit state load combination. In no instance shall the factored bearing stress exceed the factored compressive resistance of the footing concrete, which may be taken as $0.3f_c$. No footing shall be less than 2 feet wide, regardless of the applied bearing pressure or the bearing material.

An integral abutment pile foundation on bedrock is proposed for the east abutment and wingwalls. Bedrock is approximately 20 feet below finished grade. For the integral abutment, the piles will be at least 12 feet in length, and minimal penetration into the bedrock is anticipated. The piles should be end-bearing, and driven to the required resistance on or within the bedrock. Consistent with MaineDOT experience, the piles are expected to be HP 12x53, HP 14x73, HP 14x89 or HP 14x117, depending on the factored design axial loads. Foundation piles should be 50 kips per square inch (ksi), Grade A572 steel H-piles that are fitted with driving points to protect the tips, improve penetration and improve friction at the pile tip.

The strength limit state factored axial compressive resistances of four proposed H-pile sections were calculated. A resistance factor (ϕ_c) of 0.60 was used for the factored structural axial compressive resistances, a resistance factor (ϕ_{stat}) of 0.45 for end-bearing piles was used for the factored geotechnical compressive resistance, and a reduced resistance factor ($\phi_{dyn,80\%}$) of 0.52 was used for the factored driving compressive resistance. The evaluation of the geotechnical bearing resistance considered skin friction to be negligible due to insufficient overburden, therefore it was not incorporated into the total factored geotechnical compressive resistance. For the strength limit state, the factored axial compressive structural, geotechnical and driving resistances for the four proposed H-pile sections are summarized below.

Factored Axial Resistances for Abutment Piles at the Strength Limit State										
Factored Resistance (kips)										
Pile Section	Structural	Geotechnical	Driving	Design						
	Resistance	Resistance	Resistance	Resistance						
HP 12x53	465	217	180	180						
HP 14x73	642	314	307	307						
HP 14x89	783	385	348	348						
HP 14x117	1,032	512	325	325						

For the service and extreme event limit states, resistance factors of 1.0 are recommended for structural, geotechnical and driving piles resistances. The factored axial structural, geotechnical and driving resistances for the four proposed H-pile sections are summarized below.

Factored Axial Resistances for Abutment Piles at the Service and Extreme Event Limit States										
Factored Resistance (kips)										
Pile Section	Structural	Geotechnical	Driving	Design						
	Resistance	Resistance	Resistance	Resistance						
HP 12x53	775	482	346	346						
HP 14x73	1,070	698	591	591						
HP 14x89	1,305	855	669	669						
HP 14x117	1,720	1,138	625	625						

For the strength, service and extreme event limits states, the factored axial driving resistance is less than either the factored axial geotechnical resistance or the factored axial structural resistance, and so the factored axial driving resistance governs the design.

2.1 INTRODUCTION

This report presents the results of the geotechnical investigation performed for the MaineDOT for the proposed replacement of the Village Bridge (MaineDOT Bridge #2898). The MaineDOT Project Identification Number (PIN) is 15630.00. The bridge is located in Oakfield, Maine, and forms the crossing over the East Branch of the Mattawamkeag River. This work was performed in accordance with our scope of work dated July 1, 2008, and authorized by MaineDOT through General Consultant Agreement Number U01210060665.

The objectives of the geotechnical investigation were to characterize the subsurface conditions in the proposed construction area and to develop foundation design recommendations for the proposed replacement structure. This report summarizes the investigation and provides geotechnical recommendations for foundation designs to support the proposed replacement for the Village Bridge.

2.2 SCOPE

In accordance with the scope of services described in our proposal dated July 1, 2008, URS performed the following:

- Visited the site and reviewed readily available information provided by MaineDOT, as well as topographic and geologic maps for the site and surrounding area;
- Provided a field geologist for observation of the subsurface exploration program to evaluate soil/bedrock conditions at the site. This program consisted of two borings, one at each abutment location, advanced to bedrock.
- Conducted a limited laboratory-testing program of representative soil samples at the URS Regional Soils Laboratory to confirm field classification and evaluate soil-engineering parameters.
- Performed engineering analyses and provided geotechnical recommendations for the proposed replacement structure, including bearing resistances for shallow footings on rock, bearing resistances for integral abutments (end-bearing piles) on rock, and settlement analyses; and
- Prepared this geotechnical design report to be submitted to MaineDOT at the conclusion of the geotechnical investigation. This report includes the following:

- subsurface conditions with boring logs, and engineering description and characterization of the subsurface stratigraphy and groundwater conditions at the time of field exploration;
- results of laboratory and field testing, including soil properties relevant to development of scour conditions at the bridge site;
- recommendations for foundations supported on bedrock, including applicable geotechnical design parameters;
- summary of applicable geotechnical design parameters, based on cast-in-place concrete cantilever retaining structures, for external stability of abutments, and wingwalls;
- summary of recommended seismic design parameters (as applicable to the structure), and potential susceptibility of site soils to liquefaction during an earthquake; and
- recommendations for site preparation and earthwork construction including temporary excavations, construction dewatering, fill placement and compaction, protection of existing improvements, and special requirements for protection of soils at foundation subgrade, as necessary.

2.3 PROJECT BACKGROUND AND PROPOSED CONSTRUCTION

The site for the proposed replacement of the Village Bridge is located approximately 0.2 miles east of US Route 2, on Main Street in Oakfield, Maine. The limits of proposed construction start at approximately Station 12+50, and extend eastward to approximately 500 feet to Station 17+50. The bridge proper extends from approximately Station 14+45 to Station 15+05. A site locus map is presented in Figure 1.

Based on the information provided by MaineDOT, the existing 1930's-era bridge consists of two spans with lengths of approximately 30 feet each. The bridge is constructed of reinforced concrete. The east abutment and center pier for the bridge are concrete and the west abutment is dressed stone.

Information from the project design engineering firm, Erdman, Anthony and Associates, Inc. (Erdman Anthony) of Albany, New York, and MaineDOT indicated that the replacement bridge design will be a 90-foot long single span structure with new abutments located at Station 14+33

and 15+23. The new bridge will be at the same location as the existing bridge. Grades will not significantly change from existing grades. The proposed abutments are to be supported by either a spread footing foundation on bedrock or integral abutments founded on bedrock.

The Village Bridge is not considered to be a critical bridge. Specifically, the bridge is not classified as a major structure because construction costs are expected to be less than 10 million dollars (\$10,000,000), and the bridge is not classified as "functionally important."

2.4 REPORT ORGANIZATION

This report is divided into six sections. The Executive Summary is the first section. Following this introduction (Section 2), is a description of the subsurface conditions at the proposed abutment and pier locations (Section 3). Our engineering evaluation and recommendations for foundation design are presented in Section 4, and construction considerations are presented in Section 5. Finally, the limitations of this study are described in Section 6. Supporting figures and data, including site plan, subsurface profile, site photographs, boring logs, and laboratory testing results, are appended to this report.

3.1 SITE DESCRIPTION

The Village Bridge crosses the East Branch of the Mattawamkeag River at point where two channels upstream merge into a single downstream channel. The area on either side of the bridge abutments is heavily vegetated with brush and trees. Earth-fill embankments form the approaches. The river bank has steep side slopes immediately upstream and downstream of the bridge. The topography of the bridge site and surrounding area is shown in Figure 1 and on Sheet 1. Photographs of the sites are in Appendix A.

3.2 LOCAL GEOLOGY

Based upon the Bedrock Geologic Map of Maine¹, the Village Bridge site is underlain by bedrock mapped as part of the Albany Formation and an unnamed Formation (the Formation). The Formation includes Silurian to Ordovician age metasedimentary rocks (i.e., phyllite). The bedrock protolith is pelite.

The Surficial Geologic Map of Maine² indicates that subsurface soil deposits in the Oakfield area are primarily glacial till. Glacial till is a heterogeneous mixture of sand, silt, clay, and stones that may include boulders, and generally conforms to the underlying bedrock surface. An esker deposit, which is a narrow ridge of glacially deposited sand and gravel, is also identified on the Surficial Geologic Map in the vicinity of the project. Recent stream deposits in the riverbed and flood plain are also present.

3.3 SUBSURFACE INVESTIGATION PROGRAM

The subsurface investigation program for the bridge consisted of two test borings. Borings URS B1 and URS B2 were advanced under the direction of URS Corporation by Northern Test Borings, Inc. of Gorham, Maine in October, 2008. Drilling and sampling activities associated with these borings were performed in the presence of our field geologist. The boring location plan for the bridge is presented on Sheet 1. Boring logs from the URS Corporation investigation are presented in Appendix B and on Sheet 2.

¹ Osberg, P.H., Hussey II, A.M., and Boone, G.M. (1985) Bedrock Geologic Map of Maine, Maine Geological Survey, Department of Conservation.

² Thompson, W.B. and Borns Jr., H.W.(1985) Surficial Geologic Map of Maine, Maine Geological Survey, Department of Conservation.

3.4 LABORATORY ANALYSES

Grain-size analysis tests were performed on soil samples selected as representative of soils at the site and a grab sample of finer grained river sediment. These tests were performed by the URS Corporation Soil Laboratory located in Totowa, New Jersey. The results of these analyses are provided in Appendix C and summarized in the table below.

Grain-size Analysis											
Boring No. Sample Depth Identification Tests											
Boring No.	No.	feet	Water Content (%)	USCS Symbol	AASHTO Symbol	% Passing No. 200 Sieve					
URS B1	S-2	5-7	8.6	SM*	A-1b*	13.7					
URS B2	S-2	5-7	9.6	SM*	A-1b*	18.7					
URS SED1	-	Stream bed 0-0.5	NA	SM*	A-2-4*	25.1					

Note: * Plasticity of fines for USCS and AASHTO symbol based on visual observation.

3.5 GENERALIZED SUBSURFACE PROFILES

A generalized interpretive subsurface profile was developed for the bridge site, as presented on Sheet 1. The subsurface conditions can generally be described from the ground surface to the limiting depth of the borings as follows:

<u>Fill Material</u>

Beneath a dense granular pavement subbase, the embankment fill material generally consists of medium dense, fine to coarse sand with little silt and trace to little gravel. The thickness of this stratum is approximately 10 feet at both abutments. The Standard Penetration Resistance N-values³ in this stratum vary from 9 to 15, with an average value of about 10. The N-values in this layer indicate a medium dense soil density.

³ N-value is defined as the number of blows required to advance a 50.8mm (2-in.) O.D standard split spoon sampler a distance of 300 mm (12 inches) after seating the spoon a distance of 150 mm (6-inches) using a 0.62 kN (140 lb) hammer falling freely a distance of 760 mm (30 inches).

SECTIONTHREE

<u>Alluvium</u>

Alluvium (i.e., a stream deposit) underlies the fill material. This stratum generally consists of sand with trace to little silt and gravel. Cobbles (URS B1) and limited amounts of organics (URS B2) were also encountered. The alluvium was judged to be a medium density soil. The alluvium was approximately 10 feet thick on east site of the bridge and approximately 5 feet thick on the west side.

<u>Bedrock</u>

Bedrock underlying the entire proposed construction area is light gray, fine-grained phyllite. The bedrock is moderately hard to hard and slightly to moderately fractured, with moderately to steeply dipping bedding planes and fractures. The upper 1 to 4 feet of the bedrock may be weathered and soft, as well as highly to very highly fractured.

Bedrock was encountered in the borings at depths varying from approximately 14.9 feet (west abutment) to 19.8 feet (east abutment) below the ground surface (bgs), which correspond to approximately elevations 535 to 530 feet). Approximately 5 feet of rock coring using an NX-core size core barrel was performed in borings. Core recovery⁴ was close to 100 percent for both core runs. The Rock Quality Designation⁵ (RQD) value of the rock core was about 36.6 percent in URS B1 (east abutment), and 90 percent in URS B2 (west abutment). Note that the shallower bedrock depth beneath the west abutment corresponds with the more competent, higher RQD, bedrock.

Rock Mass Rating (RMR) of the in-place bedrock can be estimated from the RQD, joint conditions and general observations of the rock core and site conditions assuming a uniaxial compression strength of intact bedrock of 3,500 to 35,000 pounds per square inch⁶.

Rock Core	RMR	Class Number ⁷	Description ⁷
URS B1	49	III	Fair Rock
URS B2	61	II	Good Rock

⁴ Core recovery is the ratio of total length of the recovered core to the length cored, in percent.

⁵ The Rock Quality Designation (RQD) is defined as the ratio (expressed as a percentage) of the total length of recovered core samples having a length of at least twice the core diameter (e.g., about 100 mm (4 in) for NX-core) to the total length cored.

⁶ AASHTO, 2002. Standard Specifications for Highway Bridges, 17th Edition, American Association of State Highway and Transportation Officials, Washington, D.C..

⁷ Reference Table 3.1.4, <u>LRFD for Highway Bridge Substructures and Earth Retaining Structures</u> Publication No. FHWA-NH1-05-094, Federal Highway Administration, December 2005.

3.6 GROUNDWATER CONDITIONS

Estimated groundwater levels in the borings at the time of drilling, indicated that the groundwater elevation was similar to the river elevation, at a depth of approximately 10 feet bgs, which corresponds to approximately elevation 540 feet. Groundwater and river levels are shown on the subsurface profiles in Sheet 1. Seasonal variations in the water surface and groundwater elevations will occur, as indicated by water stains on the existing bridges structures (see the photographs in Appendix A).

3.7 SEISMIC DESIGN PARAMETERS

Based on Horizontal Peak Ground Acceleration Coefficient map provided in AASHTO LRFD, 2008^{s} (Figure 3.10.2.1-1), the Horizontal Peak Ground Acceleration Coefficient with a 7 percent chance probability of exceedance in 75 years for the Village Bridge site is 7 (i.e., 7 percent of gravitational acceleration [0.07 g]). Based on AASHTO LRFD Figures 3.10.2.1-2 and 3.10.2.1-3, the Horizontal Spectral Response Acceleration of 0.2 second period (S_s) and 1.0 second period (S₁) are 16 (0.16 g) and 5 (0.05g), respectively. Based on the soil type and profile, the Village Bridge is considered to be Site Class B (AASHTO LRFD, 2008, Table 3.10.3.1-1).

Liquefaction potential for soils below the groundwater table is considered negligible as these soils are generally in a medium dense condition.

⁸ AASHTO LRFD. 2008. LRFD Bridge Design Specifications, 4th edition, 2007, with 2008 Interim Revisions, American Association of State Highway and Transportation Officials, Washington D.C.

4.1 GENERAL DISCUSSION

The engineering evaluation presented herein is based on our current understanding of the project design requirements for the bridge abutments, and wingwalls. The project design engineer, Erdman Anthony, is proposing to support the west abutment and wingwalls for the replacement bridge structure on a shallow spread footing founded on bedrock. The project design engineer is also proposing to support the east abutment and wingwalls on integral piles founded on bedrock. The design methodology used in the following evaluations is based on AASHTO LRFD (2008).

4.2 SHALLOW FOUNDATION

Boring URS-B2 encountered bedrock approximately 15 feet below the existing western bridge approach. Therefore, it is considered feasible that a coffer dam, seals (if required) and spread footings can be practicably and economically constructed to bear on bedrock.

Foundations on bedrock have no minimum cover requirement for frost or scour. Our design recommendations for the spread footing foundation on bedrock are presented below.

4.2.1 West Abutment and Wingwall Design

The abutment and wingwalls shall be proportioned for all applicable load combinations in AASHTO LRFD (2008) Articles 3.4.1 and 11.5.5, and shall be designed for the relevant strength, service and extreme event limit states. The design of the west project abutment and wingwalls founded on spread footings at the strength limit state shall consider nominal bearing resistance, eccentricity (i.e., overturning), lateral sliding and structural failure. The strength limit state design shall also consider foundation resistance after scour due to the design flood event. The extreme event limit state design shall confirm that the nominal foundation resistance remaining after scour due to the design flood event will support the unfactored strength limit state loads with a resistance factor of 1.0.

A sliding resistance factor, φ_{τ} , of 0.80 shall be applied to the nominal sliding resistance of castin-place concrete abutments and wingwalls founded on spread footings supported on bedrock. Calculation of the sliding resistance to lateral loads shall assume a maximum frictional coefficient of 0.70 at the bedrock/concrete interface. For footings on bedrock, the eccentricity of loading at the strength limit state, based on factored loads, shall not exceed three-eighths $(3/8^{th})$ of the footing dimensions in either direction.

A resistance factor of 1.0 shall be used to assess spread footing design at the service limit state, including: settlement, excessive horizontal movement and scour due to the design flood event. The overall stability of the foundation should be investigated at the Service I Load Combination and a resistance factor, ϕ of 0.65.

4.2.2 Lateral Earth Pressures at West Abutment

Cantilever-type abutments and wingwalls shall be designed as unrestrained retaining walls, which means that these walls are free to rotate at the top in an active state of earth pressure. Earth loads shall be calculated using an active earth pressure coefficient of 0.31, (i.e., $K_a = 0.31$), calculated using the Rankine Theory for cantilever-type abutments and wingwalls, which assumes a level backfill surface. The earth pressure coefficient may change if the backfill surface conditions are different (e.g., sloping). See Appendix D – Calculations for supporting documentation for the active earth pressure coefficient. The designer may assume Soil Type 4 (MaineDOT BDG, 2003^o) for backfill material soil properties. The backfill soil properties for Soil Type 4 are summarized below.

Backfill Properties for Active Later	Backfill Properties for Active Lateral Earth Pressure Analyses						
Design Parameter	Value						
Total unit weight of backfill (γ)	125 pcf						
Angle of internal friction (ϕ)	32°						
Angle of wall interface friction (δ)	24°						
Coefficient of Friction, tan δ	0.45						
Soil to concrete	0.45						

Additional lateral earth pressure due to construction surcharge or live load surcharge is required for the abutments and wingwalls if an approach slab is not specified, in accordance with MaineDOT BDG (2003) Section 3.6.8. The live load surcharge on abutments may be estimated as a uniform earth pressure due to an equivalent height of soil (h_{eq}) taken from the table below:

⁹ MaineDOT BDG. 2003. *Bridge Design Guide*, prepared by Guertin Elkerton and Associates for Maine Department of Transportation, Section 3.6.1.

Height of Soil (h _{eq}) for Uniform Earth Pressure for Equivalent Live Load							
Abutment Height (feet)	Height of Soil (h _{eq} , feet)						
5.0	4.0						
10.0	3.0						
≥ 20.0	2.0						

Note: Linear interpolation should be used for intermediate wall heights.

In the case where a structural approach slab is specified, reduction of the surcharge loads is permitted, in accordance with AASHTO LRFD (2008) Article 3.11.6.5. Based on AASHTO LRFD (2008) Table 3.11.6.4-1, the live load surcharge on walls may be estimated as a uniform horizontal earth pressure due to an equivalent height of soil (h_{eq}) of 2.0 feet.

Abutment designs shall include a drainage system behind the abutments to intercept groundwater. Drainage behind the structure shall be designed in accordance with MaineDOT BDG (2003) Section 5.4.1.4 – Drainage. To prevent water intrusion behind the abutment, the approach slab should be connected directly to the abutment.

Backfill within 10 feet of the back of the abutments, wingwalls and side slope fills shall conform to MaineDOT Standard Specification¹⁰ 709.19: Granular Borrow for Underwater Backfill. The gradation for this material specifies 10 percent or less of material passing the No. 200 sieve. This backfill will be specified in order to reduce the amount of fine material in the backfill and minimize frost action behind the structure.

Slopes in front of, and sloping down to, the wingwalls should be constructed with riprap. The steepness of these slopes should not be steeper than 1.75 horizontal to 1 vertical (i.e., 1.75H:1V).

4.2.3 West Abutment Factored Bedrock Bearing Resistance

Substructure spread footings for the west abutment and wingwalls shall be proportioned to provide stability against bearing capacity failure. Application of permanent and transient loads will be performed in accordance with AASHTO LRFD (2008) Article 11.5.5. The stress distribution may be assumed to be a triangular or trapezoidal distribution over the effective base, as shown in AASHTO LRFD (2008) Figure 11.6.3.2-2. The factored bearing resistance for any structure founded on competent, sound bedrock shall be investigated at the strength limit state

¹⁰ MaineDOT. 2002. *Standard Specifications*, State of Maine Department of Transportation Revision of December 2002.

using factored loads and a factored bearing resistance of 7 kips per square foot (ksf) for footings that are 4 to 9 feet wide and 10 ksf for footings that are 9 to 12 feet wide (see Appendix D for supporting calculations). This assumes a bearing resistance factor, ϕ_b , of 0.45 for spread footings on bedrock, based on a bearing resistance evaluation using semi-empirical methods. A factored bearing resistance of 16 ksf may be used for preliminary footing sizing and to control settlements, when analyzing the service limit state load combination.

In no instance shall the factored bearing stress exceed the factored compressive resistance of the footing concrete, which may be taken as $0.3f_c$. No footing shall be less than 2 feet wide, regardless of the applied bearing pressure or the bearing material.

4.2.4 West Abutment Settlement

URS understands that the current bridge replacement plans do not include changes to the profile. Additionally, the spread footings will be supported in bedrock. Therefore, settlements are expected to be negligible (i.e., less than $\frac{1}{2}$ inch). Differential settlement is also expected to be on the order of $\frac{1}{2}$ inch or less. It is expected that these settlements will occur due to elastic compression of the bedrock during construction, and will have minimal impact on the structure.

4.3 INTEGRAL ABUTMENT PILE FOUNDATION

An integral abutment pile foundation on bedrock is proposed for the east abutment and wingwalls. The piles should be end-bearing, and driven to the required resistance on or within the bedrock. Piles are expected to be HP 12x53, HP 14x73, HP 14x89 or HP 14x117, depending on the factored design axial loads. Foundation piles should be 50 kips per square inch (ksi), Grade A572 steel H-piles that are fitted with driving points to protect the tips, improve penetration and improve friction at the pile tip. Since H-piles are typically used on MaineDOT projects, these types of piles were evaluated. However, other pile types or sections may be used after review and approval by the Geotechnical Engineer.

Bedrock is approximately 20 feet below finished grade. For the integral abutment, the piles will be at least 12 feet in length, and minimal penetration into the bedrock is anticipated. The minimum pile length does not include embedment in the pile cap or lead length required for installation (if applicable).

4.3.1 Pile Design

Design of the H-piles at the strength limit state should consider the combined axial and flexural structural resistance of the piles, and the axial geotechnical resistance of the piles. The structural resistance evaluation should include confirming the axial, lateral and flexural resistance. Resistance factors for use in the design of piles at the strength limit state are discussed below.

The design of H-piles at the service limit state should consider tolerable horizontal movement of the piles and overall stability of the pile group. Since the east abutment piles will be subject to lateral loading, the piles should be analyzed for axial loading and combined axial and lateral loading, in accordance with AASHTO LRFD (2008) Articles 6.15.2 and 6.15.3, respectively.

4.3.1.1 Strength Limit State

The nominal structural compressive resistance (Pn) in the strength limit state for piles loaded in compression shall be in accordance with the requirements of AASHTO LRFD (2008) Article 6.9.4.1. The H-piles are assumed to be fully embedded and the normalized column slenderness factor (λ) shall be taken as 0. The factored structural axial compressive resistances of the four proposed H-pile sections were calculated using a resistance factor (ϕ_c) of 0.60.

The nominal geotechnical strength in the strength limit state was calculated using the Pell, Turner, Tomlinson Method¹¹ for estimating the nominal tip resistance of end-bearing piles founded on rock. The factored geotechnical compressive resistance for the four proposed H-pile sections were calculated using a resistance factor (ϕ_{stat}) of 0.45 for end-bearing. Skin friction was considered to be negligible due to insufficient overburden, and not incorporated into the total factored geotechnical compressive resistance.

The maximum driving stresses in the piles, assuming the use of 50 ksi steel, shall be less than 45 ksi. The resistance factor, ϕ_{dyn} , for a single pile in axial compression with the driving resistance established by a dynamic load test, in accordance with AASHTO LRFD Table 10.5.5.2.3-1, is 0.65 (i.e., $\phi_{dyn} = 0.65$). However, AASHTO LRFD Table 10.5.5.2.3-1 requires no less than 3 or 4 dynamic tests be conducted for sites with low or medium variability, respectively. Since one dynamic load test is typically conducted for each abutment at a site (i.e., one dynamic load test is anticipated for this site), the resistance factor shall be reduced by 20 percent, resulting in a resistance factor of 0.52 (i.e., $\phi_{dyn} = 0.52$).

¹¹ Tomlinson, M. J. 1994. *Pile design and Construction Practice*, 4th Edition, Taylor & Francis, Inc. New York, NY, 411 pages

The drivability analysis was performed using a wave equation analysis program (the GRLWEAP[®] software) to determine the ultimate pile resistance (R_{ult}) for four typical H-Piles. This analysis assumed that a Delmag D19-42 hammer would be used to drive the piles, and the input data for the hammer, hammer cushion and pile were based on typical values used by MaineDOT. For each pile, R_{ult} was estimated from the GRLWEAP output by linear interpolation, based on either the maximum allowable driving stress in a pile (i.e., 45 ksi) or the maximum allowable blowcounts per foot (180 blows per foot).

For the strength limit state, the factored axial compressive structural, geotechnical and driving resistances for the four proposed H-pile sections are summarized below. Supporting calculations are provided in Appendix D.

Factored Axial Resistances for Abutment Piles at the Strength Limit State									
Factored Resistance (kips)									
Pile Section	Structural Resistance	Geotechnical Resistance	Driving Resistance	Design Resistance					
HP 12x53	465	217	180	180					
HP 14x73	642	314	307	307					
HP 14x89	783	385	348	348					
HP 14x117	1,032	512	325	325					

The factored axial driving resistance is less than either the factored axial structural resistance or the factored axial geotechnical resistance. Therefore, **the factored axial driving resistance governs the strength limit state design**.

In accordance with AASHTO LRFD (2008) Article 6.5.4.2, at the strength limit state the axial resistance factor, ϕ_c , is 0.7, (i.e., $\phi_c = 0.7$) and the flexural resistance factor, ϕ_f , is 1.0, (i.e., $\phi_f = 1.0$) for H-piles in compression and flexure. These resistance factors shall be applied to the combined axial and flexural resistance of the piles in the interaction equation. For the strength limit state, the combined axial compression and flexure should be evaluated as shown in AASHTO LRFD (2008) Article 6..9.2.2. The structural designer should evaluate the capacity of the piles in combined axial load and flexure when the loads and moments are calculated. Moments resulting from the abutment wingwalls must also be considered in the design of the piles.

4.3.1.2 Service and Extreme Event Limit States

For the service and extreme event limit states, resistance factors of 1.0 are recommended for structural and geotechnical piles resistances. The factored axial structural, geotechnical and driving resistances for the four proposed H-pile sections are summarized below. Supporting calculations are provided in Appendix D.

Factored Axial Resistances for Abutment Piles at the Service and Extreme Event Limit States										
	Factored Resistance (kips)									
Pile Section	Structural Resistance	Geotechnical Resistance	Driving Resistance	Design Resistance						
HP 12x53	775	482	346	346						
HP 14x73	1,070	698	591	591						
HP 14x89	1,305	855	669	669						
HP 14x117	1,720	1,138	625	625						

The factored axial driving resistance is less than either the factored axial structural resistance or the factored axial geotechnical resistance. Therefore, the factored axial driving resistance governs the service and extreme event limit state design.

4.3.2 Integral Stub Abutments and Wingwalls

Integral stub abutments and wingwalls should be designed for all relevant strength, service and extreme event limit states and load combinations specified in AASHTO LRFD (2008) Articles 3.4.1, 11.5.5 and 11.6.1.3. The design of abutments and wingwalls at the strength limit state shall consider structural failure.

Integral abutments and wingwalls shall be designed to resist and/or absorb lateral earth loads, vehicular load, superstructure loads, creep and temperature and shrinkage deformations of teh superstructure. the integral abutments and wingwalls shall be designed for all relevant service and strength limit states. If the plans call for stub abutments and "butterfly" wingwalls, the design should size the piles to account for the additional bending moment stress resulting from the wingwall configuration,

4.3.3 Integral abutment and Wingwall Lateral Earth Pressures

Integral abutment and integral wingwall sections shall be designed to resist passive earth pressure using a Rankine earth pressure coefficient, K_p , of 3.25. Wingwall sections that are independent of the abutment should be designed using the Rankine active earth pressure coefficient, K_a , of 0.31. Both earth pressure coefficients (i.e., K_p and K_a) assume a level backfill surface. One or both earth pressure coefficients may change if the backfill surface conditions are different (e.g., sloping). See Appendix D – Calculations for supporting documentation for the passive and active earth pressure coefficients.

4.4 SCOUR

The designer shall consider the consequences of changes in foundation conditions at the service and extreme event limit states, resulting from scour due to the design flood event. The extreme event limit state shall determine that there is adequate foundation resistance to support the unfactored strength limit state loads with a resistance factor of 1.0, in accordance with AASHTO LRFD Article 10.5.2.1. Changes in foundation conditions due to scour shall be investigated at abutments, wingwalls and retaining walls.

In general, for scour protection, any footing for wingwalls or retaining walls that are constructed on soil should be embedded at least 2 feet below the design scour depth and armored with at least 3 feet of riprap for scour protection. Refer to MaineDOT BDG (2003) for additional information regarding scour design.

Specifically, the pile foundation will require protection from scour, therefore, a scour analysis must be performed. The river bed sediment sample obtained by URS (see Section 3.3) indicates that the finer fraction of the visible stream bed is a silty sand.

4.5 FROST PROTECTION

The proposed foundations for the west abutment and wingwalls are spread footings supported on bedrock and the proposed foundations for the west abutment and wingwalls are integral abutments. Therefore, heave due to frost action is not considered to be a design issue, and no requirements for embedment depth are necessary.

However, the potential frost depth has been evaluated for foundations for ancillary structures (e.g., light poles, retaining walls, etc.). Based on the State of Maine frost depth maps

SECTIONFOUR

(MaineDOT BDG Figure 5-1), the site has a freezing index of approximately 2200 F-degree days. The water content of the soil was approximately 9 percent, which correlates to a frost depth of 100 inches (approximately 8.3 feet). Consequently, we recommend that any foundations or leveling pads constructed at the site should be founded a minimum of 8.3 feet below the finished exterior grade. This minimum embedment applies only to foundations constructed on soil, and not to foundations supported directly on bedrock. Furthermore, the base of the pile cap for the integral abutment should be at least 4 feet below the finished grade.

4.6 SEISMIC DESIGN CONSIDERATIONS

In accordance with the guidance in AASHTO LRFD (2008) Article 4.7.4.2, seismic analysis is not required for single-span bridges, regardless of the seismic zone. However, superstructure connections and bridge seat dimensions shall be designed to satisfy the requirements of AASHTO LRFD (2008) Articles 3.10.9 and 4.7.4.4, respectively. Furthermore, the bridge is not classified as a major structure because construction costs are expected to be less than 10 million dollars (\$10,000,000), and the bridge is not classified as "functionally important." Consequently, seismic earth loads do not need to be considered for design of the bridge substructure.

5.1 EXCAVATION FOR FOUNDATIONS

For shallow foundations supported on bedrock, the top of rock should be excavated to a firm surface, cleaned, and examined to verify that the quality of the rock is consistent with the recommended rock bearing capacity and ensure concrete is placed on clean and sound rock. The boring indicates that the upper approximately 1 foot of the bedrock surface is weathered and highly fractured, so it will be necessary to excavate all dislodged, loose fractured or weathered bedrock before placing seal concrete or concrete for the spread footing. The full extent of rock excavation needed will not be known until the foundation excavation is made.

In accordance with MaineDOT (2002) Standard Specifications Subsection 206.02, the rock surface should level stepped or serrated. Additionally, preparation for the footings may require excavation of bedrock and/or placement of seal concrete to provide a level surface for the footings. Highly weathered or disintegrated rock encountered at the elevation of bottom of footings should be removed and replaced with seal concrete.

Since the groundwater level was measured at approximately 10 feet bgs and is controlled by the river level, installation of foundations may require excavation below the water level. The sides of the excavations should be supported or sloped (if site conditions permit) as per the relevant OSHA, local, and/or federal regulations, see MaineDOT Standard Specifications Section 203.

The contractor should also be prepared to control rainwater and surface water runoff and keep it away from prepared subgrades. Control of runoff should be performed in accordance with MaineDOT (2002) Standard Specifications Subsection 203.10.

Disturbed subgrade, unsuitable soil, or deleterious material encountered at the elevation of bottom of abutment placed on piles should be removed and replaced with granular or gravel borrow. Borrow material should be compacted to not less than 90 percent of the maximum dry density, as determined by AASHTO Standard Method of Test T-180, Methods C or D at optimum water content. Granular and gravel borrow should conform to the material specifications, Sections 703.19 and 703.20, respectively, in the MaineDOT (2002) Standard Specifications.

5.2 FILL PLACEMENT

Placement and compaction of the embankments shall be performed in accordance with MaineDOT (2002) Standard Specifications Sections 203.10, 203.11, and 203.12.

Abutments, wingwalls and retaining walls should be backfilled with granular borrow that meets the MaineDOT criteria for underwater backfill (Standard Specification 703.19). This backfill should be placed for a horizontal distance of at least 10 feet from the back of the wall (MaineDOT BDG, 2003). Placement and compaction of backfill behind abutments, wingwalls, and retaining walls shall be performed in accordance with MaineDOT (2002) Standard Specifications Section 206.

5.3 EMBANKMENT CONSTRUCTION ADJACENT TO FOUNDATIONS

Reconstruction of the existing embankments may be required for the bridge replacement. Since recommended support for the foundations for the replacement bridge structure is bedrock, additional settlements due to placing fill for the embankments will not be significant.

5.4 RE-USE OF EXISTING EMBANKMENT SOILS

The existing embankment soils are silty sand which appear adequate for re-use as common borrow. Excavated embankment soils may be stockpiled and re-used where appropriate after testing (e.g., gradation analysis and compaction testing) is performed on representative samples. Additionally, excavated embankment soil may also meet the criteria for granular fill, but this needs to be confirmed by laboratory testing of represent samples prior to use.

5.5 PILE RESISTANCE AND QUALITY CONTROL

The contractor is required to perform a wave equation analysis of the proposed pile-hammer system and a dynamic pile test at the integral abutment. The first pile driven at the integral abutment should be dynamically tested to confirm the capacity and verify the stopping criteria developed by the contractor from the wave equation analysis. The nominal pile resistance that must be achieved in the wave equation analysis and dynamic testing will be the maximum factored axial pile load divided by a resistance factor of 0.52. The maximum factored pile load should be shown on the plans. If three or four piles are dynamically tested (at sites with low or medium variability, respectively), the resistance factor may be increased by 20 percent to 0.65.

Piles should be driven to an acceptable penetration resistance as determined by the contractor, based on the results of a wave equation analysis, the dynamic test results and as approved by the MaineDOT resident. Driving stresses in the pile determined in the drivability analysis shall be less than 45 ksi, in accordance with AASHTO LRFD (2008) Article 10.7.8. The contractor

should select a hammer that provides the required nominal resistance when the penetration for the final 3 to 6 inches is 8 to 13 blows per inch. If an abrupt increase in driving resistance is encountered, the driving could be terminated when the pile penetration is less than ½-inch in 10 consecutive blows.

5.6 SCOUR PROTECTION

As noted above in Section 4.4, any footing for wingwalls or retaining walls that are constructed on soil should be armored with riprap for scour protection. The riprap layer shall be at least 3 feet thick, and the stone shall conform to MaineDOT Standard Specification 703.26: Plain and Hand Laid Riprap. For wingwalls and retaining walls, the riprap shall extend outward at least 1.5 feet horizontally from the front of the structure before sloping at a maximum slope of 1.75H:1V to the existing ground surface. The toe of the riprap sections shall be constructed at least 1 foot below the streambed elevation. The riprap section shall be underlain by Class A erosion control geotextile and a 1-foot thick layer of bedding material conforming to MaineDOT Standard Specification 703.19: Granular Borrow for Underwater Backfill, as shown in Standard Detail 610 (03)¹².

5.7 EROSION AND SEDIMENTATION CONTROL

The erosion and sedimentation potential of soils along the alignment should be considered moderate due to the fines content and proximity to the river, so exposed soils need to be protected during construction. Erosion control should be provided for disturbed areas in accordance with MaineDOT Standard Specifications Section 656 and the MaineDOT Best Management Practices Handbook¹³.

¹² MaineDOT Standard Details are at: http://www.maine.gov/mdot/contractor-consultant-information/ss_standard_details_updates.php.

¹³ MaineDOT. 2008. MaineDOT Best Management Practices for Erosion and Sedimentation Control. Maine Department of Transportation.

The results and recommendations presented in this report are largely based on subsurface information from a limited number of borings, laboratory tests, and our use of generally accepted analytical procedures. Subsurface conditions may vary from those presented in this report, and these variances may require a modification of the recommended foundation systems. If further investigation or construction activity reveals significant differences in the subsurface conditions, URS Corporation requests the opportunity to review and modify our recommendations, as appropriate. The recommendations presented in this report should not be extrapolated to other areas or used for other facilities without URS Corporation's prior review.

This report has been prepared by URS Corporation for the exclusive use of the Maine Department of Transportation and its designers, based on our understanding of the project as described in this report. Any modification or final decisions in the design concept from the descriptions in this report should be made known to URS Corporation for possible modifications of our recommendations.

FIGURES

FIGURE 1: SITE LOCUS MAP

SHEETS

- SHEET 1 BORING LOCATION PLAN AND SUBSURFACE INTERPRETIVE PROFILE
- SHEET 2 BORING LOGS

<u>Notes:</u>

- Base drawings for plan and profile provided by Erdman Anthony, Inc. the project Structural Engineer. /.
- 2. This generalized interpretive soil profile is intended to convey trends in subsurface conditions. The boundaries between strata are approximate and idealized, and have been developed by interpretations of widely spaced explorations and samples. Actual soil transitions may vary and are probably more erratic. For more specific information refer to the exploration logs.

<u>PLAN</u>

Ma	ine (Depar <u>so</u>	tment c <u>I/Rock Expl</u>	of Transpor <u>oration Log</u>	tat i	on	Project Locatio	:Vill	age Br (field,	idge Replacement Maine	Boring No.:	<u>URS</u>	<u>B-B1</u>
			US CUSTOMA	<u>RY_UNITS</u>	-						1 1 1 1		0.00
)ril	ler:		Northern Te	st Borings. Inc	Ele	evation	(ft.)	549	9.9		Auger ID/OD:	na	
Dper	ator:		M. Nadeau		Dat	um:					Sampler:	Standard Sp	lit Spoor
ogg	ed By:		M. Reiter -	URS Corp.	Riç	j Type:		Die	edrich	D-50	Hammer Wt./Fall:	140#/30 inch	nes
)ate	Start/	Finish:	10/6/08		Dri	Ilina	Method:	Cc	ised Bo	ring	Core Barrel:	N size	
		+:	Feet Abutme	o.t	Car	ing ID		4 :	loob		Water Level*	10'	
501 1	IIG LOCU	11011.	LUST ADUTHE	111		-	/00.	4 1	non		Woler Level	10	
Hamm Defin D = S MD = J = T MU = V = I MV =	er Etti itions: plit Spoo Unsuccess hin Wall Unsuccess nsitu Van Unsuccess	ciency Fo n Sample ful Split S Tube Sample ful Thin Wo e Shear Tes ful Insitu	actor: 0.63 poon Sample at II Tube Sample t, PP = Pocke <u>Vane Shear Tes</u>	R = Roc SSA = S tempt HSA = H RC = Rc attempt WOH = w t Penetrometer WOR/C = t attempt WO1P = t attempt WO1P =	k Core S folid Ste follow St foller Con reight of weight	ample m Auger em Auger e 1401b. of rods <u>f one pe</u>	hammer or casing <u>rson</u>	Autom	$a + i c \ge$ $S_u = Ir$ $T_v = Pc$ $q_p = Ur$ N-uncor Hammer $N_{60} = S$ $N_{60} = ($	Hydraulic L situ Field Vane Shear Strengt (ket Torvane Shear Strengt) (confined Compressive Strengt) rected = Raw field SPT N-une Efficiency Factor = Annual Cc PT N-uncorrected corrected fo Hammer Efficiency Factor/60%)	Rope & Cathead □ th (psf) Su(lab psf) WC = w h (ksf) LL = L pe PL = P plibration Value PI = P pr hammer efficiency G = Grader C = Conder) = Lab Vane Shear ater content, pero iquid Limit lastic Limit lasticity Index ain Size Analysis hsolidation Test	- Strength cent
		<u> </u>	_		D				-				Laborat
Depth (ft.)	Sample No.	Pen./Rec. (i	Sample Deptr (ft.)	Blows (/6 ir Shear Strength (psf) or ROD (%)	N-uncorrecte	N60	Casing Blows	Elevation (ft.)	Graphic Log	Visual De	scription and Remarks		Result AASHT and Unific
0 -	S-1	24/17	0.00 -	31/8/16/7	24	25		49.55		Bituminous Pavement			SP
								1		Pulverized Pavement			
								1		Brown fine to coarse	e Sand, little subangu	ular to	
	S-2	24/12	5.00	5/9/5/4	14	15		44.90		angular gravel, mediu	dium dense, dry, {FILL} 5.00-		WC 8.
			7.00							brown tine Sand, litt gravel, medium dense,	rie silt and subangulo , dry,{FILL}	ır to angular	13.7% - Sieve, SM
10 -	S-3	24/18	10.00	3/4/5/5	9	9		39.90 39.70		Brown fine Sand. 1:++			SP
			12.00					39.20	5	Eine to coorse Sord a	and Gravel, wet IATIUV	10.20-	SP SP
	<u> </u>							1		Dark brown fing Sand	t. trace citt wet (All		
								35.00		vark prown, tine Sand			
	5-4	24/12	16.00	4/8/12/34	20	21		33.90		Cobble			SP
	5-4	29/12	18.00	7/0/12/34	20					Rounded to subangular	Gravel, some fine So	nd, weathered	ed
	R	60/54	19.80	ROD - 36 39						TOCK, WET			
20 •	n.	19.80 24.00 100 - 50.5 m 19.80	1										
]		weathering, vertical(70 degree) fractures, closely	closely		
								1		orientation	y, uitticuit coring du	ie to tracture	
								23.40) 🕅			26.50-	ł
								1		Bottom of Explorat	ion at 26.50 feet bel surface.	ow ground	
30								1					
JU -								1					
	<u> </u>							1					
								1					
								1					
								1					
								1					
40 •								1					
	<u> </u>					<u> </u>		1					
								1					
								1					
								1					
	<u> </u>							1					
								1					
50 -								1					
		1						1					
						<u> </u>	<u> </u>	1					
								1					
								1					
								1					
								-					
<u>60</u> . Rema	rks:	I	I		1		I			1			I
trat	ification	lines repr	esent approxim	ate boundaries between	soil tvr	es; tra	nsitions	nay be	gradual		Page 1 of ??		
n uf	urion	ines repr	opproxim	STO DOGLIGO LES DETWEEN	JULI TYP	NUT FOUL	10111UNS		- IDDDD ig				
									-		-		

Divisio

Ortholic Standard Project: Village Bridge Replacement Boring No.: URS-B2 Location: Dakfield, Maine PIN: 15630.00 Elevation (ff.) 549.9 Auger ID/00: na Datum: Sampler: Standard Split Spl Rig Type: Diedrich D-50 Hommer Wt./Fall: 140#/30 inches Drilling Method: Cased Boring Core Barrel: N size Casing ID/00: 4 inch Water Level*: 10' Hommer Type: Automatic B Hydraulic Rope & Cathead Solito Stem Auger Sumple: Sumple: Sumple: Sumple: Solito Stem Auger Sumple: Stem Init/ Field Yone Sterreyft Rult Sumple: Elevatic Limit Rolto Stem Auger Sumple: Stem Auger Sumple: Stem Auger Sumple: Stem Auger Solito of roads or casing Sumple: Stem Auger Stem Auger Stem Auger Stem Auger Stem Stem Stem Stem Stem Stem Stem Stem	
Location: Dakfield, Maine PIN:	
Elevation (ft.) 549.9 Auger ID/OD: no Datum: Sampler: Standard Split Sp. Rig Type: Diedrich D-50 Hommer Wt./Fall: 140#/30 inches Drilling Method: Cased Boring Core Barrel: N size Casing ID/OD: 4 inch Water Level*: 10' Hommer Type: Automatic B Hydraulic Rope & Cathead)
Datum: Sampler: Standard Split Sp. Rig Type: Diedrich D-50 Hammer Wt./Fall: 140#/30 inches Drilling Method: Cased Boring Core Barrel: N size Casing ID/DD: 4 inch Water Level*: 10' Hammer Type: Automatic M Hydraulic Case & Cathead	
Rig Type: Diedrich D-50 Hammer Wt./Fall: 140#/30 inches Drilling Method: Cased Boring Core Barrel: N size Casing ID/DD: 4 inch Water Level*: 10' Hammer Type: Automatic B Hydraulic C Rope & Cathead C Rock Core Somple Suitable: Suitable: Suitable: Suitable: Solid Stem Auger Suitable: Suitable: Suitable: Suitable: Role Core Somple Suitable: Suitable: Suitable: Suitable: Solid Stem Auger Suitable: Suitable: Suitable: Suitable: Suitable: Role Core Somple Suitable: Nuccorrected answite Role Stem Analyse Elevisitable: Suitable:	oon
Drilling Method: Cased Boring Core Barrel: N size Casing 1D/DD: 4 inch Water Level*: 10' Hammer Type: Automatic S Hydraulic Rope & Cathead Inch Scote Core Some Surface S	
Cosing ID/DD: 4 inch Water Level*: 10' Harmer Type: Automatic B3 Hydraulic Rock Cathead Rock Cathead Rock Care Sample Su = Insitu Field Yane Shear Strength (pst) Su (ab) = Lab Yane Shear Strength (pst) WC = water contert. percent Roller Cone Automatic B3 Unconfined Campressive Strength (pst) WC = water contert. percent Roller Cone Automatic B5T Nuncorrected = Reviet do romer field ST Nuncorrected Corrected	
Hammer Type: Automatic S Hydroulic I Rope & Cathead I Rock Core Sample S. = Insitu Field Yone Shear Strength (psf) Sutlable = Lob Solid Stem Auger S. = Ensitu Field Yone Shear Strength (psf) Sutlable = Lob Roller Core Ge = Unconfined Compressive Strength (psf) Sutlable = Liguid Limit Roller Core Noncorrected = Row Field Strength (psf) Sutlable = Liguid Limit Roller Core Strength (psf) Strength (psf) Sutlable = Liguid Limit Roller Core Strength (psf) Strength (psf) Strength (psf) Result Strength (psf) Strength (psf) Strength (psf) Strength (psf) Roll Strength (psf) Strength (psf) Strength (psf) Strength (psf) Strength (psf) Result Strength (psf) Strength (psf) Strength (psf) Strength (psf) Strength (psf) Strength (psf) Strength (psf) Strength (psf) Strength (psf)	
Non-K out Solution Supering Supering Supering Solid Stem Auger Tope Pocket Torvone Steen Strength (pst) Ull solution Ull solution Roller Cone Non-corrected a Rew Field Strength (pst) Ull a liquid limit = weight of 1401b. hammer Non-corrected a Rew Field Strength (pst) Ull a liquid limit = weight of 1401b. hammer Strength (pst) Ull a liquid limit = weight of one person Non-corrected a Rew Field Strength (pst) Ull a liquid limit = weight of one person Non-corrected a Rew Field Strength (pst) Ull a liquid limit = weight of one person Non-corrected a Rew Field Strength (pst) C a consolidation Test ON Ull a liquid limit Non-corrected a Rew Field Strength (pst) L a bord strength (pst) 0 Ull a liquid limit Non-corrected a Rew Field Strength (pst) L a bord strength (pst) 0 Ull a liquid limit Non-corrected a Rew Field Strength (pst) L a bord strength (pst) 0 Ull a liquid limit Non-corrected Rew Field Strength (pst) L a bord strength (pst) 0 Ull a liquid limit Non-corrected Rew Field Strength (pst) L a bord strength (pst) 10 Ull a liquid limit Non-corrected Rew Field Strength (pst) L a bord strength (pst) 10 Ull a liquid limit Non-corr	oth (ocf)
• Weight of one person Number Efficiency Factor/60%1+N-uncorrected C = Consolidation Test On Image: Construction of the second sec	gin (psi)
On Isometry Isome	
21 22 149.50 Bituminous Pavement 0.40- Brown fine Sand and subangular to angular fine gravel. medium dense, dry, {FILL}	ratory ting ults/ GHTO nd fied ass.
8 8 144.90 Brown fine to coarse Sand. little silt and subangular to angular gravel. loose. dry. {FILL} 18.7% 9 39.90 Brown fine to coarse Sand. little silt and subangular to angular gravel. loose. dry. {FILL} 10.00 9 9 33.20 Brown fine to coarse Sand. little silt and subangular to angular gravel. loose. dry. {FILL} 10.00 9 9 35.20 Brown fine to coarse Sand. little silt and subangular to angular gravel. loose. dry. {FILL} 10.70 0 0 0 0.70 14.90 14.90 0 35.00 Very dense soil and/or weathered bedrock 14.90 0 10.00 9 9 14.90 0 10.10 14.90 14.90 0 10.00 Very dense soil and/or weathered bedrock 15.90 10 10.10 10.10 11.90 10 10.10 10.00 14.90 11 10.10 11.00 14.90 11 10.10 11.00 14.90 11 10.10 11.00 14.90 11 10.10 10.00 14.90 11	SP
9 9 39.90 Brown fine to coarse Sand. little silt and subangular to angular gravel. losse. dry. {FILL} 10.70- 0 0 0.80 0.90 0.70- 0 0 0.70- 0.70- 0.70- 0 0 0.70- 0.70- 0.70- 0 0 0.70- 0.70- 0.70- 0 0 0.70- 0.70- 0.70- 0 0 0.70- 0.70- 0.70- 0 0 0.70- 0.70- 0.70- 0 0 0.70- 0.70- 0.70- 0 0 0.70- 0.70- 0.70- 0 0 0.70- 0.70- 0.70- 0 0 0 0.70- 0.70- 0 0 0 0 0.70- 0.70- 0 0 0 0 0 0 0.70- 0 0 0 0 0 0 0 0 0 0 0 0 0 0	9.6%. % -#200 ≩. USCS SM
20.90- 20.90- Bottom of Exploration at 20.90 feet below ground surface.	SP SP
een soil types: transitions may be gradual. Page 1 of 1	
unditions stated. Groundwater fluctuations may occur due to conditions other Boring No.: URS-B2	

INE		NSPUKIAIIUN						BRIDGE PI ANS	
STATE OF MA		ENT OF IKAN		BP-A530/000			AIA	015630 00	
						RRIDGE NO 2898			
		SIGNATURE		3001	P.E. NUMBER	JANUARY 2009		DAID	
R DEVIN ANDERSON BY DATE	ED D. ANDREWS BURNHEIMER 02/12/09	E WED E	ILED2	ILED3					S
PROJ. MANAGER	DESIGN-DETAILE	CHECKED-REVIE	DESIGN2-DETAIL	DESIGN3-DETAIL	REVISIONS 1	REVISIONS 2	REVISIONS 3	REVISIONS 4	FIELD CHANGES
VILLAGE BRIDGE		EAST BRANCH MATTAWAMKEAG							
S	HI	EE	ET	N))	ME	3E	R	
		2	20) DF	2				

APPENDIX A

SITE PHOTOGRAPHS

Photo No.	Date:	
2	9/15/08	
Direction P	hoto	
Taken:		
West ab	utment	
looking dov	vnstream.	
8		
Description	:	
-		

APPENDIX B

BORING LOGS

Maine Department of Transportation Project: Vill.				: Villag	e Bridg	dge Replacement Boring No.: URS-B1					
		2	Soil/Rock Exp US CUSTOM	ploration Log			Locatio	n: Oak	field, M	PIN:1563	30.00
Dril	ler:		Northern Tes	t Borings, Inc	Ele	vation	(ft.)	549	9	Auger ID/OD: na	
Ope	erator:		M. Nadeau		Da	tum:	<u> </u>			Sampler: Standard Split	Speen
Log	ged By:		M. Reiter -UI	RS Corp.	Rig	ј Туре:		Die	Irich D	50 Hammer Wt./Fall: 140#/30 inches	shoon
Date	e Start/Fi	inish:	10/6/08		Dri	lling N	lethod:	Cas	ed Boi	ng Core Barrel: N size	
Bor	ing Loca	tion:	East Abutmer	nt	Ca	sing IC	OD:	4 in	:h	Water Level*: 10'	
Han	nmer Eff	iciency Fi	actor: 0.63		Ha	mmer	Туре:	Autom	tic 🖾	Hydraulie Rope & Cathead	
Defin D = S MD = U = 1 MU = V = h MV =	De is blick Spoon Sample N= Rock Core Sample Su = insitu held Vane Shear Strength (pst) Su(lab) = Lab Vane Shear Strength (pst) D = Split Spoon Sample SSA = Solid Stem Auger T _v = Pocket Torvane Shear Strength (pst) WC = water content, percent MD = Unsuccessful Split Spoon Sample HSA = Hollow Stem Auger T _v = Pocket Torvane Shear Strength (pst) UC = water content, percent MD = Unsuccessful Split Spoon Sample RC = Roller Cone N-uncorrected = Raw field SPT N-value PL = Plastic Limit MU = Unsuccessful Thin Wall Tube Sample attempt WCH = weight of 140lb, hammer Hammer Efficiency Factor = Annual Calibration Value PL = Plasticity index V = Insitu Vane Shear Test, PP = Pocket Penetrometer WOR/C = weight of one person. Neg = SPT N-uncorrected or reacted for hammer efficiency G = Grain Size Analysis MV = Unsuccessful Insitu Vane Shear Test attempt WO1P = Weight of one person. Neg = (Hammer Efficiency Factor/60%)'N-uncorrected C = Consolidation Test									Strength (psf) nt	
Depth (ft.)	Sample No.	Pen./Rec. (in.)	S Sample Depth (ft.)	Blows (/6 in.) Shear Strength (psf) or RQD (%)	N-uncorrected	N60	-Casing Blows	Elevation (ft.)	Graphic Log	Visual Description and Remarks	Laboratory Testing Results/ AASHTO and Unified Class.
	5-1	24/17	0.00 - 2.00	31/8/16/7	24	25		549.55		Bituminous Pavement 0 35	SP
								-		Palverized Pavement	
	\$.2	24/12	5.00 7.00	5/0/5/3	1.4	15		544.90	1000000	Brown fine to coarse Sand, little subangular to angular gravel, medium	N/C 0 / 0/
		29712	5.00 - 7.00	3/7/3/4		15				Brown fine Sand, little silt and subangular to angular gravel, medium dense, dry, [FIL.]	wC 8.0%, 13.7% -#200 Sieve, USCS
- 10 -	<u>S-3</u>	24/18	10.00 - 12.00	3/4/5/5	9	9		539,90			SP
	<u> </u>							539.20		1000 mile sind, intre sint, wet, $(2000 mm)$	SP SP
										[Fine to coarse Sand and Gravel, wet, [Allavium]	<u> </u>
		24/12	14 00 10 00	4/0/10/20				535.00		Dark brown, fine Sand, trace silt, wet, [Alluvium]	
	<u>S-4</u>	24/12	16.00 - 18.00	4/8/12/34	20	21				Cobble	SP
	R	60/56	19.80 - 24.80	ROD == 36.3%				200.00		Rounded to subangular Gravel, some fine Sand, weathered rock, wet	
- 20 ·								550.10))))	Phyllite, very fine grained, hard, slight to moderate weathering,	
									X	vertical(70 degree) fractures, closely fractured, light gray, difficult	
									X	coming due to tractate diferitation	
								523.40	X		
										Bottom of Exploration at 26.50 feet below ground surface.	
- 30 -								1			
1											
								ł			
]			
- 40 -											
- 50 -											
60 Rem	l arks:		1]			l			
Stratification lines represent approximate boundaries between soil types; transitions may be gradual Page 1 of 1											
than	those pres	ent at the tir	me measuremen	its were made.		, on owned (nio may C	con du	Boring No.: URS-B1	

Maine Department of Transportation Project: Village Bridge Replacement			e Replacement Boring No.:	UR	S-B2							
		5	Soil/Rock Exp US CUSTOM	ploration Log IARY UNITS		l	_ocatio	n: Oak	field, N	laine PIN:	156	30.00
Drill	er:	-	Northern Test	Borines Inc	Fleva	tion	(ft.)	549	0			
Ope	rator:		M. Nadeau		Datur	n:	()		·	Sampler: Sta	ndard Split	Shoon
Log	ged By:		M. Reiter -UI	₹S Corp.	Rig T	ype:		Diec	lrich D	50 Hammer Wt./Fall: 140	#/30 inches	
Date	Start/Fi	inish:	10/6/08		Drillin	ng Me	ethod:	Cas	ed Bor	ng Core Barrel: N s	ize	
Bori	ng Loca	tion:	West Abutme	nt	Casin	g ID/	OD:	4 inc	ch	Water Level*: 10'		
Ham	ımer Effi	iciency Fa	actor: 0.63		Hamr	ner T	ype:	Automa	uic 🖾	Hydraulie 🖂 Rope & Cathead 🗔		
Defini D = S MD = U = T MU = V = tr MV =	itions: plit Spoon Unsuccess hin Wall Tu Unsuccess isitu Vane S Unsuccess	Sample sfut Sptit Spo ube Sample sfut Thin Wa Shear Test, sfut Insitu Va	oon Sample atter Il Tube Sample : PP = Pocket P ine Shear Test a	R = Rock SSA = Sc mpt HSA = H RC = Rol attempt WOH = w 'enetrometer WOR/C = 'termot	Core Samp olid Stem Au ollow Stem / ler Cone veight of 140 weight of r Weight of r	ile iger Auger Dib Inai ods or	numer casing		$S_u = ln:$ $T_v = Pc$ $q_p = Ur$ $N-uncol Hamme N_{60} = SN_{60} = f$	iltu Field Vane Shear Strength (ps/) Su(fab) = Lab cket Torvane Shear Strength (ps/) WC = water cc confined Compressive Strength (ks/) LL = Liquid Lir rected = Raw field SPT N-value PL = Plastic Li r Efficiency Factor = Annual Calibration Value PI = Plasticily PT N-vancorrected corrected for hammer efficiency G = Gram Size PT M-uncorrected corrected for hammer efficiency G = Gram Size	Vane Shear ontent, perce nit mit Index e Anatysis tion Tool	Strength (psf) nt
				Sample Information					100			
Depth (ft.)	Sample No.	Pen./Rec. (in.)	Sample Depth (ft.)	Blows (/6 in.) Shear Strength (psf) or RQD (%)	N-uncorrected	N ₆₀	Casing Blows	Elevation (ft.)	Graphic Log	Visual Description and Remarks		Testing Results/ AASHTO and Unified Class.
U	<u>S+1</u>	24/6	0.40 - 2.40	5/12/9/7	21	22		549-50		Bituminous Pavement		SP
										Brown fine Sand and subangular to angular fine gravel, med	ium dense,	
	<u>S-2</u>	24/17	5.00 - 7.00	3/4/4/5	8	8		544.90		Brown fine to coarse Sand, little silt and subangular to angula loose, dry, {FILL}	5.00 n gravel,	WC 9.6%, 18.7% -#200 Sieve, USCS SM
- 10 ·	S-3	24/15	10.00 - 12.00	3/6/3/4	9	9		539.90 539.20		Brown fine to coarse Sand, little silt and subangular to angula dry, {FILL}		SP SP
	R	60/60	15.90 - 20.90					535.00 534.00		Dark brown, fine Sand, fittle Gravel, trace silt and organics, v \{Alluvium}	10.70- vet,	
										Very dense soil and/or weathered bedrock	15.00	
- 20 -										Phyllite, very fine grained, hard, slight weathering, near vertic	at (70	
"								529 00	X1X1	deg.) fractures, little fracturing, light gray,		
										Bottom of Exploration at 20.90 feet below ground sur	face.	
- 30 -			[
						_						
- 40 -												
- 50 -												
60 Rem	arks:											
-												
Stratifi	cation lines	s represent a	approximate bou	ndaries between soil types;	transitions n	nay be	gradual.			Page 1 of 1		
Wate Ihan	er level read those pres	dings have I: ent at the tir	een made at lin ne measuremen	nes and under conditions sta ts were made.	ted. Groun	dwater	fluctuatio	ns may o	ccur du	e to conditions other Boring No.: UI	₹S-B2	

..

APPENDIX C

LABORATORY DATA

MDOT Aroostook Bridges/Oackfield

BORING	SAMPLE	DEPTH	IDENTIF	ICATION 1	ESTS	REMARKS		
			WATER	USCS	SIEVE			
NO.	NO.		CONTENT	SYMB.	MINUS			
				(1)	NO. 200			
		(ft)	(%)		(%)			
URS-OF-B1	S-2	5-7	8.6	SM	13.7			
URS-OF-B2	S-2	5-7	9.6	SM	18.7			
URS-SED1			113.8	SM	25.1			
Note: (1) USCS symbol based on visual observation and Sieve results reported.								

LABORATORY TESTING DATA SUMMARY

(1) USCS symbol based on visual observation and Sieve results reported.

URS Corporation 45 J Commerce Way Totowa, NJ 07512

		GRAVEL			SAND					Symbol			0
COBBLES	6	COARSE	FINE	COARSE M	EDIUM	FINE		SILT OR CLAY		Boring	URS-OF-B1	URS-OF-B2	URS-SED1
				U.S. Stan	dard Sieve Si	ze				Sample	S-2	S-2	
						_	-			Spec			
	4 m	3/4, 1, 0	3/8	4 6	40 20	60	500			Depth	5-7	5-7	
10	0+		- ()	* * k···+	* *	* * + +	*	·······		% +3"			
		<u>:::: </u>	<u>،</u> ا				<u>::!:::::</u>		1	% Gravel	31.2	19.5	0.9
0	. ::	:::::::\	[]	!: : : ∕ ·		1		1 11111111 1 111111	1 1	% SAND	55.1	61.8	74.0
3	"				¤				1	% FINES	13.7	18.7	25.1
			$1 \cdots 1$			1			•	% -2μ			
8	⁰ † 	<u></u>	T\					<u> </u>	<u>.</u>	Cc			
	- Hit		+		<u> </u>					Cu			
도 7	o ┾╍┙		$+ \cdot \cdot$	<u> </u>	<u> </u>		<u> </u>			LL			
EIC		· · · · · · · ·			<u> </u>			<u> </u>		PI			
≥ 6	₀╷╷				<u> </u>		·	· · · · · · · · ·		PI			
ín (\therefore		\:		· · · · · · · ·	1	USCS	SM	SM	SM
Ľ,	. :			i:: ५ `	∖⊾∷∶∶∶	ծ:				w (%)	8.6	9.6	113.8
ss	다			\square \square \square						Particle	0.0	010	
PA									1	Size	PF	RCENT FIN	FR
	• + +					<u> </u>	 			(Siovo #)			0
SCE		· · · · · · ·								(Sieve #)			0
<u> </u>	⁰┾╬		<u></u>	<u></u> 	┟┼┼┼┝┰╶┤	Ì L : →	<u></u>	<u> </u>	· · · · ·	4 2"			
		<u> </u>					- `q : : : : ;	<u> </u>	1	J 1 1/2"	100.0		
2	╸┼╌┼	· · · · · · · ·	+	+ : : :		<u> </u>		· · · · · · · ·		2/4"	07.0	100.0	
						_: "\	L. L			3/4 2/0"	97.0	05.0	100.0
1	₀⊥⊥	· · · · · · · ·					<u>: X : : : : : : : : : : : : : : : : : :</u>		<u>.</u>	3/0	60 0	95.0 90.5	100.0
										4	00.0 E4.4	64.0	99.1
										20	04.4 41.2	04.9 50.1	90.2
	100		10	-	1		1	0.01	0.001	20	41.2	27.6	00.2 72.9
	100		10		1	υ.	•	0.01	0.001	40	29.4	37.0	72.8 52.4
					PARTICLE	SIZE -mm				100	18.0	29.5	37.5
SYMBOL							200	13.0	24.0 18.7	57.5 25.1			
	brown gravelly of SAND, some silt						200						
							MD	OT Aroostoo	k Bridges/O	ackfield			
	■ brown c-f SAND, some f. gravel, silt						F	Project No					
							394	60348-20002	2 Oct	ober 2008			
0	dark	brown m-f. SAND, s	ome silt,	tr. c. sand									
										1	URS Co	orporation	

APPENDIX D

SUPPORTING CALCULATIONS

Lateral Earth Pressure on Abutments and Wingwalls

Determine the lateral earth pressure acting on abutments and wingwalls. Assume that the abutments and wingwalls are unrestrained (i.e., free to rotate at the top).

For unrestrained walls, use Rankine Earth Pressure Theory to determine the active and passive earth pressures (K_a and K_p , respectively).

Rankine Passive Earth Pressure Theory

Applicable to cantilever retaining walls and cases where interface friction between the backfill and wall can be neglected. Note, only applicable where the backfill surface is horizontal.

For horizontal backfill surface: $K_p = tan^2 (45 + \phi/2)$ Passive earth pressure, P_p, is oriented horizontally into the soil mass

1. Soil Properties

Backfill for abutments and wingwalls to meet MaineDOT Specification for underwater backfill. In the MaineDOT *Bridge Design Guide* (2003) this is Soil Type 4, which has the following properties:

Total unit weight, $\gamma =$ 125 pounds per cubic foot (pcf)Angle of internal friction, $\Phi =$ 32 °

2. Active Earth Pressure Coefficient

Assume that the backfill surface is horizontal, then:

 $K_a = \tan^2 (45 - \phi/2) = \tan^2 (45 - 32/2) =$ $K_a = 0.31$

3. Passive Earth Pressure Coefficient

Assume that the backfill surface is horizontal, then:

 $K_p = \tan^2 (45 + \phi/2) = \tan^2 (45 + 32/2) =$ $K_p = 3.25$

Integral Abutment and Traditional End-bearing Driven H-Piles

Determine the Factored Compressive Resistance for integral abutments and traditional end-bearing piles supported on the bedrock surface.

1. Structural Axial Resistance of Individual H-Piles

Strength Limit State:

Evaluate the following H-piles:

Section	Steel Area, A _s	Pile Depth, d	Pile Width, w	"Box" Ai	rea, A _{box}	
Section	(in ²)	(in)	(in)	(in ²)	(ft ²)	-
HP 12x53	15.5	11.78	12.05	141.9	0.99	
HP 14x73	21.4	13.61	14.59	198.6	1.38	
HP 14x89	26.1	13.83	14.70	203.3	1.41	
HP 14x117	34.4	14.21	14.89	211.6	1.47	
Yield Strength, f	y =	50	kips per square in	ch (ksi)		

Nominal Compressive Resistance: Based on AASHTO LRFD (2008) Article 6.9.4.1 (page 6-73)

Nominal Compressive Resistance, $P_n = 0.66^{\lambda} f_v A_s$, where

 λ = normalized column slenderness factor = $([K_l]/[r_s\pi])^2 (f_v/E)$

 $\lambda = 0$ when the unbraced length, l = 0, so $P_n = f_v A_s$

HP 12x53		775 kips
HP 14x73		1,070 kips
HP 14x89	'" – – – – – – – – – – – – – – – – – – –	1,305 kips
HP 14x117		1,720 kips

Factored Compressive Resistance: Based on AASHTO LRFD (2008) Article 6.5.4.2 (page 6-28)

Factored Compressive Resistance, $P_f = \Phi_c P_n$

Resistance factor, Φ_c , for axial resistance of piles in compression under good driving conditions.

$\Phi_{c} =$	0.60		
HP 12x53	\frown	465 kips	
HP 14x73		642 kips	Strength Limit State Factored
HP 14x89		783 kips	Compressive Resistance
HP 14x117		1,032 kips	·

Service/Extreme Limit State:

Nominal Compressive Resistance: As determined for the Strength Limit State Factored Compressive Resistance:

Based on AASHTO LRFD (2008) Articles 6.5.5 (page 6-29),

10.5.5.1 (page 10-32), and 10.5.5.3 (page 10-43).

Factored Compressive Resistance, $P_f = \Phi_c P_n$

Resistance factor, Φ_c , shall be taken to be 1.0 for the extreme event limit state.

$\Phi_{\rm c}$ =	1.00	
HP 12x53 HP 14x73 HP 14x89	P _f = 775 1,070 1,305	kipsService and Extreme EventkipsLimit State FactoredkipsCompressive Resistance
HP 14x117	1,720	kips

2. Geotechnical Axial Resistance of Individual H-Piles Nominal Tip Resistance, R_{t.nom}: Based on Pell, Turner, Tomlinson Method for estimating the nominal tip resistance of end-bearing piles founded on rock presented in Tomlinson (1994) Assume piles will be driven trhough overlying fill and alluvium deposits and end-bearing on bedrock. Description of Bedrock Material: Boring URS-B1: Approximately 4 feet of weathered bedrock (rounded to subangular gravel, some fine sand) overlying highly fractured PHYLLITE, RQD = 36% Boring URS-B2: Approximately 1 foot of weathered bedrock overlying highly fractured PHYLLITE, RQD = 90% Summary of Assumed Design Parameters Bearing Material: Phyllite, RQD = 36%; RQD improves with depth Consistency In-place: Medium hard rock, tight joints, good core recovery; Upper zone weathered. Estimated quc (i.e., Uniaxial Compressive Strength, Co) from AASHTO 2002 Table 4.4.8.1.2B Rock Type - B, Lithified Argillaceous rock: Phyllite q_{uc} = 3,500 to 35,000 pounds per square inch (psi); use q_{uc} = 12,500 psi Nominal Tip Resistance per unit area, q_p, is estimated as follows: $q_p = F_{wc}cN_c + 0.5F_{w\gamma}\gamma B_{min}N_{\gamma} + \gamma DN_q$, where: 1. Rock parameters for analysis. For RQD = 0 to 70 % $q_c = 0.33q_{uc} = (0.33)(12,500) =$ 4,125 psi $c = 0.1q_{uc} = (0.1)(12,500) =$ 1,250 psi Unit weight of rock, $\gamma =$ 145 pcf 30 ° Angle of internal friction, $\Phi =$ 2. Corrections for wedge failure under strip footing F_{wc} , F_{wy} = corrections for wedge failure F_{wc} = 1.25 for square piles, such as H-piles F_{wv} = 0.8 for square piles, such as H-piles 3. Bearing Capacity Factors from Tomlinson (1994) page 139 N_c = 13.86 N_q = 9.00 N_v = 13.86 4. Pile will be founded on bedrock surface, assume no penetration. Embedment depth, D = 0 inches 5. Width of H-pile. Use minimum dimension for H-Piles shown above 6. Calculate nominal tip resistance per unit area for four H-Piles shown above. HP 12x53 31 kips per square inch (ksi) q_p = ----33 ksi HP 14x73 33 ksi HP 14x89 HP 14x117 33 ksi

7. Calculate nominal tip resistance, R_{tnom}, for four typical H-Piles (summarized above).

	-, -		
HP 12x53			482 kips
HP 14x73			698 kips
HP 14x89	Г	`t,nom ¯	855 kips
HP 14x117		L	1,138 kips

8. Calculate Factored Geotechnical Tip Resistance, R_{tip,f}, for four typical H-Piles.

```
R_{tip,f} = \Phi_{stat}R_{t,nom}
```

Resistance factor, Φ_{stat} , for single pile in axial compression, end-bearing on rock:

Nominal Skin Resistance, R_{s,nom}:

There is not sufficient soil in some locations to develop significant skinw friction. Therefore, $R_{s,nom}$ is consdiered to be negligible, and

	R _{s,nom} =	0	kips		
And,	$R_{skin,f} = \Phi_{stat}R_{s,nom} =$			0	kips

Strength Limit State:

Total Factored Geotechnical Resistance, R_{af} :

 $R_{gf} = R_{tip,f} + R_{skin,f}$

Strength Limit State					
Total Factored Geotechnical Tip Resistances, R _{of} :					
HP 12x53	ſ	217 kips			
HP 14x73	$\mathbf{R} = -$	314 kips			
HP 14x89	'\gf -	385 kips			
HP 14x117	l	512 kips			

Service/Extreme Limit State:

Resistance factor, Φ , for Service and Extreme Event Limit States:

1.00

Φ=

Based on AASHTO LRFD (2008) Articles 6.5.5 (page 6-29), 10.5.5.1 (page 10-32), and 10.5.5.3 (page 10-43).

Nominal tip resistance, R_{t,nom}, for four typical H-Piles (as above).

Total Factored Geotechnical Resistance, R_{gf} :

 $R_g = (R_{t,nom} + R_{s,nom})\Phi$

Service/Extreme Event Limit State						
Total Factored Geotechnical Tip Resistances, R _g :						
HP 12x53		482 kips				
HP 14x73	D	698 kips				
HP 14x89	rgf –	855 kips				
HP 14x117		1,138 kips				

3. Drivability Analysis for Axial Resistance of Individual H-Piles

Drivability analysis conducted to establish installation criteria for driven piles, in accordance with AASHTO LRFD (2008) Article 10.7.8 (page 10-121)

For steel piles (e.g., H-Piles) in co	mpression:	$\sigma_{dr} = 0.9 \Phi_{da} f_{y}$, where:
σ_{dr} = allowable driving stresses ar	nywhere in the	pile.
Φ_{da} = resistance factor =	1.00	Based on AASHTO LRFD (2008) Article 6.5.4.2 (page 6-2) and Table 10.5.5.2.3-1 (page 10-38)
f_y = Yield Strength =	50	ksi
So, σ _{dr} =	45	ksi

Use GRLWEAP to determine the ultimate pile resistance (R_{ult}) for four typical H-Piles, based on the limiting the allowable driving stress to 45 ksi.

The input paraemters for the hammer/driver system are shown below:

	Hammer	Model:	D 19-42		Made by:	DEL	MAG
	No.	Weight kips	Stiffn k/inch	CoR	C-Slk ft	Dampg k/ft/s	
	2	0.800	140046.7	1.000	0.0100		
	3	0.800	140046.7	1.000	0.0100		
	4	0.800	140046.7	1.000	0.0100		
	5	0.800	140046.7	1.000	0.0100		
Imp B	lock	0.753	70735.6	0.900	0.0100		
Helme	t	3.200	109975.0	0.800	0.0100	5.8	
Combi	ned Pile	в Тор	12329.5				
HAMMER OPTI Hammer Fi Stroke Op Fuel Pump	ONS: le ID No tion Setting	э. Э	41 FxdP-Vars Maximur	l Hammer S Stroke n	Type Convergence	Crit.	OE Diesel 0.010
HAMMER DATA Ram Weigh	: t	(kip	s) 4.00	0 Ram Ler	ngth	(inch)	129.10
Rated Str	oke	(f	t) 10.81	1 Efficie	ency		0.800
Maximum P: Compressio	ressure on Expor	(ps nent	i) 1520.00 1.350	0 Actual 0 Expansi	Pressure ion Exponent	(psi)	1520.00 1.250
Combustion	n Delay	(118.	s) 0.00200	0 Ignitic	on Duration	(s)	0.00200

The Hammer Data Includes Estimated (NON-MEASURED) Quantities

HAMMER CUSHION			PILE CUSHION		
Cross Sect. Area	(in2)	0.00	Cross Sect. Area	(in2)	0.00
Elastic-Modulus	(ksi)	0.0	Elastic-Modulus	(ksi)	0.0
Thickness	(inch)	0.00	Thickness	(inch)	0.00
Coeff of Restitu	tion	0.8	Coeff of Restitut	tion	1.0
RoundOut	(ft)	0.0	RoundOut	(ft)	0.0
Stiffness	(kips/in)	109975.0	Stiffness	(kips/in)	0.0

By: <u>WAN</u> Date: <u>03/17/09</u> URS CORPORATION Chkd By: <u>DWA</u> Date: <u>03/21/09</u>

Job No.: <u>39460348</u> Page 4 of 6

A copy of the GRLWEAP output for a HP 12x53 pile is shown below:

SUMMARY	OVER	DEPTHS
---------	------	--------

		G/L at	Shaft and	d Toe:	1.000	1.000		
Depth	Rut	Frictn	End Bg	Bl Ct	Com Str	Ten Str	Stroke	ENTHRU
ft	kips	kips	kips	bl/ft	ksi	ksi	ft	kip-ft
5.0	8.2	3.7	4.5	Hammer	did not	run		
10.0	23.6	14.6	9.0	1.6	9.591	0.000	3.80	25.0
10.0	19.0	14.7	4.3	1.4	6.928	0.000	3.58	23.7
12.5	24.8	20.1	4.7	1.6	9.644	0.000	3.77	24.9
15.0	31.1	25.9	5.2	1.9	11.655	0.000	3.94	24.4
15.0	58.4	26.1	32.3	5.0	17.955	0.000	4.90	20.6
16.5	67.9	33.4	34.5	5.9	18.859	-0.244	5.09	20.1
18.0	77.8	41.1	36.7	6.8	19.659	-0.261	5.28	19.6
18.0	72.7	43.7	29.1	6.2	19.169	-0.268	5.16	19.9
19.0	190.3	161.3	29.1	26.1	28.264	-0.309	7.12	16.6
20.0	307.9	278.9	29.1	48.6	42.445	-1.894	7.94	16.8
20.0	475.0	281.3	193.8	97.1	53.607	-5.039	9.14	18.9
21.0	475.0	281.3	193.8	97.9	53.403	-4.642	9.13	18.8
22.0	475.0	281.3	193.8	100.0	51.514	-4.818	9.06	18.2

As shown in this output, R_{ult} for σ_{dr} = 45 ksi is between 307.9 and 475 kips. Determine the approximate R_{ult} for σ_{dr} = 45 ksi by linear interpolation.

The relevant outputs for the H-pile sections evaluated are summarized below:

Pile Section	R _{ult} (kips)	Blows per foot	Compressive
			Stress (ksi)
HP 12x53	307.6	49	42.45
	475.0	97	53.61
Interpolated	345.9	60	45.00
HP 14x73	373.6	64	34.29
	603.8	144	45.63
Interpolated	591.0	140	45.00
HP 14x89	668.5	172	40.15
	668.5	173	30.70
Interpolated	No Interpol	lation possible	
HP 14x117	412.3	76	26.42
	780.6	256	36.57
Interpolated	625.1	180	32.28

Note: Copies of the entire input and output files for all of the piles evaluated are in the URS project file.

Strength Limit State:

Total Factored Drivign Resistance, R_{dr,f} :

Compute resistance that must be achieved in drivability analyis:

The resistance that must be achieved in a drivability analysis will be the maximum applied axial stress multiplied by the appropriate resistance factor for wave equation analysis and the dynamic test that will be required for construction.

 Φ_{dyn} = dynamic resistance factor = 0.65

Based on AASHTO LRFD (2008) Table 10.5.5.2.3-1 (page 10-37).

However, AASHTO LRFD (2008) Table 10.5.5.2.3-3 (page 10-39) requires at least 3 or 4 piles to be dynamically tested at a site with low to medium variablity. Since only one (1) pile is typically dynamically tested at each abutment at a small bridge site (one test per abutment is typically specified), reduce the dynamic resistance factor (Φ_{dyn}) by 20 percent.

Therefore, use $\Phi_{dyn,80\%}$ to determine the maximum applied stress in the drivability analysis.

Service/Extreme Limit State:

Resistance factor, Φ , for Service and Extreme Event Limit States: $\Phi = 1.00$ Based on AASHTO LRFD (2008) Articles 6.5.5 (page 6-29), 10.5.5.1 (page 10-32), and 10.5.5.3 (page 10-43).

 $R_{dr.fx} = R_{ult}\Phi$

Factored Driving Resistance for Service and Extreme Event Limits, R_{dr.fx} :

Service/Extreme Event Limit State							
Factored Driving Resistances, R _{dr,fx} :							
HP 12x53	ſ	346 kips					
HP 14x73	R. = _	591 kips					
HP 14x89	l∿dr,fx −	669 kips					
HP 14x117	Ĺ	625 kips					

Note: The factored driving resistance is less than the factored compressive (structural) resistance and the factored geotechnical resistance.

Therefore, driving resistance governs design for the Service/Extreme Event Limit States.

References

- 1 American Association of State Highway and Transportation Officials (AASHTO). 2008. *LRFD Bridge Design Specifications*, Customary U.S. Units, 4th Edition, with 2008 Interim Revisions, AASHTO, Washington, D.C.
- 2 American Association of State Highway and Transportation Officials (AASHTO). 2002. *Standard Specifications for Highway Bridges*, 17th Edition, AASHTO, Washington, D.C.
- ³ Tomlinson, M. J. 1994. *Pile design and construction practice*, 4th Edition, Taylor & Francis, Inc. New York, NY, 411 pages

Bearing Resistance - Footings on Weathered Bedrock

Determine the Factored Bearing Resistance and Nominal Bearing Resistance for spread footings supported on the bedrock surface.

Service Limit State:

Method A1: Based on AASHTO LRFD (2008) Table C.10.6.2.6.1-1 "Presumptive Bearing Resistances for Spread Footing Foundations at Service State Limit."

Description of Bedrock Material:

Boring URS-B1: Approximately 4 feet of weathered bedrock (rounded to subangular gravel, some fine sand) overlying highly fractured PHYLLITE, RQD = 36%
 Boring URS-B2: Approximately 1 foot of weathered bedrock overlying highly fractured PHYLLITE, RQD = 90%

Bearing Material: Weathered bedrock Consistency In-place: Medium hard rock Bearing Resistance: Range = 16 to 24 kips per square foot (ksf) Recommended Value: 16 ksf

Method A2: Based on AASHTO Standard Specifications - 17th Edition, 2002
 Article 4.4.8.1.1 - Footings on Competent Rock
 Figure 4.4.8.1.1A - Allowable Contact Stress for Footings on Rock with Tight Discontinuities
 For Weathered Bedrock assume RQD = 0%
 Allowable Contact Stress = 10 tons per square foot (10 tsf = 20 ksf)
 Use a Factored Bearing Resistance of 16 ksf for the Service
 Limit State analysis and preliminary sizing of the footings.

Strength Limit State:

Method B1: Based on AASHTO Standard Specifications - 17th Edition, 2002 Article 4.4.8.1.2 - Footings on Broken or Jointed Rock $q_{ult} = N_{ms}C_o$ Estimated Rock Mass Quality: Very Poor - Highly weathered with joints spaced less than 2 inches apart. N_{ms} from Table 4.4.8.1.2A = Use quit for an equivalent soil mass Estimated C_o (Uniaxial Compressive Strength) from Table 4.4.8.1.2B Rock Type - B, Lithified Argillaceous rock: Phyllite $C_0 = 3,500$ to 35,000 pounds per square inch (psi) $q_{ult} = q_{nom} =$ Use q_{ult} for an equivalent soil mass Therefore. Use AASHTO LRFD Theoretical Estimation: Basic Formulation (Article 10.6.3.1.2) $q_{nom} = cN_m + \gamma D_f N_{qm} C_{wq} + 0.5\gamma B N_{vm} C_{wv}$, where: $N_{cm} = N_c s_c i_c$ $N_{qm} = N_q s_q d_q i_q$

 $N_{\gamma m} = N_{\gamma} s_{\gamma} i_{\gamma}$

1. Soil parameters for granular fill/rip rap assumed to be similar to dense till.

Moist unit weight, γ_m =	145 pounds per cubic foot (pcf)
Saturated unit weight, γ_{sat} =	150 pcf
Angle of internal friction, Φ_{ns} =	36 °
Undrained shear strength, c =	0 pounds per square foot (psf)
Unit weight of water, γ_w =	62.4 pcf

2. Footings will be founded on bedrock surface, so embedment due to riprap protection Foundation depth, $D_f = 3$ feet

3. Bearing Capacity Factors from AASHTO LRFD Table 10.6.3.1.2a-1 for Φ_{ns} = 36°:

N _c =	50.6
N _q =	37.8
N _y =	56.3

4. Assume strip footings (L > 5B) and no load inclination

$s_c, s_q, s_\gamma =$	1
$i_c, i_q, i_\gamma =$	1

5. Correction for depth to groundwater table (GWT) based on boring data.

(Based on AASHTO LRFD	Table 10.6.3.1.2a-2)	•	
Depth to GWT, $D_w = D_f$			
Design unit weight, γ =	$\gamma_{sat} - \gamma_w =$	87.6	pcf
C _{wq} =	1		
C _{wv} =	0.5		

- 6. Foundation depth correction (AASHTO LRFD Table 10.6.3.1.2a-4). $d_q = 1$
- 7. Evaluate nominal bearing resistance for footings from 4 to 12 feet wide.

Footing width, B = $\begin{cases} 4 & \text{feet} \\ 6 & \text{feet} \\ 8 & \text{feet} \\ 10 & \text{feet} \\ 12 & \text{feet} \end{cases}$ Therefore, $q_{nom} = \begin{cases} 15 & \text{ksf} \\ 17 & \text{ksf} \\ 20 & \text{ksf} \\ 22 & \text{ksf} \\ 25 & \text{ksf} \end{cases}$ Resistance Factor, Φ_{b} , from AASHTO LRFD Table 10.5.5.2.2-1 (page 10-32)

For footings on rock, $\Phi_b = 0.45$ $q_{fac} = q_{nom} \Phi_b$, so Factored Bearing Resistance : $q_{fac} = \begin{cases} 7 & ksf \\ 8 & ksf \\ 9 & ksf \\ 10 & ksf \\ 11 & ksf \end{cases}$

Recommended **Strength Limit State Factored Bearing Resistance** for wall bases and footings that are **4 to 9 feet wide is 7 ksf** and for wall bases and footings that are **9 to 12 feet wide is 10 ksf**.

References

- 1 American Association of State Highway and Transportation Officials (AASHTO). 2008. *LRFD Bridge Design Specifications*, Customary U.S. Units, 4th Edition, with 2008 Interim Revisions, AASHTO, Washington, D.C.
- 2 American Association of State Highway and Transportation Officials (AASHTO). 2002. *Standard Specifications for Highway Bridges*, 17th Edition, AASHTO, Washington, D.C.