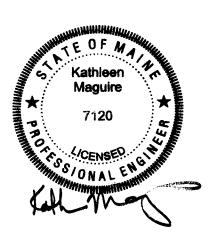
MAINE DEPARTMENT OF TRANSPORTATION BRIDGE PROGRAM GEOTECHNICAL SECTION AUGUSTA, MAINE

GEOTECHNICAL DESIGN REPORT

For the Replacement of:


WILD RIVER BRIDGE OVER WILD RIVER STATE ROUTE 2 GILEAD, MAINE

Prepared by:

Kathleen Maguire, P.E. Geotechnical Engineer

Reviewed by:

Laura Krusinski, P.E. Senior Geotechnical Engineer

Oxford County PIN 15619.00

Soils Report No. 2008-15 Bridge No. 2948

Fed No. BH-1561(900)E December 1, 2008

Table of Contents

GEO'	FECHNICAL DESIGN SUMMARY	1
1.0	INTRODUCTION	3
2.0	GEOLOGIC SETTING	3
3.0	SUBSURFACE INVESTIGATION	4
	LABORATORY TESTING	
	SUBSURFACE CONDITIONS	
6.0	FOUNDATION ALTERNATIVES	6
7.0	FOUNDATION CONSIDERATIONS AND RECOMMENDATIONS	7
7.1	INTEGRAL ABUTMENT H-PILES	7
7.2	STUB ABUTMENTS AND WINGWALLS	10
7.3	PILE SUPPORTED PIER WITH CURTAIN WALL	12
7.4	SCOUR AND RIPRAP	18
7.5	Settlement	19
7.6	FROST PROTECTION	19
7.7	SEISMIC DESIGN CONSIDERATIONS	19
7.8	CONSTRUCTION CONSIDERATIONS	20
8.0	CLOSURE	20
Sheet	s	
Sheet Sheet	1 - Location Map2 - Boring Location Plan3 - Interpretive Subsurface Profile	
	s 4 and 5 - Boring Logs	
Sheet	6 - Rankine and Coulomb Active Earth Pressure Coefficients	

Appendices

Appendix A - Boring Logs Appendix B - Laboratory Data Appendix C - Calculations

GEOTECHNICAL DESIGN SUMMARY

The purpose of this report is to make geotechnical recommendations for the replacement of the Wild River Bridge on a new alignment for State Route 2 over Wild River in Gilead, Maine. The proposed replacement bridge will consist of a 79 meter (260 foot) long, two span welded plate girder superstructure with integral abutments supported on driven H-piles and a center pile supported pier with a full height curtain wall. The following design recommendations are discussed in detail in the attached report:

Integral Abutment H-piles - Stub abutments founded on driven integral end bearing H-piles may be HP 310x79 (HP 12x53), HP 360x108 (HP 14x73), HP 360x132 (HP 14x89), or HP 360x174 (HP 14x117). Piles should be 345 MPa (50 ksi), Grade A572 steel H-piles. Piles should be fitted with driving points. The designer shall design the H-piles at the strength limit state considering the structural resistance of the piles, the geotechnical resistance of the pile and loss of the lateral support due to scour at the design flood event. The structural resistance check should include checking axial, lateral, and flexural resistance. The design of the H-piles at the service limit state shall consider tolerable horizontal movement of the piles, overall stability of the pile group and scour at the design flow event. Since the abutment piles will be subjected to lateral loading, piles should be analyzed for axial loading and combined axial and flexure. The Contractor is required to perform a wave equation analysis of the proposed pile-hammer system and a dynamic pile test at each abutment. The first pile driven at the each abutment should be dynamically tested to confirm capacity and verify the stopping criteria developed by the Contractor in the wave equation analysis. The ultimate pile resistance that must be achieved in the wave equation analysis and dynamic testing will be the factored axial pile load divided by a resistance factor of 0.65. The factored pile load should be shown on the plans.

Stub Abutments and Wingwalls - Integral stub abutments and wingwalls shall be designed for all relevant strength, service and extreme limit states and load combinations. The design of pile supported abutments and wingwalls at the strength limit state shall consider pile stability and structural resistance. Strength limit state design shall also consider foundation resistance after scour due to the design flood. Abutment design at the service limit state shall include: settlement, horizontal movement, overall stability and scour at the design flood. Extreme limit and strength limit state design checks for abutments shall include pile structural resistance, pile geotechnical resistance, pile resistance in combined axial and flexure, and overall stability. In designing for passive earth pressure associated with integral abutments, the Rankine state is recommended. All abutment designs shall include a drainage system to intercept any water. To avoid water intrusion behind the abutment, the approach slab should connect directly to the abutment.

Pile Supported Pier with Curtain Wall – A pile supported pier with a full height curtain wall was selected for intermediate structure support. Piles for the pier may consist of end-bearing concrete filled pipe piles driven to bedrock or end-bearing H-piles driven to bedrock. The designer shall design the piles at the strength limit state considering the structural, geotechnical and drivability resistance of the pile. The structural resistance check should include checking axial, lateral, and flexural resistance. The design of the piles at the service

limit state shall consider tolerable horizontal movement of the piles and overall stability of the pile group. Since the pier piles will be subjected to lateral loading and have a substantial unbraced length, piles should be analyzed for axial loading and combined axial and lateral loading. The Contractor is required to perform a wave equation analysis of the proposed pile-hammer system and a dynamic pile test at the pier. The first pile driven at the pier should be dynamically tested to confirm capacity and verify the stopping criteria developed by the Contractor in the wave equation analysis. The ultimate pile resistance that must be achieved in the wave equation analysis and dynamic testing will be the factored axial pile load divided by a resistance factor of 0.65. The factored pile load should be shown on the plans.

Scour and Riprap- The consequences of changes in foundation conditions resulting from the design flood for scour shall be considered at the strength and service limit states. These changes in foundation conditions shall be investigated at the abutments, wingwalls and pier. For scour protection, any footings which are constructed on granular deposits, should be embedded a minimum of 0.9 meters (3 feet) below the design scour depth and at least 0.6 meters (2.0 feet) below the super flood scour event and armored with 0.9 meters (3 feet) of riprap. Riprap, 0.9 meters (3 feet) thick, conforming to item number 703.26 of the Standard Specification, shall be placed at the toes of abutments and wingwalls. The riprap shall extend 0.5 meters (1.5 feet) horizontally in front of the wall before sloping at a maximum 1.75H:1V slope to the existing ground surface. The toe of the riprap section shall be constructed 0.3 meters (1 foot) below the streambed elevation. The riprap section shall be underlain by a 0.3 meters (1 foot) thick layer of bedding material.

Settlement - Large amounts of fill will be place behind both abutments in order to raise the existing grade to accommodate the new roadway approaches to the bridge. Settlements due to the addition of this fill have been calculated to range between 20 and 40 mm (1 and 2 inches). Due to the granular nature of the subsurface soils present at the site all settlement associated with this fill occur will during construction having negligible effect on the finished bridge structure. Any settlement of the bridge abutments and pier will be due to the elastic compression of the piling and will be negligible.

Frost Protection - Any foundation placed on granular soils should be founded a minimum of 2 meters (6.5 feet) below finished exterior grade for frost protection. Integral abutments shall be embedded a minimum of 1.2 meters (4.0 feet) for frost protection.

Seismic Design Considerations - The Wild River Bridge on Route 2 is on the National Highway System (NHS) and is therefore considered to be functionally important. Consequently, a detailed seismic analysis is required. The minimum seismic analysis requirements are defined in LFRD Article 4.7.4.1. The designer shall determine the specific analysis method using LRFD Tables 4.7.4.3.1-1. Seismic design requirements for Seismic Zone 1 are found in LRFD Article 3.10.9.2.

Construction Considerations - There is potential for boulders and cobbles to impact the pile installation operations. These impacts include, but are not limited to, driving the piles and cleaning out pipe piles. Obstruction may be cleared by conventional excavation methods, pre-augering, pre-drilling, or down-hole hammers or as approved by the Resident.

1.0 Introduction

A subsurface investigation for the replacement of the Wild River Bridge on a new alignment for State Route 2 over Wild River in Gilead, Oxford County, Maine has been completed. The purpose of the investigation was to explore subsurface conditions at the site in order to develop geotechnical recommendations for the bridge replacement. This report presents the soils information obtained at the site, geotechnical design recommendations, and foundation recommendations.

The existing bridge Wild River Bridge was constructed in 1928 and consists of a 68.8 meter (216 foot) long four-span, concrete T-beam structure supported on mass concrete piers and concrete abutments on spread footings. The bridge was widened in 1953. The abutments and wingwalls have moderate to severe cracking and spalling. The piers show significant signs of deterioration and are susceptible to scour. Maine Department of Transportation (MaineDOT) maintenance inspection reports indicate that the bridge superstructure is in "fair" condition while the deck and substructures are in "poor" condition. Year 2007 MaineDOT Bridge Maintenance inspection reports indicate a Bridge Sufficiency Rating of 36.1.

The only option for this bridge replacement is a new bridge built on the new alignment of State Route 2. The new bridge will be a 79 meter (260 foot), two span, welded plate girder superstructure on integral abutments supported on driven H-piles and a center pile supported pier. The pier will have a full height curtain wall from the underside of the deck to just below the river mud line. The curtain wall will help to minimize deterioration of the pier piles during high water events.

2.0 GEOLOGIC SETTING

The Wild River Bridge on State Route 2 in Gilead crosses the Wild River approximately 0.16 km (0.1 miles) west of the intersection of State Routes 2 and 113 as shown on Sheet 1 - Location Map found at the end of this report. The Wild River flows in a northerly direction to the Androscoggin River.

According to the Surficial Geologic Map of Maine published by the Maine Geological Survey (1985) the surficial soils in the vicinity of the site consist of ice-contact glaciofluvial deposits. Soils in the site area are generally comprised of sand, gravel, and silt. The unit generally is deposited in areas where the topography is flat-topped kame terraces and deltas which are locally kettled and bounded by steep sides or hummocky terrain with numerous kames and kettles. These soils were generally deposited by meltwater streams adjacent to stagnant glacial ice. Additional geologic units mapped nearby the site are till deposits which are generally sand, silt, clay and stones, thin drift which is generally thin surficial deposits over bedrock and exposed bedrock.

According to the Surficial Bedrock Map of Maine, published by the Maine Geological Survey (1985), the bedrock at the site is identified as interbedded petite and sandstone. This rock is identified as the Littleton Formation.

3.0 SUBSURFACE INVESTIGATION

Subsurface conditions were explored by drilling three (3) test borings at the site. Test borings BB-GWR-101 was drilled at the location of Abutment No. 1 (west). Test boring BB-GWR-102 was drilled at the center pier location. Test boring BB-GWR-103 was drilled at the location of Abutment No. 2 (east). The exploration locations are shown on Sheet 2 - Boring Location Plan found at the end of this report. An interpretive subsurface interpretive subsurface profile depicting the site stratigraphy is shown on Sheet 3 - Interpretive Subsurface Profile found at the end of this report. Borings BB-GWR-101 and BB-GWR-103 were drilled between March 20 and April 8, 2008 by Northern Test Boring of Gorham, Maine. Boring BB-GWR-102 was drilled between September 15 and 19, 2008 also by Northern Test Boring of Gorham, Maine. Details and sampling methods used, field data obtained, and soil and groundwater conditions encountered are presented in the boring logs provided in Appendix A - Boring Logs and on Sheets 4 and 5 - Boring Logs found end of this report.

The borings were drilled using driven cased wash boring and solid stem auger techniques. Soil samples were obtained where possible at 1.5 meter (5-foot) intervals using Standard Penetration Test (SPT) methods. During SPT sampling, the sampler is driven 60 cm (24 inches) and the hammer blows for each 15 cm (6 inch) interval of penetration are recorded. The standard penetration resistance, N-value, is the sum of the blows for the second and third intervals. The Northern Test Boring drill rig is equipped with an automatic hammer to drive the split spoon. The hammer was calibrated in February of 2008 and was found to deliver approximately 6 percent more energy during driving than the standard rope and cathead system. All N-values discussed in this report are corrected values computed by applying an average energy transfer factor of 0.633 to the raw field N-values. This hammer efficiency factor (0.633) and both the raw field N-value and the corrected N-value are shown on the boring logs.

The bedrock was cored in the borings using an NQ core barrel and the Rock Quality Designation (RQD) of the core was calculated. The MaineDOT geotechnical team member selected the boring locations and drilling methods, designated type and depth of sampling techniques and identified field and laboratory testing requirements. The MaineDOT Certified Subsurface Inspector logged the subsurface conditions encountered. The borings were located in the field by the survey crew prior to drilling.

4.0 LABORATORY TESTING

Laboratory testing for samples obtained in the borings consisted of 29 standard grain size analyses. The results of these laboratory tests are provided in Appendix B - Laboratory Data at the end of this report. Moisture content information and other soil test results are included on the Boring Logs in Appendix A and on Sheets 4 and 5 - Boring Logs found at the end of this report.

5.0 SUBSURFACE CONDITIONS

Subsurface conditions encountered at the test borings generally consisted of interbedded sands and gravels underlain by metamorphic gneiss. An interpretive subsurface profile depicting the site stratigraphy is show on Sheet 3 - Interpretive Subsurface Profile found at the end of this report. The following paragraphs discuss the subsurface conditions encountered in detail:

Interbedded Sand and Gravel. Interbedded layers of sand and gravel were encountered in all of the borings. The layers vary in their grain size content and are comprised of:

- Sandy GRAVEL
- SAND
- SAND with cobbles
- Gravelly SAND

Sandy GRAVEL: Several layers of sandy gravel were encountered in all of the borings. The layers ranged from approximately 0.97 meters (3.2 feet) to approximately 4.88 meters (16.0 feet) thick. The soil generally consisted of brown, damp to wet, fine to coarse sandy gravel with trace silt and occasional cobbles. Corrected SPT N-values in the sandy gravel ranged from 24 to >50 blows per foot (bpf) indicating that the soil is medium dense to very dense in consistency. Water contents from seven (7) samples obtained within the sandy gravel layers range from approximately 3% to 11%. Seven (7) grain size analyses conducted on samples from these layers indicate that the soil is classified as an A-1-a by the AASHTO Classification System and a GW-GM, GW, or GP-GM by the Unified Soil Classification System.

<u>SAND</u>: Several layers of sand were encountered in all of the borings. The layers ranged from approximately 0.9 meters (3.0 feet) to approximately 5.79 meters (19.0 feet) thick. The soil generally consisted of brown, damp to wet, fine sand, fine to medium sand, fine to coarse sand with trace to some gravel, and trace to some silt. The sand layer in the upper portion of boring BB-GWR-101 had trace organics. Corrected SPT N-values in the sand layers ranged from 3 to 55 bpf indicating that the soil is very loose to very dense in consistency. Water contents from fourteen (14) samples obtained within the sand layers range from approximately 11% to 26%. Fourteen (14) grain size analyses conducted on samples from the sand layers indicate that the soil is classified as an A-3, A-2-4, or A-1-b by the AASHTO Classification System and a SP-SM, SM, SP or SW-SM by the Unified Soil Classification System.

SAND with cobbles: Several layers of sand with cobbles were encountered in the borings. The layers ranged from approximately 0.4 meters (1.3 feet) to approximately 7.5 meters (25.0 feet) thick. The soil generally consisted of brown, wet, fine to coarse sand, little to some gravel and trace to little silt with occasional cobbles. The layer in the upper portion of boring BB-GWR-103 had trace organics. Corrected SPT N-values in the layers ranged from 9 to 78 bpf indicating that the soil is loose to very dense in consistency. Water contents from two (2) samples obtained within the layers range from approximately 9% to 16%. Two (2) grain size analyses conducted on samples from these layers indicate that the soil is classified

as an A-1-b by the AASHTO Classification System and a SM or SW by the Unified Soil Classification System.

Gravelly SAND: A layer of gravelly sand was encountered at the bottom of boring BB-GWR-103. The layer was approximately 0.37 meters (1.2 feet) thick. The gravelly sand generally consisted of brown, wet, fine to coarse gravelly sand with trace silt. One corrected SPT N-values in the gravelly sand was 30 bpf indicating that the soil is medium dense in consistency. One (1) water content from a sample of the gravelly sand was approximately 11%. One (1) grain size analysis conducted on a sample from this layer indicates that the soil is classified as an A-1-b by the AASHTO Classification System and a SW-SM by the Unified Soil Classification System.

Bedrock. Bedrock was encountered and cored in all of the borings. The following table summarizes the depths to bedrock and corresponding elevations of the top of bedrock:

Boring Number/ Location	Depth to Bedrock	Bedrock Elevation	RQD
BB-GWR-101/ Abutment No. 1	12.8 meters (42.0 feet)	197.95 meters (649.44 feet)	85 – 93%
BB-GWR-102/ Center Pier	25.5 meters (83.7 feet)	182.88 meters (600.0 feet)	95%
BB-GWR-103/ Abutment No. 2	26.82 meters (88.0 feet)	182.23 meters (597.87 feet)	65 – 87%

The bedrock is identified as black, grey and white metamorphic GNEISS with 70 degree banding. The rock quality designation (RQD) of the bedrock was determined to range from 65 to 95 percent indicating a rock mass quality of fair to excellent quality.

6.0 FOUNDATION ALTERNATIVES

Based on the subsurface conditions encountered during the subsurface exploration program, the following foundation alternatives, with varying levels of risk and durability, may be considered for the bridge replacement:

- Cast-in-place concrete or precast concrete integral abutments supported on driven steel H-piles
- Pile bent pier
- Pile supported pier with curtain wall with pipe piles or H-piles

Due to the high scour susceptibility of the Wild River, the use of spread footings is not a viable foundation alternative for the site. The use of drilled shafts, although a viable foundation type for the site, would not be an economical alternative.

The Preliminary Design Report (PDR) for this project recommends that the replacement bridge be supported on H-pile supported integral abutments and a pile supported pier with a curtain wall. This report addresses only those foundation types.

7.0 FOUNDATION CONSIDERATIONS AND RECOMMENDATIONS

The following sections will discuss geotechnical design recommendations for cast-in-place concrete or precast concrete integral abutments supported on driven steel H-piles and a center pile supported pier with a curtain wall on pipe piles or H-piles.

7.1 Integral Abutment H-piles

The use of stub abutments founded on a single row of driven integral H-piles is a viable foundation system for use at the site. The piles should be end bearing, driven to the required resistance on or within the bedrock. Piles may be HP 310x79 (HP 12x53), HP 360x108 (HP 14x73), HP 360x132 (HP 14x89), or HP 360x174 (HP 14x117) depending on the design axial loads. Piles should be 345 MPa (50 ksi), Grade A572 steel H-piles. Piles should be fitted with driving points to protect the tips and improve penetration.

Pile lengths at the proposed abutments may be estimated based on the table below:

Location	Estimated Pile Cap Bottom Elevation	Depth to Bedrock From Ground Surface	Top of Rock Elevation	Estimated Pile Length
Abutment No.1	214.5 meters	12.8 meters	197.95 meters	17 meters
BB-GWR-101	(703.74 feet)	(42.0 feet)	(649.44 feet)	(56 feet)
Abutment No.2	215.3 meters	26.82 meters	181.31 meters	34 meters
BB-GWR-103	(706.36 feet)	(88.0 feet)	(594.85 feet)	(112 feet)

These pile lengths do not take into account the additional 1.5 meters (5 feet) of pile required for dynamic testing instrumentation or any additional pile length needed to accommodate the Contractor's leads and driving equipment.

The designer shall design the H-piles at the strength limit state considering the structural resistance of the piles, the geotechnical resistance of the pile and loss of the lateral support due to scour at the design flood event. The structural resistance check should include checking axial, lateral, and flexural resistance. Resistance factors for use in the design of piles at the strength limit state are discussed below.

The design of the H-piles at the service limit state shall consider tolerable horizontal movement of the piles, overall stability of the pile group and scour at the design flow event. The design flood scour is defined in AASHTO LRFD Bridge Design Specifications 4th Edition (LRFD) Articles 2.6.4.4.2 and 3.7.5. Since the abutment piles will be subjected to lateral loading, piles should be analyzed for axial loading and combined axial and flexure as defined in LRFD Article 6.15.2 and specified in LRFD Article 6.9.2.2.

7.1.1 Strength Limit State

The nominal structural compressive resistance (P_n) in the strength limit state for piles loaded in compression shall be as specified in LRFD Article 6.9.4.1. The H-piles are assumed fully embedded and λ shall be taken as 0. It is the responsibility of the structural engineer to recalculate the column slenderness factor (λ) for the upper and lower portions of the H-pile based on unbraced lengths and K-values from project specific L-Pile[®] analyses and determine structural pile resistances. The factored structural axial compressive resistances of the four proposed H-pile sections were calculated using a resistance factor, ϕ_c , of 0.50 (severe driving conditions) and a λ of 0.

The nominal geotechnical compressive resistance in the strength limit state was calculated using Canadian Foundation Engineering Manual methods. The factored geotechnical compressive resistances of the four proposed H-pile sections were calculated using a resistance factor, ϕ_{stat} , of 0.45.

The drivability of the four proposed H-pile sections was considered. The maximum driving stresses in the pile, assuming the use of 345 MPa (50 ksi) steel, shall be less than 310 MPa (45 ksi). As the piles will be driven to refusal on bedrock a drivability analysis to determine the resistance that must be achieved was conducted. The resistance factor for a single pile in axial compression when a dynamic test is done, given in LRFD Table 10.5.5.2.3-1, is ϕ_{dyn} = 0.65.

The calculated factored axial compressive structural, geotechnical and drivability resistances of the four proposed H-pile sections for the abutments are summarized in the table below. Supporting calculations are included in Appendix C- Calculations found at the end of this report.

Factored Axial Resistances for Abutment Piles at the Strength Limit State

ractored Axiai Resistances for Abdument Thes at the Strength Emili State								
	Factored Resistance							
Pile Section	Structural	Geotechnical	Drivability	Design				
	Resistance*	Resistance	Resistance	Resistance				
HP 310 x 79	1724 kN	1311 kN	1359 kN	1311 kN				
(HP 12 x 53)	(HP 12 x 53) (388 kips)		(306 kips)	(295 kips)				
HP 360 x 108	HP 360 x 108 2380 kN		1749 kN	1653 kN				
(HP 14 x 73)	(HP 14 x 73) (535 kips)		(393 kips)	(372 kips)				
HP 360 x 132	2902 kN	2009 kN	1966 kN	2009 kN				
(HP 14 x 89)	(653 kips)	(452 kips)	(442 kips)	(452 kips)				
HP 360 x 174	3825 kN	2632 kN	2414 kN	2632 kN				
(HP 14 x 117)	(860 kips)	(592 kips)	(543 kips)	(592 kips)				

^{*} based on preliminary assumption of λ =0 for the lower portion of the pile in only axial compression (no flexure)

LRFD Article 10.7.8 states that for routine pile installation applications where significant local experience can be applied to keep the risk of pile installation problems low, a project specific drivability analysis using the wave equation may be waived. In light of this, it is

recommended that the governing resistance used in design be the factored geotechnical resistance indicated in the table above.

Per LRFD Article 6.5.4.2, at the strength limit state, for H-piles in compression and bending, the axial resistance factor ϕ_c =0.7 and the flexural resistance factor ϕ_f =1.0 shall be applied to the combined axial and flexural resistance of the pile in the interaction equation (LFRD Eq. 6.12.2.2.1-1 or -2). The combined axial compression and flexure should be evaluated in accordance with the applicable sections of LRFD Articles 6.9.2.2 and 6.12.2.

7.1.2 Service and Extreme Limit States

For the service and extreme limit states resistance factors, ϕ , of 1.0 are recommended for structural and geotechnical pile resistances. For preliminary analysis, the H-piles can be assumed fully embedded and λ can be taken as 0. It is the responsibility of the structural engineer to recalculate the column slenderness factor (λ) for the upper and lower portions of the H-pile based on unbraced lengths and K-values from project specific L-Pile[®] analyses and determine structural pile resistances.

The calculated factored axial structural, geotechnical and drivability resistances of the four proposed H-pile sections for each abutment are summarized in the table below. Supporting calculations are included in Appendix C- Calculations found at the end of this report.

Factored Axial Resistances for Abutment Piles at the Service and Extreme Limit States

	Factored Resistance						
Pile Section	Structural	Geotechnical	Drivability	Design			
	Resistance*	Resistance	Resistance	Resistance			
HP 310 x 79	3447 kN	2913 kN	2091 kN	2913 kN			
(HP 12 x 53) (775 kips)		(655 kips)	(470 kips)	(655 kips)			
HP 360 x 108	360 x 108 4760 kN		2691 kN	3672 kN			
(HP 14 x 73)	(1070 kips)	(826 kips)	(605 kips)	(826 kips)			
HP 360 x 132	5805 kN	4464 kN	3025 kN	4464 kN			
(HP 14 x 89)	(1305 kips)	(1003 kips)	(680 kips)	(1003 kips)			
HP 360 x 174	7651 kN	5849 kN	3714 kN	5849 kN			
(HP 14 x 117)	(1720 kips)	(1315 kips)	(835 kips)	(1315 kips)			

^{*}based on preliminary assumption of λ =0 for the lower portion of the pile in only axial compression (no flexure)

Although the factored axial drivability resistance is less than both the factored axial structural and geotechnical resistances, LRFD Article 10.7.8 states that for routine pile installation applications where significant local experience can be applied to keep the risk of pile installation problems low, a project specific drivability analysis using the wave equation may be waived. In light of this, it is recommended that the governing resistance used in design be the factored geotechnical resistance in the table above.

7.1.3 Pile Resistance and Pile Quality Control

Based on the anticipated depth to bedrock at the site, pile splices will be required. The location and number of pile splices shall be in conformance with MaineDOT Standard Specification 501 and be subject to the approval of the Resident. The splices shall be the Champion HP-30000, or approved equivalent, mechanical splicer. Evaluation of equivalent products will be based on the submission of data demonstrating the capability of transferring the full pile strength in compression and tension and developing the bending moment capacity of the pile in both the x-x and y-y axes. The splicers shall be installed and welded as recommended by the manufacturer. Welding shall not be done when the temperature in the immediate vicinity of the weld is below 18°C (0°F); when the surfaces are damp or exposed to rain, snow, or high wind; or when the welders or welding operators are exposed to inclement conditions. The pile shall be preheated to and maintained at 66°C (150°F) minimum within 15 cm (6 inches) from the weld during welding. Formal welding procedures are not required. Welders shall be prequalified in accordance with Section 504 - Structural Steel.

The Contractor is required to perform a wave equation analysis of the proposed pile-hammer system and a dynamic pile test at each abutment. The first pile driven at each abutment should be dynamically tested to confirm capacity and verify the stopping criteria developed by the Contractor in the wave equation analysis. The ultimate pile resistance that must be achieved in the wave equation analysis and dynamic testing will be the factored axial pile load divided by a resistance factor of 0.65. The factored pile load should be shown on the plans.

Piles should be driven to an acceptable penetration resistance as determined by the Contractor based on the results of a wave equation analysis and as approved by the Resident. Driving stresses in the pile determined in the drivability analysis shall be less than 310 MPa (45 ksi) in accordance with LRFD Article 10.7.8. A hammer should be selected which provides the required resistance when the penetration resistance for the final 76 mm to 152 mm (3 to 6 inches) is 8 to 15 blows per 25 mm (1 inch). If an abrupt increase in driving resistance is encountered, the driving could be terminated when the penetration is less than 12 mm (0.5-inch) in 10 consecutive blows.

7.2 Stub Abutments and Wingwalls

Integral stub abutments and wingwalls shall be designed for all relevant strength, service and extreme limit states and load combinations specified in LRFD Articles 3.4.1 and 11.5.5. The design of pile supported abutments and wingwalls at the strength limit state shall consider pile stability and structural failure. Strength limit state design shall also consider foundation resistance after scour due to the design flood.

A resistance factor of ϕ = 1.0 shall be used to assess abutment design at the service limit state including: settlement, horizontal movement, overall stability and scour at the design flood. Extreme limit and strength limit state design checks for abutments shall include pile structural resistance, pile geotechnical resistance, pile resistance in combined axial and

flexure, and overall stability. A resistance factor of ϕ =1.0 shall be used for the extreme limit state.

Conventional wingwalls shall be designed as unrestrained meaning that they are free to rotate at the top in an active state of earth pressure. Earth loads shall be calculated using an active earth pressure coefficient, K_a, calculated using Rankine Theory for cantilever wingwalls and Coulomb Theory for gravity shaped structures. See Sheet 6 - Rankine and Coulomb Active Earth Pressure Coefficients at the end of this report for guidance in calculating these values. Additional lateral earth pressure due to construction surcharge or live load surcharge is required per section 3.6.8 of the MaineDOT Bridge Design Guide (BDG) for the abutments and walls if an approach slab is not specified. Use of an approach slab may be required per the MaineDOT BDG Sections 5.4.2.10 and 5.4.4. When a structural approach slab is specified, reduction, not elimination, of the surcharge loads is permitted per LRFD Article 3.11.6.2. The live load surcharge on walls may be estimated as a uniform horizontal earth pressure due to an equivalent height of soil (H_{eq}) of 0.6 meters (2.0 feet) per LRFD Table 3.11.6.4-2. The live load surcharge on abutments may be estimated as a uniform horizontal earth pressure due to an equivalent height of soil (H_{eq}) taken form the table below:

Abutment Height	$ m H_{eq}$
1.5 meters	1.2 meters
(5 feet)	(4.0 feet)
3.0 meters	0.9 meters
(10 feet)	(3.0 feet)
≥6 meters	0.6 meters
(≥20 feet)	(2.0 feet)

The Designer may assume Soil Type 4 (MaineDOT BDG Section 3.6.1) for backfill material soil properties. The backfill properties are as follows: $\phi = 32$ degrees, $\gamma = 19.6$ kN/m³ (125 pcf). Sliding computations for resistance to lateral loads shall assume a maximum allowable frictional coefficient of 0.45 at the soil-concrete interface. A sliding resistance factor of ϕ_{τ} =0.8 shall be applied to the nominal sliding resistance of walls found on spread footings on sand.

Integral abutments and wingwall sections that are integral with the abutment should be designed to withstand a passive earth pressure state. In designing for passive earth pressure associated with integral abutments, the Coulomb state is recommended. Experience in designing wingwalls for integral abutments has shown that the use of the Coulomb passive earth pressure K_p =6.89 may result in uneconomical wall sections. For this reason, consideration may be given to using a Rankine passive earth pressure, K_p =3.25 when designing integral abutments and integral wingwall extensions.

All abutment designs shall include a drainage system behind the abutments to intercept any water. Drainage behind the structure shall be in accordance with Section 5.4.1.4 Drainage, of the MaineDOT BDG. Geocomposite drainage board applied to the backsides of the abutments and wingwalls with weep holes will provide adequate drainage. To avoid water intrusion behind the abutment, the approach slab should connect directly to the abutment.

Backfill within 3 meters (10 feet) of the abutments and wingwalls and side slope fill shall conform to Granular Borrow for Underwater Backfill - MaineDOT Specification 709.19. This gradation specifies 10 percent or less of the material passing the No. 200 sieve. This material is specified in order to reduce the amount of fines and to minimize frost action behind the structure.

7.3 Pile Supported Pier with Curtain Wall

A pile supported pier with a full height curtain wall was selected for intermediate support. Piles for the pier may consist of concrete filled pipe piles driven to bedrock or H-piles driven to bedrock.

Pipe piles with diameters ranging from 609 to 762 mm (24 to 30 inches) and wall thicknesses of 13 to 16 mm (½ to 5/8 inch) are recommended. Pipe piles should be fabricated in accordance with ASTM A252, Grade 3, with a minimum yield strength of 310 MPa (45 ksi). Open ended piles should be equipped with a cutting shoe, constructed from Grade ASTM A148 90/60 steel, and driven open ended. Pier piles should be end bearing and driven to the required resistance on or within the bedrock.

H-piles may be HP 310x79 (HP 12x53), HP 360x108 (HP 14x73), HP 360x132 (HP 14x89), or HP 360x174 (HP 14x117) depending on the design axial loads and design scour depth. H-piles should be 345 MPa (50 ksi), Grade A572 steel. Piles should be fitted with driving points to protect the tips, improve penetration and improve friction at the pile tip to support a pinned pile tip assumption. Pier piles should be end bearing and driven to the required resistance on or within the bedrock.

A full height curtain wall will be constructed from the under side of the bridge deck to just below the river mud line to protect the piles from large stones transported by the water.

Pile lengths at the proposed pier may be estimated based on the table below:

Location	Estimated Curtain Wall Bottom Elevation	Depth to Bedrock From Ground Surface	Top of Rock Elevation	Estimated Pile Length
Center Pier	208.0 meters	25.5 meters	182.88 meters	26 meters
BB-GWR-102	(682.41 feet)	(83.7 feet)	(600.0 feet)	(85 feet)

This pile length does not take into account the additional 1.5 to 2.4 meters (5 to 8 feet) of pile required for dynamic testing instrumentation or any additional pile length needed to accommodate the Contractor's leads and driving equipment.

The designer shall design the piles at the strength limit state considering the structural, geotechnical and drivability resistance of the pile. The structural resistance check should include checking axial, lateral, and flexural resistance. Resistance factors for use in the design of piles at the strength limit state are discussed below.

The design of the piles at the service limit state shall consider tolerable horizontal movement of the piles and overall stability of the pile group. Since the pier piles will be subjected to lateral loading and have a substantial unbraced length, piles should be analyzed for axial loading and combined axial and lateral loading as defined in LRFD Article 6.15.2.

7.3.1 Strength Limit State

The nominal compressive structural resistance (P_n) for piles in the strength limit state loaded in compression shall be as specified in LRFD Article 6.9.4.1 for non-composite members (Hpile) and Article 6.9.5.1 for composite members (pipe pile). The piles have an unbraced length and require calculation of the λ -factor as specified in LRFD Article 6.9.

For the strength limit state, the factored axial compressive structural resistance of the pile (P_r) shall be calculated using the resistance factors (ϕ_c) of 0.6 for pipe pile in severe driving conditions and 0.5 for H-pile in severe driving conditions as specified in LRFD Article 6.5.4.2. The proposed pier pipe piles will have an unbraced pile length ranging from 7.6 to 8.2 meters (25 to 27 feet). The proposed pier H-piles will have an unbraced pile length ranging from 6.4 to 7.0 meters (21 to 23 feet).

Per LRFD Article 6.5.4.2, at the strength limit state, for piles in compression and bending, the axial resistance factor ϕ_c =0.8 and the flexural resistance factor ϕ_f =1.0 shall be applied to the combined nominal axial and flexural resistance of the pile in the interaction equation, (LRFD Eq. 6.9.2.2-1 or -2) with flexural resistance determined as specified in LRFD 6.12. The factored structural resistance for pile sections in combined axial compression and flexure are not provided in this report as these analyses are considered part of the structural design and the responsibility of the structural designer.

The nominal geotechnical compressive resistance in the strength limit state was calculated using Canadian Foundation Engineering Manual methods. The factored geotechnical compressive resistances of the eight (8) proposed pipe pile sections and four (4) proposed H-pile sections were calculated using a resistance factor, ϕ_{stat} , of 0.45 for end bearing piles on bedrock.

The drivability of the eight (8) proposed pipe pile sections and four (4) proposed H-pile sections was considered. The maximum driving stresses in the pipe pile, assuming the use of 310 MPa (45 ksi) steel, shall be less than 275 MPa (40 ksi). The maximum driving stresses in the H-pile, assuming the use of 345 MPa (50 ksi) steel, shall be less than 310 MPa (45 ksi). As the piles will be driven to refusal on bedrock a drivability analysis to determine the resistance that could potentially be achieved was conducted. The resistance factor for a single pile in axial compression when a dynamic test is done given in LRFD Table 10.5.5.2.3-1 is $\phi_{\rm dyn}=0.65$.

Factored axial compressive structural, geotechnical and drivability resistances for eight (8) pipe pile sections and four (4) proposed H-pile sections are summarized in the table below. Supporting calculations are included in Appendix C- Calculations found at the end of this report.

Factored Axial Resistances for Pipe Piles and H-Piles at the Strength Limit State

Pipe Pile		Factored Resistance					
Diameter	Wall	Structural	Geotechnical	Drivability	Governing		
	thickness	Resistance	Resistance	Resistance	Resistance		
609 mm 13 mm		3031 kN	1756 kN	1691 kN	1756 kN		
(24-in)	(1/2-in)	(681 kips)	(395 kips)	(380 kips)	(395 kips)		
660 mm	13 mm	3321 kN	1857 kN	1822 kN	1857 kN		
(26-in)	(1/2-in)	(746 kips)	(417 kips)	(409 kips)	(417 kips)		
711 mm	13 mm	3609 kN	1957 kN	1986 kN	1957 kN		
(28-in)	(1/2-in)	(811 kips)	(440 kips)	(447 kips)	(440 kips)		
762 mm	13 mm	3897 kN	2057 kN	2145 kN	2057 kN		
(30-in)	(1/2-in)	(876 kips)	(463 kips)	(482 kips)	(463 kips)		
609 mm 16 mm		4007 kN	2329 kN	2299 kN	2329 kN		
(24-in) $(5/8-in)$		(901 kips)	(524 kips)	(517 kips)	(524 kips)		
660 m	16 mm	4394 kN	2463 kN 2544 kN		2463 kN		
(26-in)	(5/8-in)	(988 kips)	(554 kips)	(572 kips)	(554 kips)		
711 mm	16 mm	4780 kN	2598 kN	2776 kN	2598 kN		
(28-in)	(5/8-in)	(1074 kips)	(584 kips)				
762 mm	16 mm	5164 kN	2732 kN				
(30-in)	(5/8-in)	(1161 kips)	(614 kips)	(686 kips)	(614 kips)		
H-pile	Section	Structural	Geotechnical	Drivability	Governing		
		Resistance	Resistance	Resistance	Resistance		
	0 x 79	1433 kN	1311 kN	1301 kN	1311 kN		
(HP 1	2 x 53)	(322 kips)	(295 kips)	(293 kips)	(295 kips)		
HP 36	0 x 108	2049 kN	1653 kN	1613 kN	1653 kN		
	4 x 73)	(461 kips)	(372 kips)	(363 kips)	(372 kips)		
	0 x 132	2493 kN	2009 kN	1778 kN	2009 kN		
	4 x 89)	(560 kips)	(452 kips)	(400 kips)	(452 kips)		
	0 x 174	3275 kN	2632 kN	2148 kN	2632 kN		
(HP 14	1 x 117)	(736 kips)	(592 kips)	(483 kips)	(592 kips)		

Although the factored axial drivability resistance is less than both the factored axial structural and geotechnical resistances for the first two pile sections analyzed, LRFD Article 10.7.8 states that for routine pile installation applications where significant local experience can be applied to keep the risk of pile installation problems low, a project specific drivability analysis using the wave equation may be waived. In light of this, it is recommended that the governing resistance in the lower portion of the pile used in design be the factored geotechnical resistance in the table above. The upper portion of the pile may be governed by a lesser axial pile load in order to satisfy the interaction equation (LRFD Article 6.9.2.2).

7.3.2 Service Limit and Extreme Limit State Designs

Per LRFD Article 10.5.5.1 the ability of the pier piles to meet defection criteria at the service limit state shall be investigated using a resistance factor of 1.0. Per LRFD Article 10.5.5.3.3

the ability of the pier piles at the extreme limit state shall be investigated using a resistance factor of 1.0.

The axial structural resistance of eight (8) proposed pipe pile sections and four (4) proposed H-pile sections was investigated using a resistance factor of 1.0. The piles have an unbraced length and require calculation of the λ factor as specified in LRFD Article 6.9. The axial geotechnical compressive resistance of eight (8) proposed pipe pile sections and four (4) proposed H-pile sections was calculated using Canadian Foundation Engineering Manual methods and a resistance factor of 1.0. The drivability of the eight (8) proposed pipe pile sections and four (4) proposed H-pile sections was considered. The maximum driving stresses in the pipe pile, assuming the use of 310 MPa (45 ksi) steel, shall be less than 275 MPa (40 ksi). The maximum driving stresses in the H-pile, assuming the use of 345 MPa (50 ksi) steel, shall be less than 310 MPa (45 ksi). The resistance factor for a single pile in axial compression for the service and extreme limit states of 1.0 was used.

The calculated factored axial structural, geotechnical and drivability resistances for the eight (8) pipe pile sections and four (4) proposed H-pile sections are summarized in the table below. Supporting calculations are included in Appendix C- Calculations found at the end of this report.

Factored Axial Resistances for Pipe Piles and H-Piles at the Service and Extreme Limit States

Pipe	e Pile	Factored Resistance					
Diameter	Wall	Structural	Geotechnical	Drivability	Governing		
	thickness	Resistance	Resistance	Resistance	Resistance		
609 mm	13 mm	5051 kN	3902 kN	2602 kN	3902 kN		
(24-in)	(1/2-in)	(1136 kips)	(877 kips)	(585 kips)	(877 kips)		
660 mm	13 mm	5534 kN	4126 kN	2802 kN	4126 kN		
(26-in)	(1/2-in)	(1244 kips)	(928 kips)	(630 kips)	(928 kips)		
711 mm	13 mm	6016 kN	4349 kN	3056 kN	4349 kN		
(28-in)	(1/2-in)	(1352 kips)	(978 kips)	(687 kips)	(978 kips)		
762 mm	13 mm	6496 kN	4572 kN	3301 kN	4572 kN		
(30-in)	(1/2-in)	(1460 kips)	(1028 kips)	(742 kips)	(1028 kips)		
609 mm	16 mm	6679 kN	5175 kN	3536 kN	5175 kN		
(24-in)	(5/8-in)	(1501 kips)	(1163 kips)	(795 kips)	(1163 kips)		
660 m	16 mm	7324 kN	5474 kN	3914 kN	5474 kN		
(26-in)	(5/8-in)	(1646 kips)	(1231 kips)	(880 kips)	(1231 kips)		
711 mm	16 mm	7966 kN	5772 kN	4270 kN	5772 kN		
(28-in)	(5/8-in)	(1791 kips)	(1298 kips)	(960 kips)	(1298 kips)		
762 mm	16 mm	8607 kN	6070 kN	4693 kN	6070 kN		
(30-in)	(5/8-in)	(1935 kips)	(1365 kips)	(1055 kips)	(1365 kips)		

H-pile Section	Structural	Geotechnical	Drivability	Governing
	Resistance	Resistance	Resistance	Resistance
HP 310 x 79	2867 kN	2913 kN	2202 kN	2867 kN
(HP 12 x 53)	(644 kips)	(655 kips)	(450 kips)	(644 kips)
HP 360 x 108	4098 kN	3672 kN	2482 kN	3672 kN
(HP 14 x 73)	(921 kips)	(826 kips)	(558 kips)	(826 kips)
HP 360 x 132	4986 kN	4464 kN	2736 kN	4464 kN
(HP 14 x 89)	(1121 kips)	(1003 kips)	(615 kips)	(1003 kips)
HP 360 x 174	6549 kN	5849 kN	3305 kN	5849 kN
(HP 14 x 117)	(1472 kips)	(1315 kips)	(743 kips)	(1315 kips)

Although the factored axial drivability resistance is less than both the factored axial structural and geotechnical resistances for the first two pile sections analyzed, LRFD Article 10.7.8 states that for routine pile installation applications where significant local experience can be applied to keep the risk of pile installation problems low, a project specific drivability analysis using the wave equation may be waived. In light of this, it is recommended that the governing resistance in the lower portion of the pile used in design be the resistance shown in the last column of in the table above. For the H-piles, It should be noted that the governing resistance for the HP 310 x 79 (HP 12 x 53) pile is the structural resistance while the remaining H-pile sections are governed by the geotechnical resistance. The upper portion of the pile may be governed by a lesser axial pile load in order to satisfy the interaction equation (LRFD Article 6.9.2.2).

7.3.3 Estimated Depths to Pile Fixity

Stability of the piles shall be evaluated in accordance with the provisions in LRFD Article 6.9 using an equivalent pile length of the pile that accounts for the laterally supported length of the exposed pile extending through the air and/or water plus the embedment depth to pile fixity.

All piles should be designed to achieve a fixed condition for the design scour event. Preliminary depths to fixity for eight (8) proposed pipe pile sections and four (4) proposed H-pile sections were calculated, assuming only axial loading and without consideration of lateral loads, using the buckling methodology in LRFD Article 10.7.3.13.4. The table below summarizes the calculated depths to fixity for the eight (8) proposed pile sections and four (4) proposed H-pile sections and the estimated design scour depth. The design scour depth provided by the Structural Designer was estimated to be approximately 4.3 meters (14 feet). Supporting calculations are included in Appendix C- Calculations found at the end of this report.

Preliminary Estimates of Depth to Fixity

	1 Temmai y Estima		
		Preliminary	
Outside Pipe Pile		Estimates of Depth to	Estimated
Diameter	Wall thickness	Fixity w/ no lateral	Exposed Pile Length
		loads applied	Due to Scour
609 mm	13 mm	3.41 meters	4.3 meters
(24-in)	(1/2-in)	(11 feet)	(14 feet)
660 mm	13 mm	3.61 meters	4.3 meters
(26-in)	(1/2-in)	(12 feet)	(14 feet)
711 mm	13 mm	3.81 meters	4.3 meters
(28-in)	(1/2-in)	(13 feet)	(14 feet)
762 mm	13 mm	4.01 meters	4.3 meters
(30-in)	(1/2-in)	(13 feet)	(14 feet)
609 mm	16 mm	3.5 meters	4.3 meters
(24-in)	(5/8-in)	(11 feet)	(14 feet)
660 mm	16 mm	3.71 meters	4.3 meters
(26-in)	(5/8–in)	(12 feet)	(14 feet)
711 mm	16 mm	3.91 meters	4.3 meters
(28-in)	(5/8–in)	(13 feet)	(14 feet)
762 mm	16 mm	4.11 meters	4.3 meters
(30-in)	(5/8-in)	(13 feet)	(14 feet)
		Preliminary	
		Estimates of Depth to	Estimated
H-pile	Section	Fixity w/ no lateral	Exposed Pile Length
		loads applied	Due to Scour
HP 31	0 x 79	2.18 meters	4.3 meters
(HP 12	2 x 53)	(7 feet)	(14 feet)
	0 x 108	2.47 meters	4.3 meters
(HP 14 x 73)		(8 feet)	(14 feet)
HP 360 x 132		2.57 meters	4.3 meters
	4 x 89)	(8 feet)	(14 feet)
HP 360	0 x 174	2.73 meters	4.3 meters
(HP 14	x 117)	(9 feet)	(14 feet)

In general it is recommended that piles be designed to achieve a fixed condition below the design scour depth. Due to the depth of the overburden at the site, it is anticipated that the pile sections will all achieve a fixed condition assuming a pile penetration to the top of bedrock.

When the lateral and axial pile load groups are known, this data should be provided to the geotechnical engineer. A more refined analysis of pile fixity can then be performed using LPile or FBPier software.

7.3.4 Buckling and Combined Axial and Flexure

Pile group design shall consider loading effects due to combined axial and flexural loading, as outlined in LRFD Article 6.15. In designing piles for the bent group the group effects of soil-structure interaction shall be considered in conformance with LRFD Article 10.7.3.9. The recommended design approach considers the non-linear response of soil with lateral displacement. Soil-structure interaction considering the non-linear response of soil can be modeled using computer software supplied by the geotechnical engineer.

The factored structural resistances for pipe pile sections in combined axial compression and flexure are not provided in this report as these analyses are considered part of the structural design and the responsibility of the structural engineer.

7.3.5 Pile Resistance and Pile Quality Control

Based on the anticipated depth to bedrock at the site, pile splices will be required. The location and number of pile splices shall be in conformance with MaineDOT Standard Specification 501 and be subject to the approval of the Resident.

The Contractor is required to perform a wave equation analysis of the proposed pile-hammer system and a dynamic pile test at the pier. The first pile driven at the pier should be dynamically tested to confirm capacity and verify the stopping criteria developed by the Contractor in the wave equation analysis. The ultimate pile resistance that must be achieved in the wave equation analysis and dynamic testing will be the factored axial pile load divided by a resistance factor of 0.65. The factored pile load should be shown on the plans per LRFD Article 3.6.5.2.

Piles should be driven to an acceptable penetration resistance as determined by the Contractor based on the results of a wave equation analysis and as approved by the Resident. Driving stresses in the pipe pile determined in the drivability analysis shall be less than 280 MPa (40 ksi) in accordance with LRFD Article 10.7.8. Driving stresses in the H-pile determined in the drivability analysis shall be less than 310 MPa (45 ksi) in accordance with LRFD Article 10.7.8. A hammer should be selected which provides the required resistance when the penetration resistance for the final 76 mm to 152 mm (3 to 6 inches) is 8 to 15 blows per 25 mm (1 inch). If an abrupt increase in driving resistance is encountered, the driving could be terminated when the penetration is less than 12 mm (0.5-inch) in 10 consecutive blows.

7.4 Scour and Riprap

The consequences of changes in foundation conditions resulting from the design flood for scour shall be considered at the strength and service limit states. These changes in foundation conditions shall be investigated at the abutments and wingwalls. For scour protection, any non critical retaining wall footings which are constructed on granular deposits, should be embedded a minimum of 0.9 meters (3 feet) below the design scour depth

and at least 0.6 meters (2.0 feet) below the super flood scour event and armored with 0.9 meters (3 feet) of riprap. Refer to MaineDOT BDG Section 2.3.11 for information regarding scour design.

Riprap conforming to item number 703.26 of the Standard Specification shall be placed at the toes of abutments and wingwalls. Riprap shall be 0.9 meters (3 feet) thick. In front of the wingwalls, the bottom of the riprap section shall be constructed 2 meters (6.5 feet) above the bottom of the structures for frost protection. The riprap shall extend 0.5 meters (1.5 feet) horizontally in front of the wall before sloping at a maximum 1.75H:1V slope to the existing ground surface. The toe of the riprap section shall be constructed 0.3 meters (1 foot) below the streambed elevation. The riprap section shall be underlain by a 0.3 meters (1 foot) thick layer of bedding material conforming to item number 703.19 of the Standard Specification.

7.5 Settlement

Large amounts of fill will be placed behind both abutments in order to raise the existing grade to accommodate the new roadway approaches to the bridge. Settlements due to the addition of this fill have been calculated to range between 20 and 50 mm (1 and 2 inches). Due to the granular nature of the subsurface soils present at the site all settlement associated with this fill occur will during construction having negligible effect on the finished bridge structure. Any settlement of the bridge abutments and pier will be due to the elastic compression of the piling and will be negligible.

7.6 Frost Protection

Any foundation placed on granular subgrade soils should be designed with an appropriate embedment for frost protection. According to the MaineDOT frost depth maps for the State of Maine (MaineDOT BDG Figure 5-1) the site has a design-freezing index of approximately 1550 F-degree days. This correlates to a frost depth of 2 meters (6.5 feet). Therefore, any foundations placed on granular soils should be founded a minimum of 2 meters (6.5 feet) below finished exterior grade for frost protection. Integral abutments shall be embedded a minimum of 1.2 meters (4.0 feet) for frost protection per Figure 5-2 of the MaineDOT BDG. See Appendix D- Calculations at the end of this report for supporting documentation.

7.7 Seismic Design Considerations

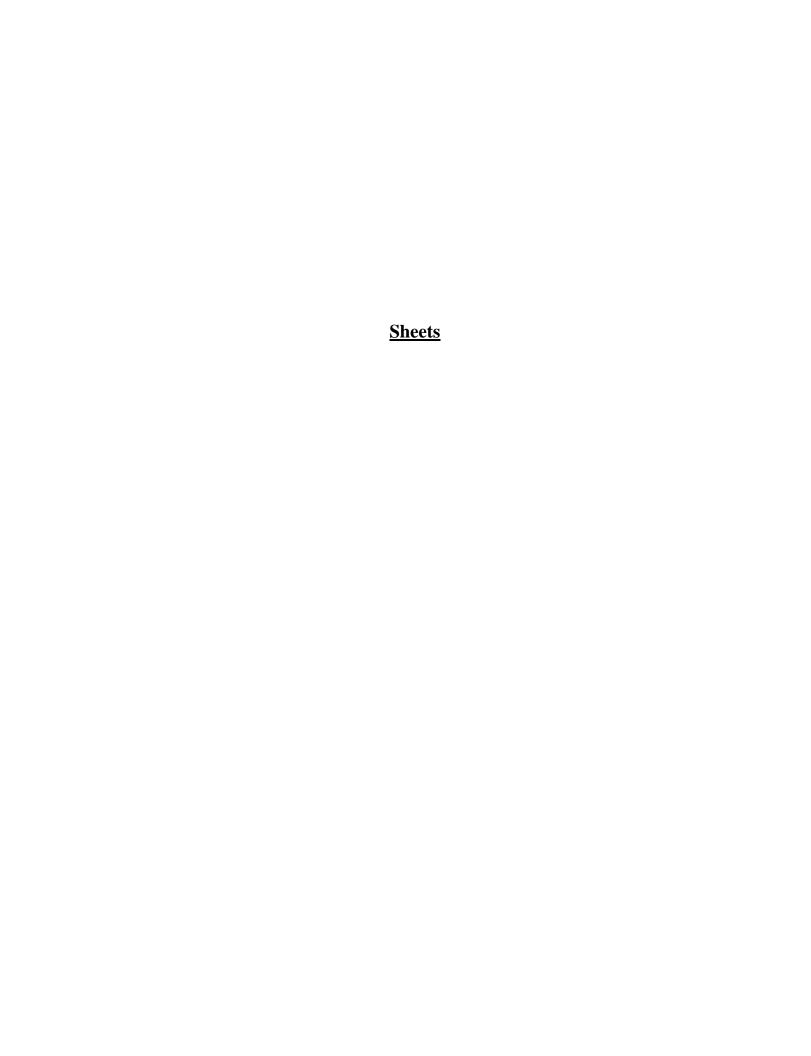
The following parameters were determined for the site from the USGS Seismic Parameters CD provided with the LRFD manual:

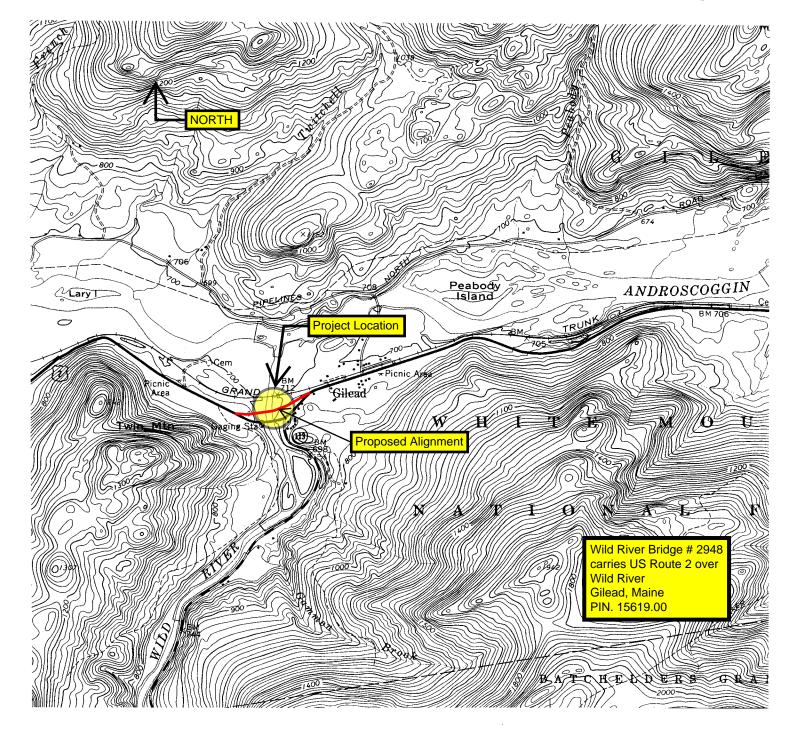
- Peak Ground Acceleration coefficient (PGA) = 0.090g
- Short-term (0.2-second period) spectral acceleration coefficient = 0.183g
- Long-term (1.0-second period) spectral acceleration coefficient = 0.050g

Per LRFD Article 3.10.3.1 the site is assigned to Site Class D due to the presence of soils in the upper 30 meters (100 feet) of the soil profile with an average N-value between 15 and 50

blows per foot at the site. Per LRFD Article 3.10.6 the site is assigned to Seismic Zone 1 based on a calculated S_{D1} of 0.0.119 (LRFD Eq. 3.10.4.2-6). Per LRFD Article 4.7.4.1, bridges in Seismic Zone 1 need not be analyzed for seismic loads regardless of their importance. However the minimum requirements as specified in LRFD Articles 4.7.4.4 and 3.10.9 apply.

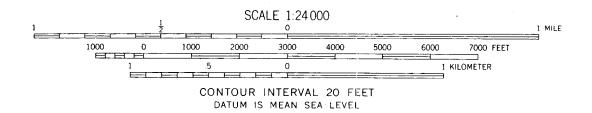
According to Figure 2-2 of the MaineDOT BDG, the Wild River Bridge on Route 2 is on the National Highway System (NHS) and is therefore considered to be functionally important. Consequently, a detailed seismic analysis is required. The minimum seismic analysis requirements are defined in LFRD Article 4.7.4.1. The designer shall determine the specific analysis method using LRFD Tables 4.7.4.3.1-1. Seismic design requirements for Seismic Zone 1 are found in LRFD Article 3.10.9.2.

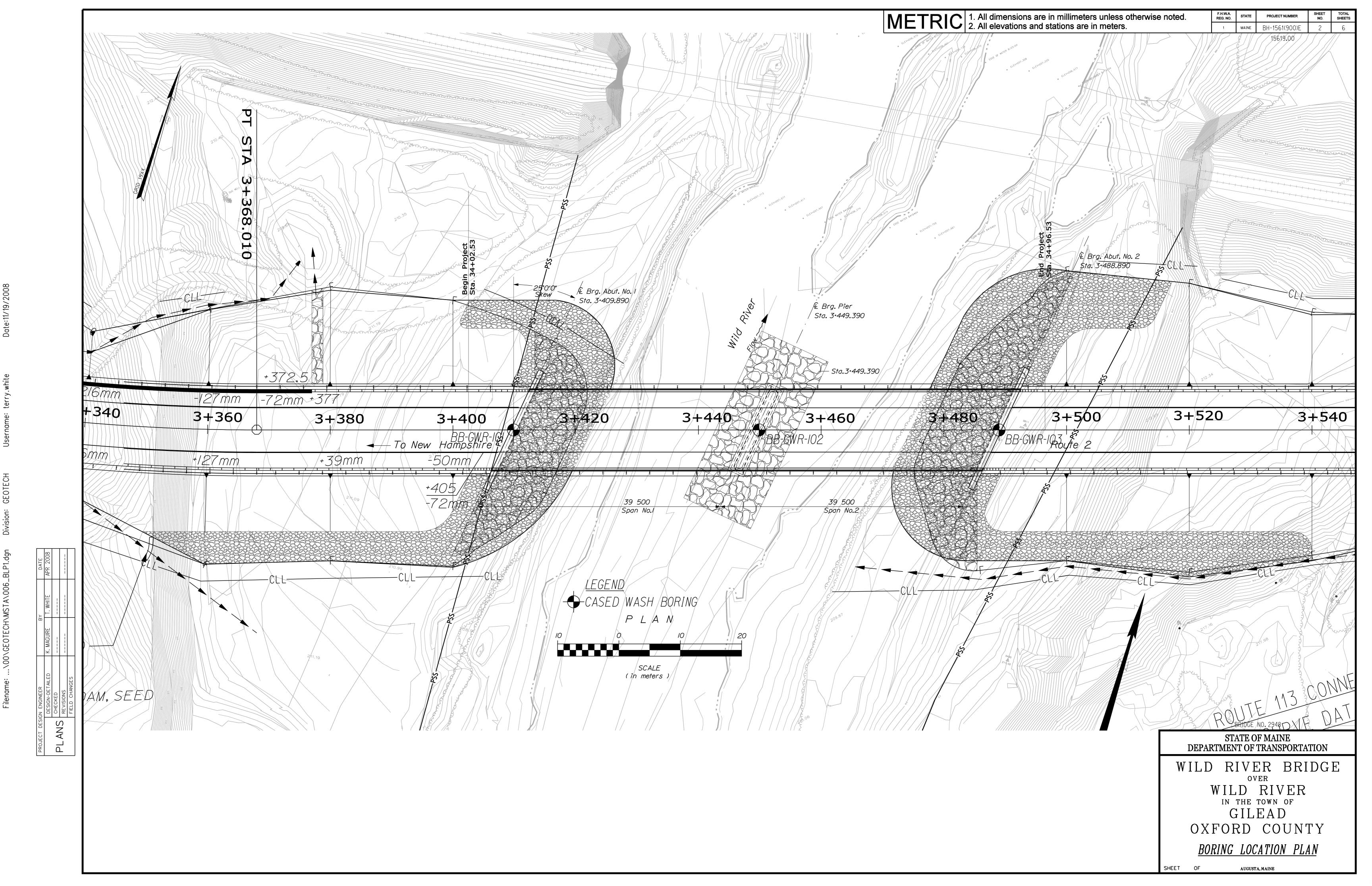

7.8 Construction Considerations

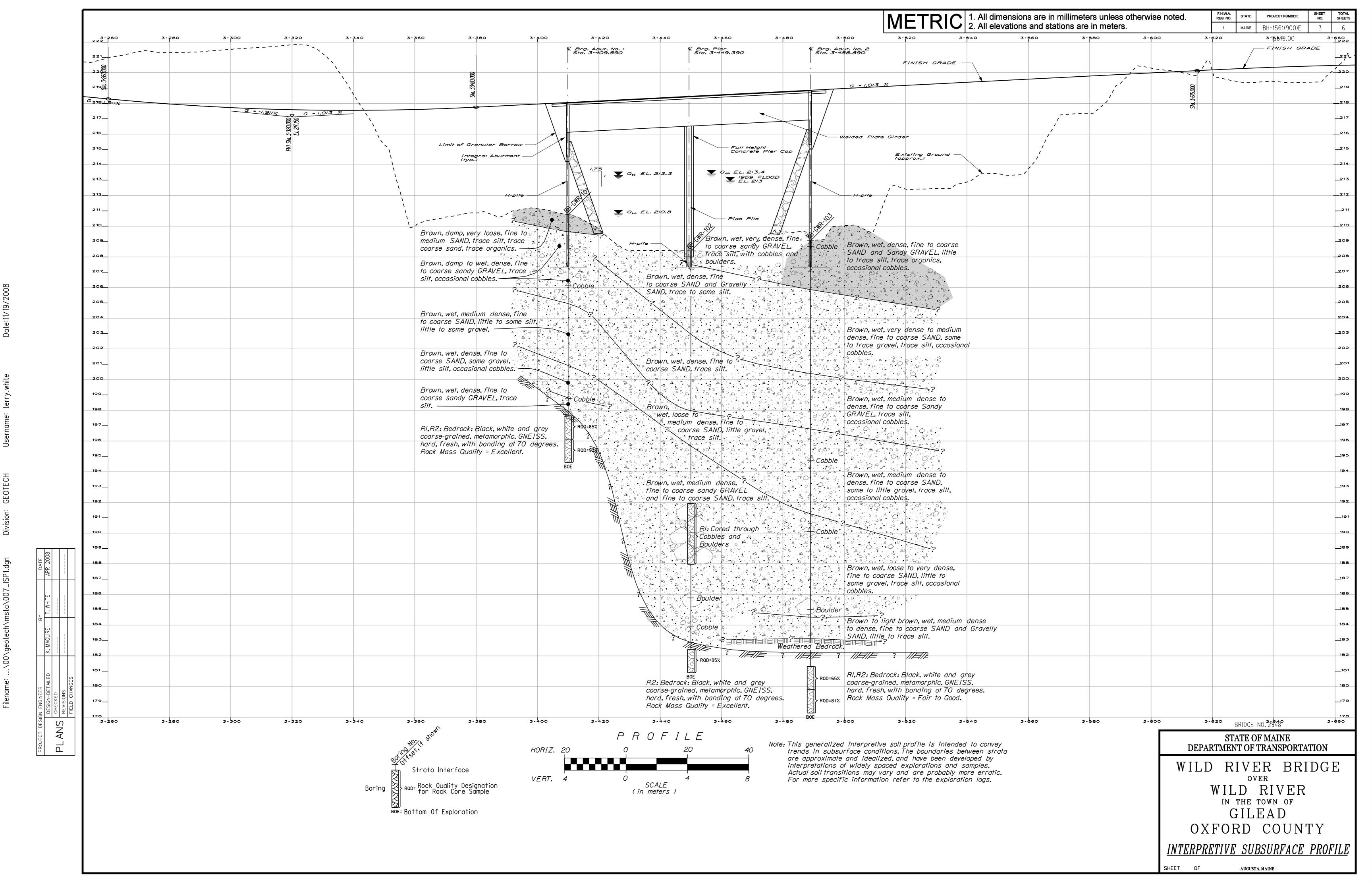

Boulders and cobbles were encountered within the interbedded sand and gravel layers in all of the borings. There is potential for these obstructions to impact the pile installation operations. These impacts include, but are not limited to, driving the piles and cleaning out pipe piles. Obstructions may be cleared by conventional excavation methods, pre-augering, pre-drilling, or down-hole hammers. Care should be taken to drive piles within allowable tolerances. Alternative methods to clear obstructions may be used as approved by the Resident.

8.0 CLOSURE

This report has been prepared for the use of the MaineDOT Bridge Program for specific application to the proposed replacement of Wild River Bridge in Gilead, Maine in accordance with generally accepted geotechnical and foundation engineering practices. No other intended use is implied. In the event that any changes in the nature, design, or location of the proposed project are planned, this report should be reviewed by a geotechnical engineer to assess the appropriateness of the conclusions and recommendations and to modify the recommendations as appropriate to reflect the changes in design. Further, the analyses and recommendations are based in part upon limited soil explorations at discrete locations completed at the site. If variations from the conditions encountered during the investigation appear evident during construction, it may also become necessary to re-evaluate the recommendations made in this report.


We also recommend that we be provided the opportunity for a general review of the final design and specifications in order that the earthwork and foundation recommendations may be properly interpreted and implemented in the design.





GILEAD QUADRANGLE MAINE-OXFORD CO. 7.5 MINUTE SERIES (TOPOGRAPHIC)

NW/4 BETHEL 15' QUADRANGLE

PROJECT DESIGN ENGINEER

DESIGN-DETAI

CHECKED

REVISIONS
FIFLD CHANG

		<u>Soil</u>	METRIC UNI			Locati	Rive ion: Gi	r. Ro Lead.			PIN: <u>15619</u>	•00
	ator:	Mi	ke/Nick	·	Elevation Datum:		NA\).75 /D 88			Auger 1D/OD: 5" Solid Stem Sampler: Standard Spli	
Date	ed By: Start/ ng Loca	Finish: 4/	Wilder 7/08-4/8/08 410. CL		Rig Type Drilling Casing I	Metho		edric		1-50 n Bori	Hammer Wt./Fall: 140#/30" ng Core Barrel: NO-2" Water Level*: 2.44 m bgs.	
Hamn Defin	er Effi	ciency Fact			Hammer T	ype:	Automa	Su = I	nsit	tu Fiel	Hydraulic \square Rope & Cathead \square d Vane Shear Strength (kPa) $S_{u(lab)} = Lab$ Vane Shear Strength (kPa) $WC = water content. percet$	
MD = U = 1 MU = V = 1	Unsuccess hin Wall Unsuccess nsitu Van	sful Split Spor Tube Sample sful Thin Walle ne Shear Test	on Sample attempted Tube Sample (ot HSA = Holl RC = Rolle attempt WOH = weig WOR/C = we	ow Stem Au r Cone ht of 64 k	ger g hammer		q _p = U N-unco Hammer	ncon rrec Eff	nfined cted = ficienc	Compressive Strength (Pa) Raw field SPT N-value y Factor = Annual Calibration Value PI = Plastic Limit PI = Plasticity Index rrected corrected for hammer effeciency C = Grain Size Analysis	
Depth (m)	OM & I due S	Pen/Rec (cm)	e Shear Test a	Shear Shear (KPO) or ROD (%)	ant of one		Casing Blows	E levation		Graphic Log	C = Consolidation Test Visual Description and Remarks	Laboratory Testing Results/ AASHTO and Unified Class.
о	1D	61.0/35.6	0.00 - 0.61	2/1/2/2	3	3 3	S\$A	Ele		Gr.	Brown, damp, very loose, fine to medium SAND, trace silt, trace coarse sand, trace gravel, trace organics.	G#209912 A-3, SP-SM WC=15.0%
1 -	20	61.0/38.1	1.22 - 1.83	10/16/23/40	39	41		209.	84		Brown, damp, dense, fine to coarse Sandy GRAVEL, trace silt, occasional cobbles.	G#209913 -1-a. GW-(WC=2.9%
2 -									8			
3 -	30	55.9/40.6	2.74 - 3.30	18/31/21/50(100)	52	55			0.000		Brown, wet, very dense, fine to coarse Sandy GRAVEL, trace silt, occasional cobbles.	G#209914 A-1-a. GW WC=10.2%
4 -	4D	30.5/20.3	4.27 - 4.57	18/60			50				Similar to above. Large cobble from 4.57-4.85 m bgs.	
5 -							143 126 111				Roller Coned ahead to 5.79 m bgs.	
6 -	5D	61.0/40.6	5.79 - 6.40	9/8/8/8	16	17	113	204.	96		Brown, wet, medium dense, fine to medium SAND, some silt, trace coarse sand.	G#209915 A-2-4. SN WC=23.4%
7 -	6D	61.0/61.0	7.32 - 7.92	6/7/8/7	15	16	126 131 92 112				Brown, wet, medium dense, fine SAND, some silt, trace medium sand.	G#209916 A-2-4. SM WC=24.3%
8 -	70	61.0/35.6	8.84 - 9.45	4/7/13/16	20	21	129 142 153				Brown, wet, medium dense, fine to coarse SAND,	G#209917 -2-4• SP-
10 -							162 173 192	201.(00		A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-	WC=17.5%
11 -	8D	61.0/33.0	10.36 -	3/7/31/48	38	40	191 127 213				Brown, wet, dense, fine to coarse SAND, some gravel, little silt, occasional cobbles.	G#209918 A-1-b. SM WC=9.2%
12 -		61.0/35.6	12.04 -	22/16/27/24	43	45	234 373 b310	198.	93		Large cobble from 11.83-12.04 m bgs. b310 blows for 0.15 m.	G#209919
13 -	90		12.65	22716721724	43	43	ORC .	197.	1		PROHER Coned ahead to 13.11 m bgs. Top of Bedrock at Elev. 197.95 m.	-1-a, GP- WC=9.0%
14 -	R1	152.4/	13.11 - 14.63	ROD = 85%			ND CORE				Bedrock: Black, white and grey, coarse grained, metamorphic, GNEISS, hard, fresh, with banding at 70 degrees. Rock Mass Quality = Good. R1:Core Times (min:sec) 600-700 psi down pressure 13.11-13.41 m (2:30) 13.41-13.72 m (2:40) 13.72-14.02 m (3:04) 14.02-14.33 m (3:07)	
15 •	R2	152.4/	14.63 -	ROD = 93%							14.33-14.63 m (3:23) 98% Recovery R2: Rock Mass Quality = Excellent. Core Times (min:sec) 14.63-14.94 m (2:46) 14.94-15.24 m (2:36) 15.24-15.54 m (2:34) 15.54-15.85 m (2:00)	
16 -								194.	60		15.85-16.15 m (2:20) 100% Recovery 16.15- Bottom of Exploration at 16.15 m below ground	
17 -											surface.	
18 -												
19 -												
20 -												
21 -												
22 •												
23 -												
	rks:	er #283										

Stratification lines represent approximate boundaries between soil types: transitions may be gradual.

* Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions of than those present at the time measurements were made.

Boring No.: BB-GWR-101

1 a	ine			Transporto	ation	Proje	ct: Wild	l River	Bridge	e #2948 over Wild	Boring No.:	BB-GW	WR-102
		Soi 1/	/Rock Explorati			Locat		er, Route lead, Ma			PIN:	1561	19.00
_	ler:		orthern Test Bo	oring	Elevatio)n (m):		8.39	_		Auger ID/OD:	5" Solid Ste	
_	ator: ged By:		ke/Nick Wilder		Datum: Rig Type	a:		VD 88 edrich D	0-50		Sampler: Hammer Wt./Fall:	Standard Sp1 140#/30"	lit Spoor
te	Start/	/Finish: 9/1	15,16,18,19/08	3	Drilling	g Metho	od: Cas	sed Wash		ing	Core Barrel:	NQ-2"	
	ing Loca		+450. CL		Casing I			& NW otic ⊠	—	Pudeoutic [Water Level*:	River Borino	g
in : S = : T	nitions: Split Spoo Unsuccess Thin Wall	Tube Sample	on Sample attempt	SSA = SOI HSA = HOI RC = ROII		er ger		S _U = Insi: T _V = Pocke q _p = Uncor N-uncorrec	tu Field set Torvo onfined (ected = 1	ld Vane Shear Strength (kPo vane Shear Strength (kPo Compressive Strength (F Raw field SPT N-value	a) WC = Pa) LL = PL =	lab) = Lab Vane Shear = water content, perc = Liquid Limit = Plastic Limit = Plasticity Index	
I	Insitu Van	ne Shear Test	ne Shear Test atte	wor/c = wempt worP = wempt wormation	eight of 64 ke weight of ro leight of one	ods or ca	sing	N ₆₀ = SPT	N-unco	cy Factor = Annual Calib prrected corrected for h fficiency Factor/60%)#N-	hammer effeciency G =	= Plasticity Index Grain Size Analysis Consolidation Test	Laborat
	Sample No.	Pen/Rec (cm)	Sample Depth	Blows (150 mm) Shear Shear (KPa) or ROD (%)	N-value	N60	Casing	Elevation (m)	Graphic Log		Description and Rea		Testin Result AASHT and Unific
	1D	27.4/27.4	0.00 - 0.27	10/50(120)			SSA]		Brown, wet, very GRAVEL, trace si	dense, fine to coo It, with cobbles an		
1					\pm		廿]					
					 	世	井	207.47				0.91-	_
1					\pm		井	[]					
-	2D	01 0/35.6	1.52 - 2.13	3/6/9/10	15	16	132	1		Brown, wet, media	um dense. fine to (coarse SAND.	G#208
		01.07.55.	1.32 2	3/0/3/.0	- -		152	1		some silt. trace			A-2-4 WC=26
1		\vdash	\vdash		\mp	\vdash	170						
1			\vdash		+	\vdash	156	1	9				
	3D	61.0/25.4	2.74 - 3.35	10/11/12/9	23	24	148				um dense Gravelly	fine to coarse	G#208
1					\pm		148			SAND, trace silt. Roller Coned ahea			A-1-a WC=14
							112]					
			\vdash		-		122]					
\mathbf{I}					\pm		122	1 1					
	4D	61.0/22.9	4.27 - 4.88	4/4/21/20	25	26	19	1	# 65 6 0 8 0	some gravel. trad		coarse SAND.	G#208 A-3•
]		<u> </u>			#	<u> </u>	91	1			ad to 5.18 m bgs.		WC=15
$\left.\right $			\vdash		 		136	1					
		<u> </u>	\vdash		 		150	1]					
7					 	上	167	202.90				5.49-	
$\left \right $	5D	61.0/38.1	5.79 - 6.40	16/18/16/15	34	36	128	1		Brown, wet, dense trace silt.	e. fine to coarse S	Sandy GRAVEL.	G#208 A-1-a
					+	Ħ_	140	1					WC=8.
7					1		145	1					
					1		139	1					
					1		152	1		in to above	dence.		
+	6D	61.0/22.9	7.32 - 7.92	17/12/11/15	23	24	131]		Similar to above	• medium dense.		
					1		105]					
1							140]					
4			\vdash		 		143	1					
	7D	0/40.6	8.84 - 9.45	10/11/20/19	31	33	183	1			e. Gravelly fine to	o coarse SAND.	G#208
1	10	61.0/90.2	8.84 - 3.30	10/11/20/		33	230	1		trace silt.	B* 0. C		A-1-a WC=10
4			\vdash		#		216	1					
		<u> </u>	\vdash		 	二	173	1					
ا ۰					+	Ħ <u></u>	182	1					
	8D	61.0/35.6	10.36 -	5/5/4/5	9	9	127	198.03			e. fine to coarse S	10.36-	0-200
-					1		146	1		gravel, trace si			A-1-b WC=15
۱ ا							184	1					
			\vdash		1		234	1					
7							268	}					
2	9D	61.0/33.0	11.89 -	7/7/7/10	14	15	127]		Similar to above	• but medium dense		G#208
		<u> </u>	\vdash		 		192	1					WC=19
1			\vdash		\pm		226	1					
,			-				226	195.59				12.80-	1
<u> </u>			\vdash		 		311	1					
+	10D	61.0/30.5	13.41 -	9/14/10/7	24	25	146	1		Brown, wet, media GRAVEL, trace si	um dense, fine to d	coarse Sandy	G#208 A-1-a•
			\vdash		+-		256	1					WC=4
1		 			#	二	261	1					
1		<u> </u>			#	二	312	1					
			\vdash		 	二	309	1					
5	MD	61.0/0.0	14.94 -	18/21/14/12	35	37	184	1		Failed sample att	tempt.		
	<u> </u>	1	1 .		1		1	1 .	(E)#EEEE	1			1

Stratification lines represent approximate boundaries between soil types; transitions may be gradual.

* Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other than those present at the time measurements were made.

a	ine		ment of Rock Explor	Transport	ation	ı	Rive	r. Rou	te 2	e #2948 over Wild	Boring No.:	BB-GW	IR-102
		30117	METRIC UNI			Locat	ion: Gil	ead. M	laine		PIN:	1561	9.00
_	ler:		rthern Test ke/Nick	Boring	Elevation Datum:	on (m):		.39 D 88			Auger ID/OD: Sampler:	5" Solid Ste	
	ed By:	В.	Wilder		Rig Type		Die	drich			Hammer Wt./Fall:	140#/30"	
	start/		15,16,18,19/ 450, CL	′08	Drilling Casing 1			ed Was & NW	h Bor	ing	Core Barrel: Water Level*:	NO-2" River Boring	9
	ner Effi	ciency Fact	tor: 0.633	R = Rock	Hammer T		Automa		itu Fie	Hydraulic Id Vane Shear Strength	Rope & Cathead (kPa) Suited) = Lab Vane Shear	r Strength (kPa
= : T = : I	hin Wall Unsuccess nsitu Var	ful Split Spoo Tube Sample ful Thin Walle ne Shear Test	on Sample attempted Tube Sample on Shear Test at	SSA = SOI THSA = HOI RC = ROII THEMPT WOH = WE WOR/C = WOTE THEMPT WOTE = WE	lid Stem Aug llow Stem Au ler Cone ight of 64 k weight of ro eight of one	er ger g hammer ds or ca	sing !	T _v = Poc A _D = Unc N-uncorr Hammer E N ₆₀ = SP	ket Torm onfined ected = fficiend T N-unco	vane Shear Strength (kPc Compressive Strength (I Raw field SPT N-value by Factor = Annual Calil prrected corrected for I fficiency Factor/60%)*N	a)	otter content, pero iquid Limit lastic Limit lasticity Index ain Size Analysis asolidation Test	
	Sample No.	Pen/Rec (cm)	Sample Depth (m)	Blows (150 mm) 15 heart Shear Strength (kPa) or ROD (%)	N-value	N60	Casing Blows	Elevation (m)	Graphic Log	Visuall	Description and Reman	-ks	Laboratory Testing Results/ AASHTO and Unified Class.
							309						
							400		0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	Boulder from 16.	12-16.46 m bgs.		
+	R1	396.2/ 152.4	16.46 - 20-42				0275 NO-2				ped to NW Casing. ad with H Roller Cone	e to 22.56 m	
					+		130			bgs. R1:Cobbles and Bo R1:Core Times (m	oulders.		
							110			16.46-16.76 m (3 16.76-17.07 m (1	:01) :27)		
-							164			17.07-17.37 m (1: 17.37-17.68 m (1: 17.68-17.98 m (3:	:22) :05)		
					+		387			17.98-18.29 m (2 18.29-18.59 m (0 18.59-18.9 m (0:	:06) :41)		
					#		121 99			18.9-19.2 m (0:5) 19.2-19.51 m (0:5)	2) 53)		
					+		158			19.51-19.8 m (0:; 19.8-20.12 m (0:; 20.12-20.42 m (0			
							264						
							247						
1							162						
,							196						
							161						
1							209						
							432						
					+		121						
							194		9				
2 -							201		22				
							336						
	11D	30.5/25.4	22.56 - 22.86	26/50			96			trace silt, trace	dense, fine to coars e gravel.	se SAND.	G#208765 A-3. SP-SM
3 -							205		500	Roller Coned ahe Boulder from 22.0	ad every 1.52 m. 68-23.32 m bgs.		WC=19.3%
							792						
							408			b250 blows for 0	03 m		
1 -	12D	42.7/38.1	24.08 -	41/60/50(75)			b250				dense, fine to coars	se SAND.	G#208766
	120	42.1730.1	24.51	41700730(137						little silt, tra	ce gravel.		A-2-4. SM WC=15.1%
										Cobble from 24.5 Roller Coned ahe at 25.51 m bgs.	-24.69 m bgs. ad to 25.97 m bgs F	Hit Bedrock	
5 -										,			
					#			182. ^{RP}				25.51-	
										Top of Bedrock a	t Elev. 182.88 m.	23,31	
5 -	R2	152.4/ 144.8	25.97 - 27.49	ROD = 95%			N0-2			metamorphic. GNE	white and grey, coars	th banding at	
										R2:Core Times (m 25.97-26.27 m (1	:45)	irent.	
					+					26.27-26.58 m (2 26.58-26.88 m (3 26.88-27.19 m (3	:31) :06)		
7 -					+						:45) :20) 95% Recovery		
_							\bigvee	180.90		Rottom of Fire	pration at 27.49 m be	27.49-	
											surface. bottom of Drive Shoe	-	
3 -					+					ger buck down no			
4					+								
9 -													
4													
					+								
0 -					+								
4					+								
					+								
		Ι			$\overline{}$				1	Ī			ı

* Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other than those present at the time measurements were made.

Boring No.: BB-GWR-102

Auto Hammer #283 0.3 m water at boring location.

Boring No.: BB-GWR-102

METRIC

1. All dimensions are in millimeters unless otherwise noted.
2. All elevations and stations are in meters.

BRIDGE NO.2948

STATE OF MAINE DEPARTMENT OF TRANSPORTATION

F.H.W.A. REG. NO. STATE

15619.00

WILD RIVER BRIDGE WILD RIVER GILEAD
OXFORD COUNTY

BORING LOGS

AUGUSTA, MAINE

SHEET 1 OF 2

F.H.W.A. REG. NO.

15619.00

	Dept	Samp		Samp (m)	Blow Shea Stre CKPa or R	0 > N	09 _N		Elev (m)	Gr ap	
	0	1D 4	40.6/10.2 0.00	0 - 0.41	7/11/50(100 mm)			SSA		9.000	t, dense, fine to coarse SAND, some ittle silt, trace organics.
	Ш	\vdash					\Box			Cobble fro	om 0.4-0.46 m bgs.
								-			
	l 1 -										
										7 34 4 4 7	
		2D (61.0/43.2 1.52	2 - 2.13	2/10/18/33	28	30			Brown we	t. medium dense. fine to coarse Sandy
										GRAVEL tr	race silt, occasional cobble.
	- 2 -									2 46 2 46 3 48	
								\ /			
								-			
		3D (61.0/45.7 3.05	5 - 3.66	17/38/36/30	74	78	101	205.85		t. very dense. fine to coarse SAND. some
	Ш							304		gravel tr	race silt, occasional cobble.
								206			
	- 4 -							138			
	П							118			
	Н	4D 6	61.0/35.6 4.57	7 - 5.18	10/13/23/23	36	38	59		Brown we	t, dense, fine to coarse SAND, some
	П				76, 76, 26, 26			107		gravel, tr Roller Cor	ace silt. ned ahead to 6.1 m bgs.
	5 1							103			
								134			
								156			
	6 -	$\vdash \exists$					$\vdash \exists$	147		##	t. medium dense, fine to coarse Sandy race silt, occasional cobble. 3.20 t. very dense, fine to coarse SAND, some race silt, occasional cobble. t. dense, fine to coarse SAND, some race silt, ned ahead to 6.1 m bgs. o above, ned ahead to 7.62 m bgs. t. medium dense, fine to medium SAND, vel, trace coarse sand, trace silt, ned ahead to 9.14 m bgs.
	П	5D (61.0/33.0 6.10	0 - 6.71	13/15/15/17	30	32	73		Similar to) above. ned ahead to 7.62 m bgs.
	Н							133			
	П							213			
	7 -							166			
	П						\vdash	135			
		6D 6	61.0/33.0 7.62	2 - 8.23	10/10/13/16	23	24	89		Brown we	t. medium dense. fine to medium SAND.
								64		trace grav	vel. trace coarse sand. trace silt. ned ahead to 9.14 m bgs.
	$\begin{bmatrix} & & & & & & & & & & & & & & & & & & &$										-
								210	200.52		vel. trace coarse sand. trace silt. ned ahead to 9.14 m bgs. 8.53
	П	\vdash					\vdash	318	200.32	11.54.50 9.55.76 201.01	0.3.
	9 -							168			
		7D 5	51.8/25.4 9.14	4 - 9.66	12/14/12/30(60)	26	27	131		Brown we	t, medium dense, fine to coarse Sandy ccasional cobbles.
	Н							148		2.5 (45.7 p	ned ahead to 10.67 m bgs.
								462		Brown we trace sil	
	10 -							380		4 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	
2008		\vdash					\vdash	264			
7		8D (61.0/35.6	0.67 -	8/26/17/12	43	45	187		Brown we	t, dense, fine to coarse Sandy GRAVEL,
APR	11		1	11.28				240		trace sil	t. ned ahead to 12.19 m bgs.
										288200 288200	
	\vdash							369			
								315		90	
T. WHITE	- 12 -							316		Brown, we	
		9D (61.0/38.1	2.19 - 12.80	40/11/13/13	24	25	135	196.86	Brown we	12.19 t. medium dense, fine to coarse SAND, el, trace silt.
								26			ned ahead to 13.72 m bgs.
	 							43			
K. MAGUIRE	- 13 -							48			
MA	Ш							54			
<u> </u>		100 4	51.8/38.1	3.72 -	26/17/22/30(60)	39	41	168		Brown we	t. dense. fine to coarse SAND. some
	- 14 -	,,,,	311073011	14.23	20711722730.007	33				gravel tr	ace silt.
								215		Cobble ft	t. dense. fine to coarse SAND. some race silt. om 14.23-14.33 m bgs.
LED LED	\vdash							331			
NGE TAIL		$\vdash \exists$					$\vdash \exists$	353			
SNS CHA	- 15 -							487			
SIGN SIGN SIGN D C		11D (61.0/33.0	5.24 - 15.85	14/13/11/11	24	25	217		Brown. we little gro Roller Cor	t. medium dense. fine to coarse SAND. avel. trace silt.
DESIGN-DETAILED CHECKED REVISIONS FIELD CHANGES	Remo	rks:					ш			Roller Cor	ned ahead to 16.76 m bgs.
^ I		to Hammer	#283								
$\leq \leq $											
A A											
3	1				boundaries between soil ty						Page 1 of 2
			eadings have been esent at the time		imes and under conditions s ts were made.	stated.	Groundwa	ter fluct	uations	may occur due to cond	Boring No.: BB-GWR-

Maine Department of Transportation

Soil/Rock Exploration Log

NETRIC UNITS

Project: Wild River Bridge #2948 over Wild
River, Route 2
Location: Gilead, Maine

PIN: 15619.00

Rig Type: Diedrich D-50

Drilling Method: Cased Wash Boring

Hammer Efficiency Factor: 0.633

Hammer Type: Automatic ⊠ Hydraulic □ Rope & Cathead □

Definitions:

D = Split Spoon Sample

SSA = Solid Stem Auger

MD = Unsuccessful Split Spoon Sample attempt

MD = Unsuccessful Thin Walled Tube Sample attempt

MD = Unsuccessful Thin Walled Tube Sample attempt

MD = Unsuccessful Thin Walled Tube Sample attempt

MDH = weight of 64 kg hammer

MDH = weight of rods or casing

MDH = Weight of rods or casing

MDH = Weight of none person

MDH = Weight of none person

Sample | MDH = Weight of none person

MDH = Weight of none person

Sample | Information

METRIC UNITS

Mike/Nick Logged By: B. Wilder

Date Start/Finish: 3/20-21/08. 4/8/08 15619.00

G#210091 A-1-a, GW-GM WC=11.3%

G#210092 A-1-b. SW-SI WC=12.9%

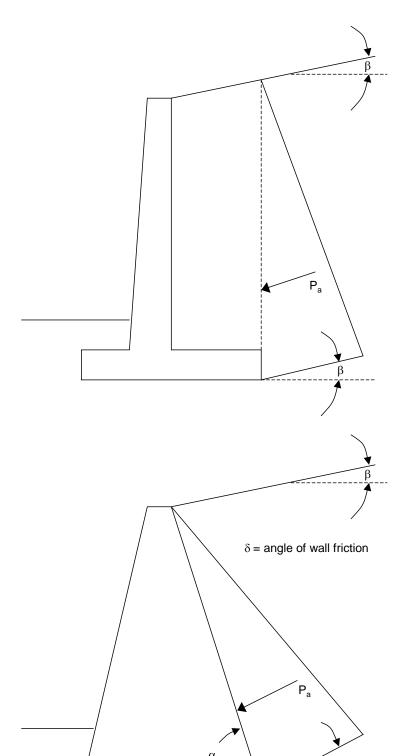
A-3. SP-SM WC=20.2%

Hammer Wt./Fall: 140#/30" Core Barrel: NO-2"

Visual Description and Remarks

Water Level*: 0.97 m bgs.

	ler:		rthern Test	Boring	Elevatio	n (m):		0.05 /D 88			Solid Ster	
ogg	ed By:	В.	Wilder	(0.400	Rig Type		Die	edrich		Hammer Wt./Fall: 140	0#/30"	
	Start/ ng Loca	Finish: 3/2 tion: 3+4	20-21/08• 4/ 489• CL	78/08	Drilling Casing I		d: Cas	sed Was	sh Bori	·	-2″ 97 m bgs.	
	er Effi	ciency Fact	or: 0.633	R = Rock	Hammer T Core Sample	ype:	Automa		itu Fie	Hydraulic Rope & Cathead U	ib Vane Shear	Strength (kPa)
) = (= Ti ! = (= (r	Insuccess nin Wall Insuccess nsitu Van	n Sample ful Split Spoo Tube Sample ful Thin Walle e Shear Test ful Insitu Van	d Tube Sample e Shear Test a	pt HSA = HOI	ght of 64 kg eight of roo ight of one	ger g hammer ds or ca:	i sing i	q _p = Unc N-uncorr Hammer E N ₆₀ = SP	confined ected = fficiend T N-unco	one Shear Strength (kPa) WC = water of Compressive Strength (Pa) LL = Liquid Raw field SPT N-value PL = Plastic by Factor = Annual Calibration Value Pl = Plastic prected corrected for hammer effeciency for Consolidation (C = C = C = C = C = C = C = C = C = C	: Limit :ity Index ze Analysis	nt
Ueptn (m)	Sample No.	en/Rec (cm)	Sample Depth	Blows (150 mm) Shear (KPa) or ROD (%) or ROD (%)	N-value	09 _N	Casing Blows	Elevation (m)	Graphic Log	Visual Description and Remarks		Laboratory Testing Results/ AASHTO and Unified Class.
6	š	ď	»S	ထက်က် ငံ ဝိ	ż	ž	267 271	шü	ō	0.61 m running sand in casing.		
							323 449					
,	12D	61.0/55.9	16.76 - 17.37	6/13/17/21	30	32	224			Brown, wet, dense, fine to coarse SAND, I gravel, trace silt.	ittle	G#210096 A-1-b. SW
7							295			Roller Coned ahead to 18.29 m bgs.		WC=15.4%
+	_						262					
ا 8					+		258	191.07			17 . 98-	
_	13D	48.8/38.1	18.29 - 18.78	19/27/34/30(30)	61	64	266			Brown. wet. very dense. fine to coarse SA gravel. trace silt. occasional cobbles.	AND. some	
9							350 600			Cobble from 18.78-18.84 m bgs. Roller Coned ahead to 19.2 m then to 19.8	31 m bgs.	
•							350					
\dashv							312					
۰	14D	61.0/45.7	19.81 - 20.42	9/5/4/8	9	9	202			Brown, wet, loose, fine to coarse SAND, I gravel, trace silt, occasional cobble. Roller Coned ahead to 21.34 m bgs.	ittle	G#210097 A-1-b. SW WC=15.6%
╛							416 327					
į							330					
1							424					
_	15D	36.6/35.6	21.34 - 21.70	7/14/50(60)	¢ 50		225			Brown, wet, very dense, fine to coarse SA gravel, trace silt.	AND. some	
֓֞֞֞֞֞֞֞֞֞֞֞֞֞֞֡֓֓֓֞֞֞֞֞֞֞֡							334			Roller Coned ahead to 22.86 m bgs.		
2							387 447					
\dashv							507					
3	16D	61.0/40.6	22.86 - 23.47	25/23/16/16	39	41	237			Brown, wet, dense, fine to coarse SAND, s gravel, trace silt.	some	G#210098 -1-b. SW-SM
ŀ							405					WC=12.8%
1							286					
4							355 437			Boulder from 24.08-24.54 m bgs.		
_[24.54				408	184.51			2 4.54-	
F	17D	61.0/43.2	25.15	5/12/16/15	28	30	467	104.51	1111011	Brown, wet, medium dense, Gravelly fine t SAND, trace silt. Roller Coned ahead to 25.91 m bgs.	o coarse	G#210099 -1-b. SW-SM WC=11.2%
5							625		8 8 8 8 8 8 8 8 8	Notice delice alone to 20131 in ago.		
-							550		30 000 30 000 30 000 30 000 30 000			
6	18D	61.0/40.6	25.91 -	11/24/28/36	52	55	981 450	183.14		Light brown, wet, very dense, fine to med	25.91-	G#210100
1		,,,,,,,,	26.52	20. 00			500			SAND. little silt, trace coarse sand, tra		A-2-4. SM WC=22.1%
\dashv					+		478 ORC			PROIIer Coned ahead to 27.74 m bgs.		
7								182.23		Soft weathered Bedrock.	26.82-	
_[
1	R1	152.4/ 152.4	27.74 - 29.26	ROD = 65%			ND ND	181.31		Top of intact Bedrock at Elev. 181.31 m.	27.74-	
8		136.4	23.20				CORE			Bedrock: Black, white and grey, coarse gr metamorphic, GNEISS, hard, fresh, with be 70 degrees, Rock Mass Quality = Fair.		
_					+					R1:Core Times (min:sec) 800-1000 psi dowr pressure 27.74-28.04 m (2:13)		
9										28.04-28.35 m (4:18) 28.35-28.65 m (2:37) 28.65-28.96 m (1:30)		
1	R2	152.4/	29.26 -	ROD = 87%						28.96-29.26 m (1:45) 100% Recovery R2: Rock Quality = Good.		
\dashv		147.3	30.78							Core Times (min:sec) 29.26-29.57 m (3:20) 29.57-29.87 m (3:25)		
۰										29.87-30.18 m (2:57) 30.18-30.48 m (3:09) 30.48-30.78 m (2:40) 97% Recovery		
ŀ							1 /					
7							\mathbb{V}	178.27			 30.78-	
31										Bottom of Exploration at 30.78 m below surface.	ground	
	rks: o Hamme	er #283										


BRIDGE NO.2948

STATE OF MAINE DEPARTMENT OF TRANSPORTATION

WILD RIVER BRIDGE WILD RIVER IN THE TOWN OF GILEAD OXFORD COUNTY

BORING LOGS

SHEET 2 OF 2 AUGUSTA, MAINE

For cases where interface friction between the backfill and wall are 0 or not considered, use Rankine.

For a horizontal backfill surface, $\beta = 0^{\circ}$:

$$K_a = \tan^2 \left(45^{\circ} - \frac{\phi}{2} \right)$$

For a sloped backfill surface, $\beta > 0^{\circ}$:

$$K_a = \cos \beta * \frac{\cos \beta - \sqrt{\cos^2 \beta - \cos^2 \phi}}{\cos \beta + \sqrt{\cos^2 \beta - \cos^2 \phi}}$$

 P_a is oriented at β

For cases where interface friction is considered, use Coulomb.

For horizontal or sloped backfill surfaces:

$$K_{a} = \frac{\sin^{2}(\alpha + \phi)}{\sin^{2}\alpha * \sin(\alpha - \delta) * \left(1 + \sqrt{\frac{\sin(\phi + \delta) * \sin(\phi - \beta)}{\sin(\alpha - \delta) * \sin(\beta + \alpha)}}\right)^{2}}$$

 P_a is oriented at $\delta + 90^{\circ}$ - α

Rankine and Coulomb Active Earth Pressure Coefficients

δ+90°-α

Appendix A

Boring Logs

	LINUELE	2 0011 01		TION OVOTEN			DESCRIBING			
			GROUP	TION SYSTEM		DENSITY/0	CONSISTENC	ΣΥ		
COARSE- GRAINED	JOR DIVISION GRAVELS	CLEAN GRAVELS	SYMBOLS GW	TYPICAL NAMES Well-graded gravels, gravelsand mixtures, little or no fines	sieve): Includes (1 clayey or gravelly	soils (more than half of 1) clean gravels; (2) si sands. Consistency i	ilty or clayey gravels	s; and (3) silty,		
SOILS	(more than half of coarse fraction is larger than No. 4 sieve size)	(little or no fines)	GP	Poorly-graded gravels, gravel sand mixtures, little or no fines	tı	Modified B otive Term race	C	ion of Total % - 10%		
is ze)	re than half on is larger sieve siz	GRAVEL WITH FINES	GM	Silty gravels, gravel-sand-silt mixtures.	s	little ome J. sandy, clayey)	2	1% - 20% 1% - 35% 6% - 50%		
of material 00 sieve si	(mol	(Appreciable amount of fines)	GC	Clayey gravels, gravel-sand-clay mixtures.	<u>Cohesio</u> Very	nsity of onless Soils y loose oose		netration Resistance (blows per foot) 0 - 4 5 - 10		
(more than half of material is arger than No. 200 sieve size)	SANDS	CLEAN SANDS	SW	Well-graded sands, gravelly sands, little or no fines	Mediu De	m Dense ense Dense		11 - 30 31 - 50 > 50		
(mor	of coarse than No. e)	(little or no fines)	SP	Poorly-graded sands, gravelly sand, little or no fines.		ls (more than half of n				
	(more than half of coarse fraction is smaller than No. 4 sieve size)	SANDS WITH FINES	SM	Silty sands, sand-silt mixtures		inorganic and orgar (3) clayey silts. Cons ted.				
	(more fraction	(Appreciable amount of fines)	SC	Clayey sands, sand-clay mixtures.	Consistency of Cohesive soils	SPT N-Value blows per foot	Undrained Shear Strength (psf)	<u>Field</u> <u>Guidelines</u>		
	SILTS AN	ID CLAYS	ML	Inorganic silts and very fine sands, rock flour, silty or clayey fine sands, or clayey silts with slight plasticity.	Very Soft Soft Medium Stiff	WOH, WOR, WOP, <2 2 - 4 5 - 8	0 - 250 250 - 500 500 - 1000	Fist easily Penetrates Thumb easily penetrates Thumb penetrates with moderate effort		
FINE- GRAINED SOILS	(liquid limit l	ess than 50)	CL	Inorganic clays of low to medium plasticity, gravelly clays, sandy clays, silty clays, lean clays.	Stiff Very Stiff Hard	9 - 15 16 - 30 >30	1000 - 2000 2000 - 4000 over 4000	Indented by thumb with great effort Indented by thumbnai Indented by thumbnail with difficulty		
is size)			OL	Organic silts and organic silty clays of low plasticity.	Rock Quality Designation (RQD): RQD = sum of the lengths of intact pieces of core* > 100 mr length of core advance *Minimum NQ rock core (1.88 in. OD of core)					
(more than half of material is naller than No. 200 sieve size)	SILTS AN	ID CLAYS	MH	Inorganic silts, micaceous or diatomaceous fine sandy or silty soils, elastic silts.		Correlation of RQ		Quality RQD		
re than hal			СН	Inorganic clays of high plasticity, fat clays.	F	y Poor Poor Fair Good	51	<25% 6% - 50% 1% - 75% 6% - 90%		
(moi smalle	(liquid limit gr	eater than 50)	OH	Organic clays of medium to high plasticity, organic silts	Desired Rock C Color (Munsell	cellent Observations: (in t color chart)	91 his order)	% - 100%		
		ORGANIC IILS	Pt	Peat and other highly organic soils.	Lithology (igned Hardness (very	itic, fine-grained, et ous, sedimentary, m hard, hard, mod. h esh, very slight, sligh	netamorphic, etc.) ard, etc.)			
	oil Observat		is order)		1	severe, etc.)		·		
Moisture (d Density/Con Name (sand Gradation (d, silty sand well-graded on-plastic, s	oist, wet, sa om above ri , clay, etc., i , poorly-grac slightly plasti	ght hand si ncluding po ded, uniforn c, moderat	ortions - trace, little, etc.)	Geologic discor	-spacing (very clos	o - 55-85, vertical se - <5 cm, close m, wide - 1-3 m, v pen or healed)	- 85-90) - 5-30 cm, mod.		
Bonding (w	ell, moderat on (weak, mo rigin (till, ma Classificatio	ely, loosely, oderate, or s irine clay, all	etc., if app trong, if ap luvium, etc.	plicable, ASTM D 2488)	RQD and correl ref: AASHTO 17th Ed. Tabl Recovery	terville, Ellsworth, C lation to rock mass Standard Specifica e 4.4.8.1.2A	Cape Elizabeth, et quality (very poo ution for Highway	r, poor, etc.) Bridges		
Ke	y to Soil :	Geotechi	nical Sec Descrip	tions and Terms	Sample Cont PIN Bridge Name Boring Numb Sample Numb Sample Depti	er ber	Requirements Blow Counts Sample Reco Date Personnel Ini	very		

	Maine Department of Transponding Soil/Rock Exploration Log METRIC UNITS Northern Test Boring				ion	Projec	ct: Wild	River B	ridge #2	948 over Wild River,	Boring No.:	BB-GV	WR-101
		Soi				Locat	Rout ion: Gi		ine		PIN:	156	19.00
Drill	er:	Ne	orthern Test Bo	ring	Elevation	n (m):	21	0.75			Auger ID/OD:	5" Solid Stem	
Ope	rator:	M	ike/Nick		Datum:		N/	AVD 88			Sampler:	Standard Split	Spoon
Log	ged By:	В.	Wilder		Rig Type):	Di	edrich D	-50		Hammer Wt./Fall:	140#/30"	
Date	Start/F	inish: 4/	7/08-4/8/08		Drilling N	/lethod	: Ca	sed Wasl	h Boring	5	Core Barrel:	NQ-2"	
Bori	ng Loca	ation: 3+	-410, CL		Casing II	D/OD:	HV	V			Water Level*:	2.44 m bgs.	
Han	nmer Eff	iciency Fact	or: 0.633		Hammer	Type:	Automa				Rope & Cathead □		
MD = U = T MU = V = Ir	plit Spoon Unsucces hin Wall Tu Unsucces ssitu Vane	sful Split Spoon sube Sample ssful Thin Walled Shear Test	Sample attempt Tube Sample atter	SSA = Sol HSA = Hol RC = Rolle mpt WOH = we WOR/C =	Core Sample id Stem Auger llow Stem Auger Cone eight of 64 kg l weight of rods Veight of one r	jer hammer s or casing	J	T _V = Pock q _p = Unco N-uncorre Hammer I N ₆₀ = SP	tet Torvar onfined Co ected = Ra Efficiency T N-unco	ane Shear Strength (kPa) he Shear Strength (kPa) he Shear Strength (Pa) haw field SPT N-value Factor = Annual Calibration rrected corrected for hamm ficiency Factor/60%)*N-unc	W0 LL PL n Value PI er effeciency G :	(lab) = Lab Vane Shear S C = water content, percen = Liquid Limit = Plastic Limit = Plasticity Index = Grain Size Analysis = Consolidation Test	
			;	Sample Information	1		1	1	↓ 				Laboratory
Depth (m)	Sample No.	Pen/Rec (cm)	Sample Depth (m)	Blows (150 mm) Shear Strength (kPa) or RQD (%)	N-value	N ₆₀	Casing Blows	Elevation (m)	Graphic Log	Visual	Description and Ren	narks	Testing Results/ AASHTO and Unified Class.
0	1D	61.0/35.6	0.00 - 0.61	2/1/2/2	3	3	SSA			Brown, damp, very loose, fine to medium SAND, trace silt, coarse sand, trace gravel, trace organics.		AND, trace silt, trace	G#209912 A-3, SP-SM
								-					WC=15.0%
								1					
1 -								209.84				0.91	
	2D	61.0/38.1	1.22 - 1.83	10/16/23/40	39	41		1	00 M		fine to coarse Sandy C	GRAVEL, trace silt,	G#209913
								}	© 60° ∞00° 2	occasional cobbles.			A-1-a, GW-GN WC=2.9%
								1	:03.8:				
2 -								}	80.33				
								-	. 60 60 . 60 60 . 60 60				
								1	op: 0:				
	3D	55.9/40.6	2.74 - 3.30	18/31/21/50(100)	52	55		1	9.00		se, fine to coarse Sand	y GRAVEL, trace silt	G#209914
3 -								-		occasional cobbles.			A-1-a, GW WC=10.2%
								1					
								1	80				
							1	1					
4 -							 \ /-	1	0.000 0.000				
	4D	30.5/20.3	4.27 - 4.57	18/60			50	}		Similar to above.			
		30.0/20.5	1127 1157	16,00				1		Large cobble from 4.5	57 4 95 m has		
							183	1		Roller Coned ahead to			
5 -							143	-	. 0 g				
							126	1	300 300 300				
							111	1					
	5D	61.0/40.6	5.79 - 6.40	9/8/8/8	16	17	113	204.96				5.79	G#209915
6 -	3D	01.0/40.0	3.79 - 0.40	3/0/0/0	10	17		1		Brown, wet, medium trace coarse sand.	dense, fine to medium	SAND, some silt,	A-2-4, SM
						-	103	1					WC=23.4%
							107	1					
							126	1					
7 -							131	1					
	6D	61.0/61.0	7.32 - 7.92	6/7/8/7	15	16	92	-		Brown, wet, medium	dense, fine SAND, sor	ne silt, trace medium	G#209916
	עט	01.0/01.0	1.34 - 1.94	0/ 1/ 0/ /	13	10		1		sand.	, 5.11.15, 301	, zace medium	A-2-4, SM
D =	arke:						112	<u> </u>					WC=24.3%

Auto Hammer #283

 $Stratification\ lines\ represent\ approximate\ boundaries\ between\ soil\ types;\ transitions\ may\ be\ gradual.$

Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other than those present at the time measurements were made.

Page 1 of 3

	Maine Department of Transpo			Transportat	ion	Projec	ct: Wild	River B	ridge #2	2948 over Wild River,	Boring No.:	BB-GV	BB-GWR-101	
		<u>Soi</u>	•			Locat	Rout ion: Gil		ine		PIN:	1561	19.00	
Drill	er:	No	orthern Test Bor	ring	Elevation	n (m):	210).75			Auger ID/OD:	5" Solid Stem		
Ope	rator:	M	ike/Nick		Datum:		NA	VD 88			Sampler:	Standard Split S	Spoon	
Log	ged By:	B.	Wilder		Rig Type):	Die	edrich D	-50		Hammer Wt./Fall:	140#/30"		
Date	Start/F	inish: 4/	7/08-4/8/08		Drilling N	/lethod	: Ca	sed Was	h Boring	7	Core Barrel:	NQ-2"		
Bori	ng Loca	ntion: 3+	410, CL		Casing II	D/OD:	HV	V			Water Level*:	2.44 m bgs.		
		iciency Fact	or: 0.633		Hammer	Type:	Automa			•	Rope & Cathead □			
MD = TI U = TI MU = V = In	olit Spoon Unsuccess nin Wall Tu Unsuccess situ Vane	sful Split Spoon S ube Sample sful Thin Walled Shear Test	Tube Sample atter	SSA = Soli HSA = Hol RC = Rolle mpt WOH = we WOR/C = 1 WO1P = W	Core Sample of Stem Auger low Stem Auger or Cone eight of 64 kg I weight of rods /eight of one r	jer hammer s or casing	3	T _V = Pock q _p = Unco N-uncorre Hammer N ₆₀ = SP	ket Torvar onfined C ected = Ra Efficiency T N-unco	ane Shear Strength (kPa) ne Shear Strength (kPa) ompressive Strength (Pa) aw field SPT N-value r Factor = Annual Calibratio rrected corrected for hamm ficiency Factor/60%)*N-unc	WC LL = PL = in Value PI = ner effeciency G =	lab) = Lab Vane Shear S = water content, percent = Liquid Limit = Plastic Limit = Plasticity Index • Grain Size Analysis • Consolidation Test		
		ı	;	Sample Information									Laboratory	
Depth (m)	Sample No.	Pen/Rec (cm)	Sample Depth (m)	Blows (150 mm) Shear Strength (KPa) or RQD (%)	N-value	N ₆₀	Casing Blows	Elevation (m)	Graphic Log	Visual	Description and Rem	arks	Testing Results/ AASHTO and Unified Class.	
8							129		: .					
							1.42]						
							142	1						
							153	1						
	7D	61.0/35.6	8.84 - 9.45	4/7/13/16	20	21	97	1			dense, fine to coarse SA	AND, little gravel,	G#209917	
9 -							162	-		little silt.			A-2-4, SP-SM WC=17.5%	
ŀ							102	•						
							173	1						
ŀ							192	201.00				9.75		
10							191	-	1					
ŀ							191]						
	8D	61.0/33.0	10.36 - 10.97	3/7/31/48	38	40	127	-		Brown, wet, dense, fi occasional cobbles.	ine to coarse SAND, sor	ne gravel, little silt,	G#209918 A-1-b, SM	
							213						WC=9.2%	
11							217	-						
							217	1						
							234	-						
							373	1						
10							b310	198.93	98 <i>D.</i> o	Large cobble from 11	1.83-12.04 m bgs.	11.83		
12 -	9D	61.0/35.6	12.04 - 12.65	22/16/27/24	43	45		1	60.00 60.00 60.00	b310 blows for 0.15 i	m. ine to coarse Sandy GRA	AVEL trace silt	G#209919	
								-	80.08	Brown, wet, dense, in	ine to course buildy Gre	TVEE, trace site.	A-1-a, GP-GN WC=9.0%	
							L	1	5 6 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	2Dollon C	to 12 11 m b			
							aRC	197.95	tinii)	aRoller Coned ahead		12.80-		
13										Top of Bedrock at El	ev. 197.95 m. te and grey, coarse grain	1 1:		
ŀ	R1	152.4/149.9	13.11 - 14.63	RQD = 85%			NQ CORE	1		GNEISS, hard, fresh,	e and grey, coarse grain, with banding at 70 deg	rees. Rock Mass		
										Quality = Good.	(sec) 600-700 psi down	nreccure		
ŀ								1		13.11-13.41 m (2:30)		pressure		
14]	1891	13.41-13.72 m (2:40) 13.72-14.02 m (3:04)				
ŀ						-		1		14.02-14.33 m (3:07))			
								1	Mills.	14.33-14.63 m (3:23)	98% Recovery			
}	R2	152.4/152.4	14.63 - 16.15	RQD = 93%		-		1		R2: Rock Mass Quali	ity = Excellent.			
			20.13					1		Core Times (min:sec) 14.63-14.94 m (2:46))			
15								1	Willy	14.94-15.24 m (2:36))			
								1		15.24-15.54 m (2:34) 15.54-15.85 m (2:00)				
									Wille	15.5 (15.65 III (2.00)				

Remarks:

Auto Hammer #283

 $Stratification\ lines\ represent\ approximate\ boundaries\ between\ soil\ types;\ transitions\ may\ be\ gradual.$

Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other than those present at the time measurements were made.

	Main	e Depa	rtment of	f Transportat	ion	Projec	t: Wild	River B	ridge #:	2948 over Wild River,	Boring No.:	BB-GV	VR-101
		<u> </u>	oil/Rock Explora METRIC UN			Locati	Route i on: Gil		ne		PIN:	1561	19.00
Dril	ler:		Northern Test Bo	ring	Elevation	n (m):	210).75			Auger ID/OD:	5" Solid Stem	
Оре	rator:		Mike/Nick		Datum:		NA	VD 88			Sampler:	Standard Split S	Spoon
Log	ged By:		B. Wilder		Rig Type	:	Die	drich D-	-50		Hammer Wt./Fall:	140#/30"	
Date	e Start/F	inish:	4/7/08-4/8/08		Drilling N	/lethod:	: Cas	sed Wasl	n Borin	g	Core Barrel:	NQ-2"	
Bor	ing Loca	ation:	3+410, CL		Casing II	D/OD:	HV	7			Water Level*:	2.44 m bgs.	
Han	nmer Eff	iciency Fa	ctor: 0.633		Hammer	Туре:	Automa	tic 🛛		Hydraulic □	Rope & Cathead □		
D = 8 MD = U = 1 MU = V = li	hin Wall Tu Unsucces nsitu Vane	sful Split Spoo ube Sample sful Thin Walle Shear Test	n Sample attempt ed Tube Sample atte e Shear Test attemp	SSA = Sol HSA = Hol RC = Rolle Impt WOH = we WOR/C = '	Core Sample id Stem Auger llow Stem Aug er Cone eight of 64 kg I weight of one p	er nammer or casing	· - 	T _V = Pock q _p = Unco N-uncorre Hammer E N ₆₀ = SP	et Torva onfined C cted = R Efficienc T N-unce	Vane Shear Strength (kPa) Anne Shear Strength (kPa) Compressive Strength (Pa) At the field SPT N-value At the field SPT N	WC = LL = L PL = I n Value PI = F ner effeciency G = G	o) = Lab Vane Shear S water content, percent iquid Limit Plastic Limit Plasticity Index irain Size Analysis onsolidation Test	trength (kPa) t
				Sample Information				l					Laboratory
Depth (m)	Sample No.	Pen/Rec (cm)	Sample Depth (m)	Blows (150 mm) Shear Strength (kPa) or RQD (%)	N-value	N ₆₀	Casing Blows	Elevation (m)	Graphic Log		Description and Remai	rks	Testing Results/ AASHTO and Unified Class.
							\ /		HB	15.85-16.15 m (2:20)	100% Recovery		
16									Mill				
							V	194.60		Bottom of Explor	ation at 16.15 m below g	16.15- round surface.	
17													
- 18 -													
10													
19													
- 20 -													
~ .	<u> </u>	1											
21 -													
		-											
- 22 -													
- 22													
- 23 -								1					
	<u> </u>												
Ren	narks:												
Au	to Hamm	er #283											

Stratification lines represent approximate boundaries between soil types; transitions may be gradual.

Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other than those present at the time measurements were made.

Page 3 of 3

	Main	ie Depar	tment of	Transportat	tion	Projec			ridge #2	2948 over Wild River,	Boring No.:	BB-GV	VR-102
		Soi	I/Rock Explora METRIC UN			Locati	Rout i on: Gi		ine		PIN:	1561	9.00
Drill	er:	No	orthern Test Bo	ring	Elevation	n (m):	20	8.39			Auger ID/OD:	5" Solid Stem	
Ope	rator:	M	ike/Nick		Datum:		N/	AVD 88			Sampler:	Standard Split S	Spoon
Log	ged By:	B.	Wilder		Rig Type):	Di	edrich D	-50		Hammer Wt./Fall	l: 140#/30"	
Date	Start/F	inish: 9/	15,16,18,19/08		Drilling N		Ca	sed Was	h Boring	9	Core Barrel:	NQ-2"	
Bori	ng Loca	ation: 3+	-450, CL		Casing II	D/OD:	HV	V & NW			Water Level*:	River Boring	
		iciency Fact	or: 0.633		Hammer	Type:					Rope & Cathead □		
MD = U = T MU = V = In	plit Spoon Unsucces hin Wall Tu Unsucces situ Vane	sful Split Spoon \$ ube Sample sful Thin Walled Shear Test	Tube Sample atte	SSA = Sol HSA = Hol RC = Roll mpt WOH = w WOR/C = WO1P = V	eight of 64 kg l weight of rods Veight of one I	jer hammer s or casing		$T_V = Pock$ $q_p = Uncorrect N-uncorrect Hammer N_{60} = SP$	tet Torval onfined C ected = R Efficiency T N-unco	ane Shear Strength (kPa) ne Shear Strength (kPa) ompressive Strength (Pa) aw field SPT N-value r Factor = Annual Calibration orrected corrected for hamm ficiency Factor/60%)*N-unc	\ L F n Value F er effeciency C	Su(lab) = Lab Vane Shear SI WC = water content, percent LL = Liquid Limit PL = Plastic Limit Pl = Plasticity Index G = Grain Size Analysis C = Consolidation Test	rength (kPa)
		Ī		Sample Information			1		-				Laboratory
Depth (m)	Sample No.	Pen/Rec (cm)	Sample Depth (m)	Blows (150 mm) Snear Strength (kPa) or RQD (%)	N-value	N ₆₀	Casing Blows	Elevation (m)	Graphic Log	Visual	Description and Re	emarks	Testing Results/ AASHTO and Unified Class.
0	1D	27.4/27.4	0.00 - 0.27	10/50(120)			SSA					ndy GRAVEL, trace silt,	
1 -								207.47	<u> </u>	with cobbles and boulders.			
								1	0000				
•	2D	61.0/35.6	1.52 - 2.13	3/6/9/10	15	16	132			Brown, wet, medium dense, fine to coarse SAND, some silt, trac gravel. Roller Coned ahead to 2.74 m bgs.			G#208757 A-2-4, SM WC=26.3%
2 -							170	-	8				
							170	1	o c				
							156]	0000				
	3D	61.0/25.4	2.74 - 3.35	10/11/12/9	23	24	148	1	900	Brown, wet, medium	dense Gravelly fine t	to coarse SAND, trace	G#208758
3 -							1.40	1		silt. Roller Coned ahead to	o 4.27 m bgs.		A-1-a, SW WC=14.3%
							148	1					
							112	4					
							122	<u> </u>					
4 -							122	-					
							122	1			_		
	4D	61.0/22.9	4.27 - 4.88	4/4/21/20	25	26	19	-		Brown, wet, medium trace silt.	dense, fine to coarse	SAND, some gravel,	G#208759 A-3, SP
							91	1	600	Roller Coned ahead to	o 5.18 m bgs.		WC=15.7%
_							136	1					
5 -								1					
							150	1					
							167	202.90	44			5.49	
	5D	61.0/38.1	5.79 - 6.40	16/18/16/15	34	36	128	1		Brown, wet, dense, fi	ne to coarse Sandy G	RAVEL, trace silt.	G#208760
6 -			0.77					1					A-1-a, GW WC=8.7%
							140	1					11 C-0. / 70
							145	1	HIII.				
							139	1					
7 -								1					
							152	1					
	6D	61.0/22.9	7.32 - 7.92	17/12/11/15	23	24	131]		Similar to above, med	lium dense.		
							105	1					
Rem	arks:	105						<u> </u>					

Auto Hammer #283 0.3 m water at boring location.

Stratification lines represent approximate boundaries between soil types; transitions may be gradual.

Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other than those present at the time measurements were made.

Page 1 of 4

	Main	e Depar	tment of	Transportat	ion	Projec			ridge #2	948 over Wild River,			VR-102
		Soi	I/Rock Explora METRIC UN			Locati	Route on: Gil		ne		PIN:	1561	19.00
Drille	er:	N	orthern Test Bor	ring	Elevation	n (m):	208	3.39			Auger ID/OD:	5" Solid Stem	
Ope	rator:	M	ike/Nick		Datum:		NA	VD 88			Sampler:	Standard Split S	Spoon
Logg	ged By:	В.	Wilder		Rig Type	:	Die	drich D-	50		Hammer Wt./Fall:	140#/30"	
Date	Start/F	inish: 9/	15,16,18,19/08		Drilling N	lethod:	Cas	ed Wasł	n Boring	9	Core Barrel:	NQ-2"	
Bori	ng Loca	tion: 3+	-450, CL		Casing II	D/OD:	HW	/ & NW			Water Level*:	River Boring	
		iciency Fact	or: 0.633		Hammer	Туре:			=:		Rope & Cathead		
MD = U = Ti MU = V = In	olit Spoon Unsuccess nin Wall Tu Unsuccess situ Vane S	sful Split Spoon sube Sample sful Thin Walled Shear Test	Tube Sample atter	SSA = Soli HSA = Holl RC = Rolle npt WOH = we WOR/C = v WO1P = W	core Sample d Stem Auger ow Stem Aug r Cone ight of 64 kg I veight of rods leight of one p	er nammer or casing	- (!	T _V = Pock q _p = Unco N-uncorre Hammer E N ₆₀ = SP	et Torvai infined C cted = R Efficiency T N-unco	ane Shear Strength (kPa) ne Shear Strength (kPa) ompressive Strength (Pa) aw field SPT N-value r Factor = Annual Calibration orrected corrected for hamm ficiency Factor/60%)*N-unc	WC = LL = I PL = n Value PI = F er effeciency G = G	b) = Lab Vane Shear S water content, percent iquid Limit Plastic Limit Plasticity Index Grain Size Analysis consolidation Test	trength (kPa)
Depth (m)	Sample No.	Pen/Rec (cm)	Sample Depth (m)	Blows (150 mm) Shear Strength (KPa) or RQD (%)	N-value	09 _N	Casing Blows	Elevation (m)	Graphic Log	Visual	Description and Rema	rks	Laboratory Testing Results/ AASHTO and Unified Class.
8 -							140						
							183						
9 -	7D	61.0/40.6	8.84 - 9.45	10/11/20/19	31	33	108			Brown, wet, dense, G	ravelly fine to coarse SA	ND, trace silt.	G#208761 A-1-a, SW
							230						WC=10.6%
							216						
ŀ							173						
10							100						
ŀ							182	100.02				10.26	
	8D	61.0/35.6	10.36 - 10.97	5/5/4/5	9	9	127	198.03		Brown, wet, loose, fir	ne to coarse SAND, little	gravel, trace silt.	G#208762 A-1-b, SP
							146						WC=15.3%
11							184		10.00 00.000				
							224		0.000				
							234						
ŀ							268						
12	9D	61.0/33.0	11.89 - 12.50	7/7/7/10	14	15	127			Similar to above, but	medium dense.		G#208763
ŀ							192						A-1-b, SP WC=19.0%
-							226	105.55				44.6-	
13							226	195.59	8 60			12.80	
13							311						
	10D	61.0/30.5	13.41 - 14.02	9/14/10/7	24	25	146			Brown, wet, medium	dense, fine to coarse San	dv GRAVEL, trace	G#208764
	10D	01.0/30.3	13.41 - 14.02	9/14/10/7	24	23	140		3 28	silt.		•	A-1-a, GW-GM
							256		3000				WC=4.9%
14							261						
ŀ							312						
}							309						
15 -	MD	61.0/0.0	14.94 - 15.54	18/21/14/12	35	37	184			Failed sample attempt	t.		
ŀ							252						
_													

Remarks:

Auto Hammer #283 0.3 m water at boring location.

Stratification lines represent approximate boundaries between soil types; transitions may be gradual.

Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other than those present at the time measurements were made.

Page 2 of 4

	Main	e Depar	tment of	Transportat	ion	Projec	t: Wild	River B	ridge #2	948 over Wild River,	Boring No.:	BB-GV	VR-102
		<u>Soi</u>	I/Rock Explora METRIC UN			Locati	Route i on: Gil		ine		PIN:	1561	19.00
Drill	er:	No	orthern Test Boi	ring	Elevation	n (m):	208	3.39			Auger ID/OD:	5" Solid Stem	
Ope	rator:	M	ike/Nick		Datum:		NA	VD 88			Sampler:	Standard Split S	Spoon
Log	ged By:	B.	Wilder		Rig Type	:	Die	drich D-	-50		Hammer Wt./Fal	II: 140#/30"	
Date	Start/F	inish: 9/1	15,16,18,19/08		Drilling N	/lethod:	: Cas	sed Wash	n Boring	7	Core Barrel:	NQ-2"	
Bori	ng Loca	ation: 3+	450, CL		Casing II	D/OD:	HV	/ & NW			Water Level*:	River Boring	
Ham Defini		iciency Facto	or: 0.633	D. Davis	Hammer Core Sample	Type:	Automa		. =:=1=1.1/-	Hydraulic □ ane Shear Strength (kPa)	Rope & Cathead □	C	to a sette (I-D-)
D = S	plit Spoon			SSA = Soli	id Stem Auger			$T_V = Pock$	et Torvar	ne Shear Strength (kPa)		S _{u(lab)} = Lab Vane Shear S WC = water content, percent	irengin (kra)
U = T	nin Wall Tu	sful Split Spoon S ube Sample		RC = Rolle				N-uncorre	cted = Ra	ompressive Strength (Pa) aw field SPT N-value		LL = Liquid Limit PL = Plastic Limit	
V = In	situ Vane	Shear Test	Tube Sample atter	WOR/C = 1	eight of 64 kg h weight of rods	or casing	l	$N_{60} = SP^{-1}$	T N-unco	Factor = Annual Calibration rrected corrected for hamm	er effeciency	PI = Plasticity Index G = Grain Size Analysis	
MV =	Unsucces	sful Insitu Vane S	Shear Test attempt	Sample Information	Veight of one p	person		N ₆₀ = (Ha	ammer Ef	ficiency Factor/60%)*N-unc	orrected	C = Consolidation Test	
Depth (m)	Sample No.	Pen/Rec (cm)	Sample Depth (m)	Blows (150 mm) Shear Strength (KPa) or RQD (%)	N-value	N ₆₀	Casing Blows	Elevation (m)	Graphic Log	Visual	Description and R	emarks	Laboratory Testing Results/ AASHTO and Unified Class.
ᆜ	- 07		0, 0	шоо			309						
16							347		000				
- 16 -							400		800	Boulder from 16.12-1	6.46 m bgs.		
							400	1	60 PG 100		_		
	R1	396.2/152.4	16.46 - 20.42				a2 75 NQ-2			aChanged/telescoped Roller Coned ahead v		o 22.56 m bgs.	
							130		90 90	R1:Cobbles and Boul R1:Core Times (min:	ders.		
17 -							110		0000	16.46-16.76 m (3:01)	ŕ		
									0000	16.76-17.07 m (1:27) 17.07-17.37 m (1:10)			
							164		00 00 00 00 00 00	17.37-17.68 m (1:22)			
							387			17.68-17.98 m (3:05) 17.98-18.29 m (2:06)			
- 18 -							121	}) og 9	18.29-18.59 m (0:41) 18.59-18.9 m (0:40)			
							99		000	18.9-19.2 m (0:52)			
										19.2-19.51 m (0:53) 19.51-19.8 m (0:29)			
							158		90 80	19.8-20.12 m (0:26) 20.12-20.42 m (0:45)	38% Recovery		
- 19 -							264		0000	(3. 2)	,		
							247	}					
							162		900%				
									50 Y				
- 20 -							196		89				
							\61						
							209		9 6 6 8 8 8 8 8				
							432						
- 21 -							432	1					
							121		300				
							112]					
							194		30 3 3 30 0 0				
- 22 -]	6 86 86°				
22							201	1					
							336						
	11D	30.5/25.4	22.56 - 22.86	26/50			96			Brown, wet, very den gravel.		AND, trace silt, trace	G#208765 A-3, SP-SM
- 23 -							205			Roller Coned ahead e Boulder from 22.68-2	very 1.52 m. 23.32 m bgs.		WC=19.3%
							792				•		
Rem	arks:					I			H165(:P15):				

0.3 m water at boring location.

Stratification lines represent approximate boundaries between soil types; transitions may be gradual.

Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other than those present at the time measurements were made.

Page 3 of 4

	Mair	ıe Depar	tment of	f Transportat	ion	Projec			ridge #2	2948 over Wild River,	Boring No.	: BB-GV	VR-102
		<u>Soi</u>	I/Rock Explora METRIC UN			Locat	Rout i on: Gil		ine		PIN:	1561	9.00
Drill	er:	No	orthern Test Bo	ring	Elevation	n (m):	208	8.39			Auger ID/OD:	5" Solid Stem	
Ope	rator:		ike/Nick		Datum:		NA	VD 88			Sampler:	Standard Split S	Spoon
Log	ged By:	B.	Wilder		Rig Type):	Die	edrich D	-50		Hammer Wt./Fa	II: 140#/30"	
Date	Start/F	inish: 9/1	15,16,18,19/08		Drilling I	Method	: Ca	sed Was	h Borin	g	Core Barrel:	NQ-2"	
Bori	ng Loca	ation: 3+	-450, CL		Casing I	D/OD:	HV	V & NW			Water Level*:	River Boring	
		iciency Fact	or: 0.633		Hammer	Type:					Rope & Cathead □		
MD = U = TI MU = V = In	plit Spoon Unsucces hin Wall T Unsucces situ Vane	sful Split Spoon S ube Sample sful Thin Walled ⁻ Shear Test	Tube Sample atte	SSA = Sol HSA = Ho RC = Roll mpt WOH = we WOR/C = t WO1P = V	Core Sample id Stem Auge Illow Stem Auge or Cone eight of 64 kg weight of rods Veight of one	ger hammer s or casing	9	$T_V = Pocl$ $q_p = Uncorrect N-uncorrect Hammer N_{60} = SP$	tet Torva onfined C ected = R Efficiency T N-unco	ane Shear Strength (kPa) ne Shear Strength (kPa) compressive Strength (Pa) aw field SPT N-value r Factor = Annual Calibratio prected corrected for hamm fficiency Factor/60%)*N-unc	n Value er effeciency	S _{U(lab)} = Lab Vane Shear Si WC = water content, percent LL = Liquid Limit PL = Plastic Limit PI = Plasticity Index G = Grain Size Analysis C = Consolidation Test	
			1	Sample Information				1	-				Laboratory
Depth (m)	Sample No.	Pen/Rec (cm)	Sample Depth (m)	Blows (150 mm) Shear Strength (KPa) or RQD (%)	N-value	N ₆₀	Casing Blows	Elevation (m)	Graphic Log	Visual	Description and R	demarks	Testing Results/ AASHTO and Unified Class.
							408	1					
							b250			b250 blows for 0.03 r	n.		
24 -	12D	42.7/38.1	24.08 - 24.51	41/60/50(75)				-		Brown, wet, very den gravel.	se, fine to coarse SA	AND, little silt, trace	G#208766 A-2-4, SM
										Cobble from 24.5-24. Roller Coned ahead to		Bedrock at 25.51 m bgs.	WC=15.1%
25 -								-					
								182.88		Top of Bedrock at Ele	ev. 182.88 m.	-25.51-	
26 -	R2	152.4/144.8	25.97 - 27.49	RQD = 95%			_NQ-2_			GNEISS, hard, fresh,		rained, metamorphic, degrees. Rock Mass	
										Quality = Excellent. R2:Core Times (min: 25.97-26.27 m (1:45)	,		
27 -								-		26.27-26.58 m (2:31) 26.58-26.88 m (3:06) 26.88-27.19 m (3:45)			
								1		27.19-27.49 m (4:20)		27.40	
•							*	180.90	817:382	Bottom of Explora Bent Casing and botto hole.	ation at 27.49 m belom of Drive Shoe, co	27.49- low ground surface. ould not get back down	
28 -													
								1					
29 -													
								-					
30 -								1					
								-					
								1					
31 -								-					
Rem	arks:												

 $0.3\ m$ water at boring location.

Stratification lines represent approximate boundaries between soil types; transitions may be gradual.

trainioalor into represent approximate bearagnee between our types, transitione may be gradient

* Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other than those present at the time measurements were made.

Page 4 of 4

	Main	e Depar	tment of	Transportat	ion	Projec	t: Wild	River B	ridge #2	948 over Wild River,	Boring No.:	BB-GV	VR-103
			I/Rock Explora METRIC UN	ation Log		Locati	Rout i on: Gi		ne		PIN:	1561	19.00
Drille	er:	N	orthern Test Bor	ring	Elevation	n (m):	209	9.05			Auger ID/OD:	5" Solid Stem	
Ope	ator:	M	ike/Nick		Datum:		N/	AVD 88			Sampler:	Standard Split S	Spoon
Logg	jed By:	В.	Wilder		Rig Type	:	Di	edrich D-	50		Hammer Wt./Fal	I: 140#/30"	
Date	Start/F	inish: 3/	20-21/08, 4/8/08	3	Drilling N	/lethod:	: Ca	sed Wasl	n Boring		Core Barrel:	NQ-2"	
Bori	ng Loca	ation: 3+	-489, CL		Casing II	D/OD:	HV	V			Water Level*:	0.97 m bgs.	
Ham Definit		iciency Fact	or: 0.633	P - Pock (Hammer Core Sample	Type:	Automa			Hydraulic □ ne Shear Strength (kPa)	Rope & Cathead □	S _{u(lab)} = Lab Vane Shear S	trongth (kPa)
D = S _I MD = U = TI MU = V = In	olit Spoon Unsucces hin Wall Tu Unsucces situ Vane	sful Split Spoon sube Sample sful Thin Walled Shear Test	Tube Sample atter	SSA = Soli	id Stem Auger low Stem Aug	jer hammer s or casing	ı	$T_V = Pock$ $q_p = Unco$ N -uncorre $Hammer P$ $N_{60} = SP$	et Torvan onfined Co cted = Ra Efficiency T N-unco	the Shear Strength (kPa) the Shear Strength (kPa) the Shear Strength (Pa) the field SPT N-value Factor = Annual Calibration trected corrected for hamm ticiency Factor/60%)*N-unc	n Value er effeciency	Official) – Lea vale Great of WC = water content, percent LL = Liquid Limit PL = Plastic Limit PI = Plasticity Index G = Grain Size Analysis C = Consolidation Test	
Depth (m)	Sample No.	Pen/Rec (cm)	Sample Depth (m)	Blows (150 mm) Shear Strength (KPa) or RQD (%)	N-value	N ₆₀	Casing Blows	Elevation (m)	Graphic Log	Visual	Description and Re	emarks	Laboratory Testing Results/ AASHTO and Unified Class.
0	1D	40.6/10.2	0.00 - 0.41	7/11/50(100 mm)			SSA				ne to coarse SAND,	some gravel, little silt,	
2 -	2D	61.0/43.2	1.52 - 2.13	2/10/18/33	28	30				trace organics. Cobble from 0.4-0.46 Brown, wet, medium silt, occasional cobble	dense, fine to coarse	Sandy GRAVEL, trace	G#210091 A-1-a, GW-GN WC=11.3%
3 -	3D	61.0/45.7	3.05 - 3.66	17/38/36/30	74	78	101	205.85	8 000 2 000 2 000 2 000	Brown, wet, very den silt, occasional cobble		3.20 ND, some gravel, trace	
4 -							206 138 118						
5 -	4D	61.0/35.6	4.57 - 5.18	10/13/23/23	36	38	59 103 134			Brown, wet, dense, fi Roller Coned ahead to		some gravel, trace silt.	G#210092 A-1-b, SW-SM WC=12.9%
6 -	5D	61.0/33.0	6.10 - 6.71	13/15/17	30	32	156 147 73	-		Similar to above. Roller Coned ahead to	o 7.62 m bgs.		
7 -							133 213 166		ě	- coned anead to			
ŀ							135	1					
	6D	61.0/33.0	7.62 - 8.23	10/10/13/16	23	24	89			Brown, wet, medium	dense, fine to mediu	m SAND, trace gravel,	G#210093
Rem	arks:												

Stratification lines represent approximate boundaries between soil types; transitions may be gradual.

Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other than those present at the time measurements were made.

Page 1 of 4

	Main	e Depai	tment of	Transportat	ion	Projec			ridge #2	948 over Wild River,	Boring No.:	BB-GV	VR-103
		Soi	I/Rock Explora METRIC UN			Locati	Route i on: Gil		ine		PIN:	1561	9.00
Drille	er:	N	orthern Test Bor	ring	Elevation	n (m):	209	9.05			Auger ID/OD:	5" Solid Stem	
Ope	ator:	M	ike/Nick		Datum:		NA	VD 88			Sampler:	Standard Split S	Spoon
Log	ged By:	В.	Wilder		Rig Type	:	Die	drich D	-50		Hammer Wt./Fall:	140#/30"	
Date	Start/Fi		20-21/08, 4/8/08	3	Drilling N			sed Wasl	h Boring	5	Core Barrel:	NQ-2"	
	ng Loca		-489, CL		Casing II		HV				Water Level*:	0.97 m bgs.	
Ham Definit		iciency Fact	or: 0.633	R = Rock C	Hammer Core Sample	Type:	Automa		u Field Va	Hydraulic ☐ ane Shear Strength (kPa)	Rope & Cathead Suttai	o) = Lab Vane Shear St	trength (kPa)
D = SI MD = U = TI MU = V = In	olit Spoon Unsuccess nin Wall Tu Unsuccess situ Vane S	sful Split Spoon sube Sample sful Thin Walled Shear Test	Tube Sample atter	SSA = Soli HSA = Holl RC = Rolle npt WOH = we WOR/C = we WO1P = W	d Stem Auger low Stem Aug	er nammer or casing	· - -	T _V = Pock q _p = Unco N-uncorre Hammer I N ₆₀ = SP	tet Torvar onfined Co ected = Ra Efficiency T N-unco	ne Shear Strength (kPa) compressive Strength (Pa) aw field SPT N-value Factor = Annual Calibration rrected corrected for hamm ficiency Factor/60%)*N-unc		water content, percent iquid Limit Plastic Limit Plasticity Index irain Size Analysis onsolidation Test	
ŀ				Sample Information				<u> </u>					Laboratory
Depth (m)	Sample No.	Pen/Rec (cm)	Sample Depth (m)	Blows (150 mm) Shear Strength (KPa) or RQD (%)	N-value	09 _N	Casing Blows	Elevation (m)	Graphic Log	Visual trace coarse sand, trace	Description and Rema	rks	Testing Results/ AASHTO and Unified Class. A-3, SP-SM
8							64			Roller Coned ahead to			WC=20.2%
ŀ							210	-					
\dashv							318	200.52				8.53-	
ŀ							316		9. M. 90				
9							168		0 .00 Do				
İ	7D	51.8/25.4	9.14 - 9.66	12/14/12/30(60)	26	27	131		66.00 °	Brown, wet, medium occasional cobbles.	dense, fine to coarse San	dy GRAVEL,	
_							148	}	. 60 . 69 	Roller Coned ahead to	o 10.67 m bgs.		
ŀ							462		0.00 0.00 0.00				
10									4 0 46 4 0 46 4 0 46 4 0 46				
ŀ							380		\$36.89 \$36.89				
[264]	88.00				
	8D	61.0/35.6	10.67 - 11.28	8/26/17/12	43	45	187		800000 8000000000000000000000000000000		ne to coarse Sandy GRA	VEL, trace silt.	G#210094
11 -							240		0 0 0 0 0 0 0 0 0 0 0 0	Roller Coned ahead to	0 12.19 III 0gs.		A-1-a, GW WC=9.6%
Ī							369]	. 20°06 00. 000.00				
_									88				
ŀ							315	-	80. 80. 60.				
12							316		60 0 0 0 0 0 0 0 0 0 0				
ŀ	9D	61.0/38.1	12.19 - 12.80	40/11/13/13	24	25	135	196.86	9880	Brown, wet, medium	dense, fine to coarse SAN	12.19- ND, some gravel,	
							26			trace silt. Roller Coned ahead to	o 13.72 m bas	_	
İ							43			Roner Coned anead to	0 13.72 HI 0gs.		
13							43						
ŀ							48						
_							54						
14 -	10D	51.8/38.1	13.72 - 14.23	26/17/22/30(60)	39	41	168			Brown, wet, dense, fi	ne to coarse SAND, some	e gravel, trace silt.	G#210095 A-1-b, SW-SM
ŀ							215	1	3. 3.	Cobble from 14.23-14	1 33 m hgs		WC=11.2%
							331	1		COURT HOIR 14.23-14	1.55 III 0gs.		
ŀ							353	}					
15							487						
	11D	61.0/33.0	15.24 - 15.85	14/13/11/11	24	25	217			Brown, wet, medium trace silt.	dense, fine to coarse SAN	ND, little gravel,	
Rem	arks:							<u> </u>	*	uace siit.			
	<u> </u>												

Stratification lines represent approximate boundaries between soil types; transitions may be gradual.

Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other than those present at the time measurements were made.

Page 2 of 4

	Main	ie Depai	tment of	Transportat	ion	Projec	t: Wild	River B	ridge #2	2948 over Wild River,	Boring No	<u>.:</u> <u>BB</u> -	-GWR-103
		_	il/Rock Explora	ation Log		-	Rout i on: Gil	e 2	_		PIN:	1	5619.00
Drill	er.	N	orthern Test Bor	ring	Elevation	(m).	200	9.05			Auger ID/OD:	5" Solid St	em
	rator:		ike/Nick	ing	Datum:	. ().		VD 88			Sampler:	Standard S	
	ged By:		Wilder		Rig Type	,-		edrich D	-50		Hammer Wt./F		piit Spoon
	Start/F		20-21/08, 4/8/08	2	Drilling N			sed Wasl		7	Core Barrel:	NQ-2"	
	ng Loca		-489, CL	,	Casing II		HV		II DOITII	3	Water Level*:	0.97 m bgs	
		iciency Fact	-							Hydraulic □	ļ		
Defin		iciency raci	UI. 0.033	R = Rock (Hammer Core Sample	Type.	Automa		u Field V	ane Shear Strength (kPa)	Rope & Cathead □	S _{u(lab)} = Lab Vane Sh	ear Strength (kPa)
MD = U = T MU = V = Ir	hin Wall Tu Unsucces Isitu Vane	sful Split Spoon a ube Sample sful Thin Walled Shear Test	Sample attempt Tube Sample atter Shear Test attempt	HSA = Hol RC = Rolle mpt WOH = we WOR/C = v	id Stem Auger low Stem Auger Cone eight of 64 kg h weight of rods Veight of one p	er nammer or casing	ı	q _p = Unco N-uncorre Hammer I N ₆₀ = SP	onfined C ected = R Efficiency T N-unco	ne Shear Strength (kPa) ompressive Strength (Pa) aw field SPT N-value r Factor = Annual Calibration rrected corrected for hamm fficiency Factor/60%)*N-unc	er effeciency	WC = water content, pe LL = Liquid Limit PL = Plastic Limit PI = Plasticity Index G = Grain Size Analysis C = Consolidation Test	S
				Sample Information									Laboratory
Depth (m)	Sample No.	Pen/Rec (cm)	Sample Depth (m)	Blows (150 mm) Shear Strength (KPa) or RQD (%)	N-value	N ₆₀	Casing Blows	Elevation (m)	Graphic Log		Description and	Remarks	Testing Results/ AASHTO and Unified Class.
							267	•		Roller Coned ahead to 0.61 m running sand i			
16 -							271						
							323						
							1.10						
							449						
	12D	61.0/55.9	16.76 - 17.37	6/13/17/21	30	32	224			Brown, wet, dense, fi), little gravel, trace si	lt. G#210096 A-1-b, SW
17 -							295	1		Roller Coned ahead to	0 18.29 III bgs.		WC=15.4%
							262	-	· ```.				
							258						
18 -							286	191.07				1′	7.98-
							200	1					
	13D	48.8/38.1	18.29 - 18.78	19/27/34/30(30)	61	64	266	-		Brown, wet, very den silt, occasional cobble		SAND, some gravel, tr	race
							350	1		,			
4.0							600			Cobble from 18.78-18) 91 m bas	
19 -							000			Roller Coned ahead to	0 19.2 III tileli to 15	9.61 III 0gs.	
							350						
							312						
	14D	61.0/45.7	19.81 - 20.42	9/5/4/8	9	9	202	-		Brown, wet, loose, fir	ne to coarse SAND), little gravel, trace sil	lt, G#210097
20 -	14D	01.0/43.7	19.81 - 20.42	9/3/4/8	9	9	202			occasional cobble.		, mae graver, maee sa	A-1-b, SW
							416		1	Roller Coned ahead to	o 21.34 m bgs.		WC=15.6%
							327	-					
							330						
21 -							330	1					
21							424						
	15D	36.6/35.6	21.34 - 21.70	7/14/50(60)	>50		225	1		Brown, wet, very den	se, fine to coarse S	SAND, some gravel, tr	ace
				. ,			224			silt. Roller Coned ahead to	o 22 86 m has		
							334	1		Toner Coned ancad to	. 22.00 m ogs.		
22 -							387]					
		-					447	1					
								1					
		-					507	1					
23 -	16D	61.0/40.6	22.86 - 23.47	25/23/16/16	39	41	237	1		Brown, wet, dense, fi	ne to coarse SANI	O, some gravel, trace s	
							405	1					A-1-b, SW-SM WC=12.8%

Remarks:

Auto Hammer #283

 $Stratification\ lines\ represent\ approximate\ boundaries\ between\ soil\ types;\ transitions\ may\ be\ gradual.$

Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other than those present at the time measurements were made.

Page 3 of 4

	Mair	ie Depai	tment of	Transportat	ion	Projec	et: Wild	River B	ridge #2	2948 over Wild River,	Boring No.:	BB-G	WR-103
		<u>So</u>	il/Rock Explora METRIC UN			Locati	Rout ion: Gi	e 2 lead, Ma	ine		PIN:	156	19.00
Drille	er:	N	orthern Test Boi	ring	Elevation	n (m):	20	9.05			Auger ID/OD:	5" Solid Stem	
Ope	rator:	M	ike/Nick		Datum:		N/	AVD 88			Sampler:	Standard Split	Spoon
Log	ged By:	В	. Wilder		Rig Type):	Di	edrich D	-50		Hammer Wt./Fall:	140#/30"	
Date	Start/F	inish: 3/	20-21/08, 4/8/08	3	Drilling N	Method	: Ca	sed Was	h Boring	g	Core Barrel:	NQ-2"	
Bori	ng Loca	ation: 3+	+489, CL		Casing II	D/OD:	H	V			Water Level*:	0.97 m bgs.	
		iciency Fact	or: 0.633		Hammer	Type:	Autom				Rope & Cathead □		
MD = U = TI MU = V = In	olit Spoon Unsucces nin Wall Ti Unsucces situ Vane	sful Split Spoon sube Sample sful Thin Walled Shear Test	Tube Sample atter	SSA = Sol HSA = Hol RC = Roll mpt WOH = we WOR/C = WO1P = V	Core Sample id Stem Auge llow Stem Aug er Cone eight of 64 kg l weight of rods Veight of one	ger hammer s or casing	J	$T_V = Pock$ $q_p = Unconstant N-uncorrect Hammer N_{60} = SP$	ket Torval onfined C ected = R Efficiency T N-unco	ane Shear Strength (kPa) ne Shear Strength (kPa) ompressive Strength (Pa) aw field SPT N-value r Factor = Annual Calibratio rrrected corrected for hamm fficiency Factor/60%)*N-unc	WC = LL = PL = n Value PI = I ner effeciency G = 0	_{lb)} = Lab Vane Shear S = water content, percen Liquid Limit Plastic Limit Plasticity Index Grain Size Analysis Consolidation Test	
		I		Sample Information									Laboratory
Depth (m)	Sample No.	Pen/Rec (cm)	Sample Depth (m)	Blows (150 mm) Shear Strength (kPa) or RQD (%)	N-value	N ₆₀	Casing Blows	Elevation (m)	Graphic Log	Visual	Description and Rema	ırks	Testing Results/ AASHTO and Unified Class.
\dashv							286						
							355	┨					
24								1		D 11 6 2400 6			
							437	┨		Boulder from 24.08-2	24.54 m bgs.		
_							408	184.51				24.54	G#210000
	17D	61.0/43.2	24.54 - 25.15	5/12/16/15	28	30	467	10	0 0 0 0 0 0		dense, Gravelly fine to c		G#210099 A-1-b, SW-SN
25									600 0 646 0 6	silt. Roller Coned ahead t	o 25.91 m bgs.		WC=11.2%
23							625	1	69.46 9.46 9.46 9.46				
							550	1	2000 2000 2000 2000				
							981	-	a 692				
								183.14	08.500			25.91	GUALOLOO
26	18D	61.0/40.6	25.91 - 26.52	11/24/28/36	52	55	450	105.11		-	ry dense, fine to medium		G#210100 A-2-4, SM
							500	1		trace coarse sand, trac	ce gravei.		WC=22.1%
							478	1		aRoller Coned ahead	to 27.74 m bgs.		
							aRC	182.23				26.82	
27								102.23		Soft weathered Bedro	ock.	20.82	
								1					
								1	77/16/				
								181.31	THE	L			
	R1	152.4/152.4	27.74 - 29.26	RQD = 65%			NQ_ CORE	_		Top of intact Bedrock			
28							COKE	1	Will.		e and grey, coarse graine with banding at 70 degree		
								-		Quality = Fair.	900 1000:		
								1	ST. JO	27.74-28.04 m (2:13)		pressure	
ŀ								-	Mill	28.04-28.35 m (4:18) 28.35-28.65 m (2:37)			
29								1		28.65-28.96 m (1:30)			
	D2	152 4/147 2	20.26 20.79	DOD 970/				1		28.96-29.26 m (1:45) R2: Rock Quality = 0			
	R2	152.4/147.3	29.26 - 30.78	RQD = 87%				1		Core Times (min:sec))		
ļ								1	ST. JO	29.26-29.57 m (3:20) 29.57-29.87 m (3:25)			
30								1	Mill	29.87-30.18 m (2:57)			
50								4		30.18-30.48 m (3:09) 30.48-30.78 m (2:40)			
ŀ								1	(Jell)	, ,	•		
								4					
ŀ							\perp	178.27	CHING	Rottom of Evolution	ation at 30.78 m below g	30.78	1
31								4		Doctom of Explore	ut coo iii beidw g	, vana sai iacc.	
Rem	arke:	·						•	_	·			

Stratification lines represent approximate boundaries between soil types; transitions may be gradual.

Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other than those present at the time measurements were made.

Page 4 of 4

Appendix B

Laboratory Data

State of Maine - Department of Transportation <u>Laboratory Testing Summary Sheet</u>

Town(s):	Gilea	d			Proje	ect l	Nur	nbo	er: 15	619.0)0
Boring & Sample	Station	Offset	Depth	Reference	G.S.D.C.	W.C.	L.L.	P.I.	Clas	sification	า
Identification Number	(Meter)	(Meter)	(Meter)	Number	Sheet				Unified	AASHTO	Frost
BB-GWR-101, 1D	3+410	CL	0.0-0.61	209912	1	15.0			SP-SM	A-3	0
BB-GWR-101, 2D	3+410	CL	1.22-1.83	209913	1	2.9			GW-GM		0
BB-GWR-101, 3D	3+410	CL	2.74-3.3	209914	1	10.2			GW	A-1-a	0
BB-GWR-101, 5D	3+410	CL	5.79-6.4	209915	1	23.4			SM	A-2-4	Ш
BB-GWR-101, 6D	3+410	CL	7.32-7.92	209916	2	24.3			SM	A-2-4	Ш
BB-GWR-101, 7D	3+410	CL	8.84-9.45	209917	2	17.5			SP-SM	A-2-4	0
BB-GWR-101, 8D	3+410	CL	10.36-10.97	209918	2	9.2			SM	A-1-b	Ш
BB-GWR-101, 9D	3+410	CL	12.04-12.65	209919	2	9.0			GP-GM	A-1-a	0
BB-GWR-102, RB	3+450	CL	SURFACE	208756	3	11.8			GP	A-1-a	0
BB-GWR-102, 2D	3+450	CL	1.52-2.13	208757	3	26.3			SM	A-2-4	Ш
BB-GWR-102, 3D	3+450	CL	2.74-3.35	208758	3	14.3			SW	A-1-a	0
BB-GWR-102, 4D	3+450	CL	4.27-4.88	208759	3	15.7			SP	A-3	0
BB-GWR-102, 5D	3+450	CL	5.79-6.4	208760	3	8.7			GW	A-1-a	0
BB-GWR-102, 7D	3+450	CL	8.84-9.45	208761	4	10.6			SW	A-1-a	0
BB-GWR-102, 8D	3+450	CL	10.36-10.97	208762	4	15.3			SP	A-1-b	0
BB-GWR-102, 9D	3+450	CL	11.89-12.5	208763	4	19.0			SP	A-1-b	0
BB-GWR-102, 10D	3+450	CL	13.41-14.02	208764	4	4.9			GW-GM	A-1-a	0
BB-GWR-102, 11D	3+450	CL	22.56-22.86	208765	4	19.3			SP-SM	A-3	0
BB-GWR-102, 12D	3+450	CL	24.08-24.51	208766	4	15.1			SM	A-2-4	Ш
BB-GWR-103, 2D	3+489	CL	1.52-2.13	210091	5	11.3			GW-GM	A-1-a	0
BB-GWR-103, 4D	3+489	CL	4.57-5.18	210092	5	12.9			SW-SM	A-1-b	0
BB-GWR-103, 6D	3+489	CL	7.62-8.23	210093	5	20.2			SP-SM	A-3	0
BB-GWR-103, 8D	3+489	CL	10.67-11.28	210094	5	9.6			GW	A-1-a	0
BB-GWR-103, 10D	3+489	CL	13.72-14.23	210095	5	11.2			SW-SM	A-1-b	0
BB-GWR-103, 12D	3+489	CL	16.76-17.37	210096	6	15.4			SW	A-1-b	0
BB-GWR-103, 14D	3+489	CL	19.81-20.42	210097	6	15.6			SW	A-1-b	0
BB-GWR-103, 16D	3+489	CL	22.86-23.47	210098	6	12.8			SW-SM	A-1-b	0
BB-GWR-103, 17D	3+489	CL	24.54-25.15	210099	6	11.2			SW-SM	A-1-b	0
BB-GWR-103, 18D	3+489	CL	25.91-26.52	210100	6	22.1			SM	A-2-4	II

Classification of these soil samples is in accordance with AASHTO Classification System M-145-40. This classification is followed by the "Frost Susceptibility Rating" from zero (non-frost susceptible) to Class IV (highly frost susceptible).

The "Frost Susceptibility Rating" is based upon the MDOT and Corps of Engineers Classification Systems.

GSDC = Grain Size Distribution Curve as determined by AASHTO T 88-93 (1996) and/or ASTM D 422-63 (Reapproved 1998)

WC = water content as determined by AASHTO T 265-93 and/or ASTM D 2216-98

LL = Liquid limit as determined by AASHTO T 89-96 and/or ASTM D 4318-98

PI = Plasticity Index as determined by AASHTO 90-96 and/or ASTM D4318-98

HYDROMETER ANALYSIS Grain Diameter, mm 0.005 0.010 0.01 SILT 0.03 State of Maine Department of Transportation GRAIN SIZE DISTRIBUTION CURVE 0.05 #200 Grain Diameter, mm #100 09# #40 SAND #16 #20 SIEVE ANALYSIS US Standard Sieve Numbers #8 #10 1" 3/4" GRAVEL 2" 1-1/2"

Percent Retained by Weight

50

2

9

10

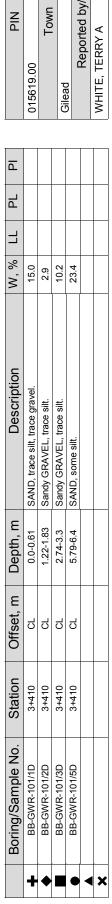
0

100

90

80

70


50

Percent Finer by Weight

9

0.001

20

UNIFIED CLASSIFICATION

100

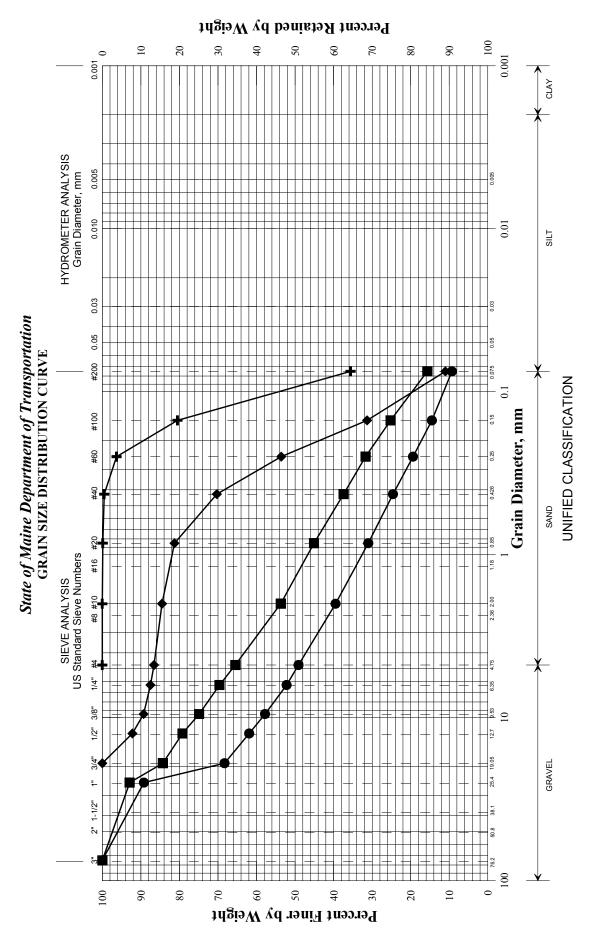
0

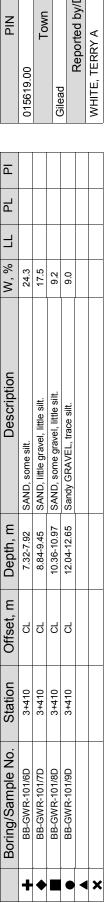
10

30

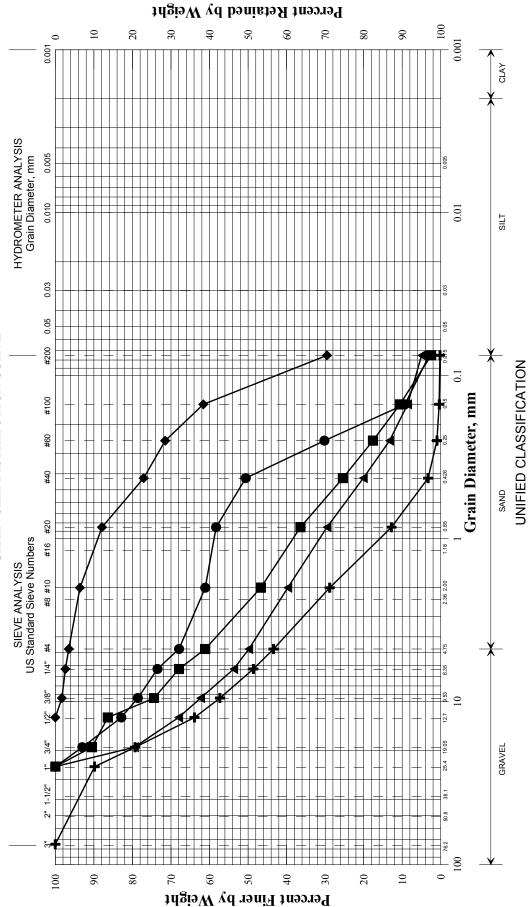
40

20

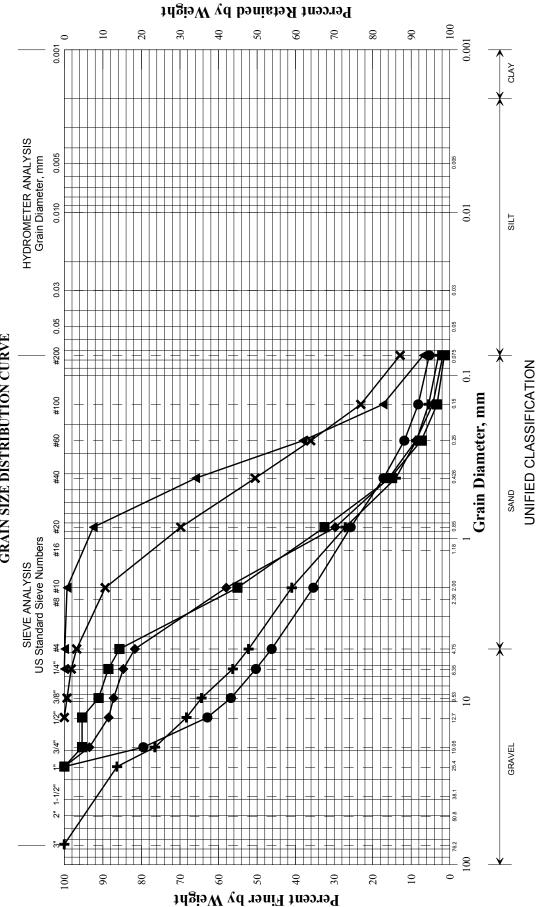

PIN 015619.00	Reported by/Date WHITE, TERRY A 5/27/2008
---------------	---


100

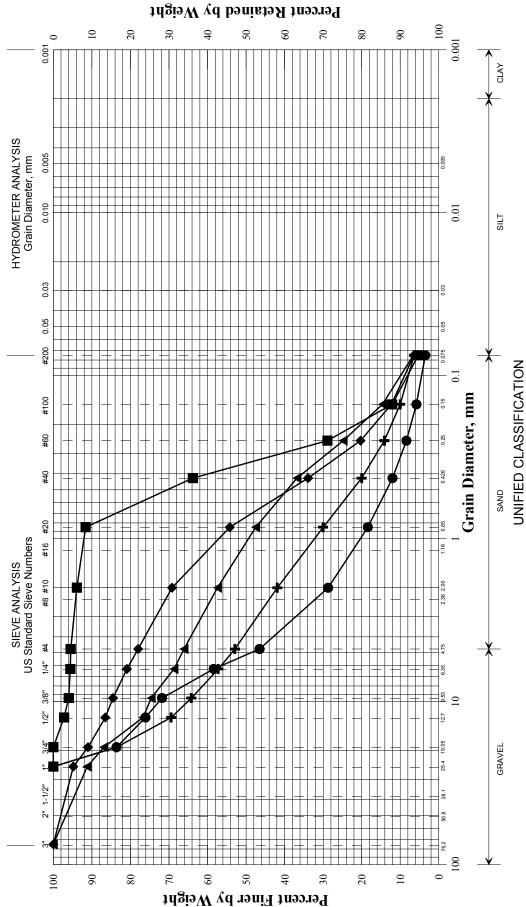
0.001


8

80

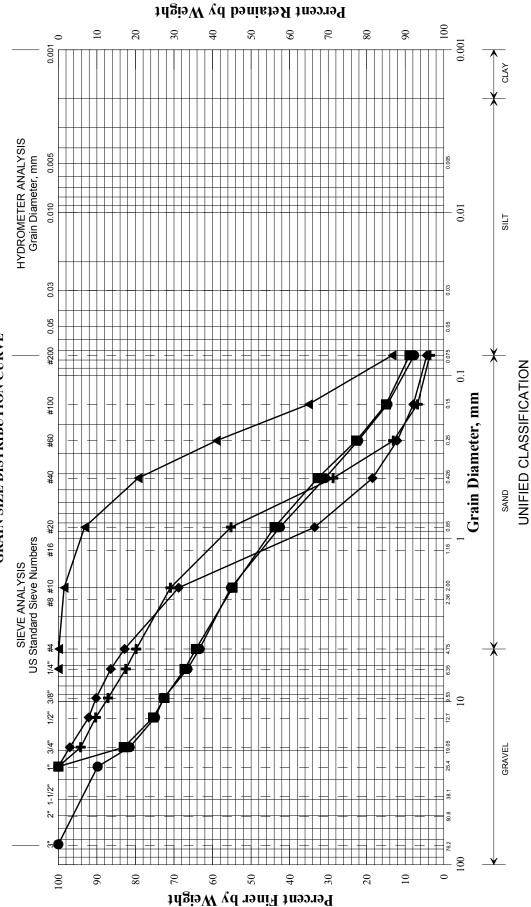


	015619.00		prolicy		Керопе	WHITE, TERRY A
딥						
Ы						
TT						
W, % LL PL	11.8	26.3	14.3	15.7	8.7	
Description	SURFACE Sandy GRAVEL, trace silt.	1.52-2.13 SAND, some silt, trace gravel.	Gravelly SAND, trace silt.	4.27-4.88 SAND, some gravel, trace silt.	Sandy GRAVEL, trace silt.	
Depth, m	SURFACE	1.52-2.13	2.74-3.35	4.27-4.88	5.79-6.4	
Offset, m Depth, m	CL	CL	占	CF	占	
Station	3+450	3+450	3+450	3+450	3+450	
Boring/Sample No.	BB-GWR-102/RIVER BED	BB-GWR-102/2D	BB-GWR-102, 3D	BB-GWR-102/4D	BB-GWR-102/5D	
	+	•		•	•	×


State of Maine Department of Transportation GRAIN SIZE DISTRIBUTION CURVE

	015619.00	ĭ	Proglicy		еропе	WHITE, TERRY A
_						
_						
W, % LL PL						
П %	9	3	0		3	_
Š	10.6	15.3	19.0	4.9	19.3	15.1
Description	Gravelly SAND, trace silt.	10.36-10.97 SAND, little gravel, trace silt.	11.89-12.5 SAND, little gravel, trace silt.	13.41-14.02 Sandy GRAVEL, trace silt.	22.56-22.86 SAND, trace silt, trace gravel.	24.08-24.51 SAND, little silt, trace gravel.
Depth, m	8.84-9.45	10.36-10.97	11.89-12.5	13.41-14.02	22.56-22.86	24.08-24.51
Offset, m Depth, m	CL	CL	占	CL	CL	CL
Station	3+450	3+450	3+450	3+450	3+450	3+450
Boring/Sample No.	BB-GWR-102/7D	BB-GWR-102/8D	BB-GWR-102/9D	BB-GWR-102/10D	BB-GWR-102/11D	BB-GWR-102/12D
	+	•		•	4	×

NId	
015619.00	
Town	
Gilead	
Reported by/Date	Date
WHITE, TERRY A	9/29/2008



	Boring/Sample No.	Station	Offset, m Depth, m	Depth, m	Description	W, % LL PL	<u></u>	굽	己	<u> </u>
+	BB-GWR-103/2D	3+489	J C	1.52-2.13	1.52-2.13 Sandy GRAVEL, trace silt.	11.3				015619.00
•	BB-GWR-103/4D	3+489	JO	4.57-5.18	4.57-5.18 SAND, some gravel, trace silt.	12.9				o _L
	BB-GWR-103/6D	3+489	CF	7.62-8.23	7.62-8.23 SAND, trace silt, trace gravel.	20.2				
•	BB-GWR-103/8D	3+489	J)	10.67-11.28	10.67-11.28 Sandy GRAVEL, trace silt.	9.6				Clicad
•	BB-GWR-103/10D	3+489	ر ا	13.72-14.23	13.72-14.23 SAND, some gravel, tarce silt.	11.2				керопес
×										WHITE, TERRY A

NIA	
015619.00	
Town	_
Gilead	
Reported by/Date	by/Date
WHITE, TERRY A	4/29/2008

	015619.00		Predict		Пероп	WHITE, TERRY
귭						
W, % LL PL						
TT						
W, %	15.4	15.6	12.8	11.2	22.1	
Description	16.76-17.37 SAND, little gravel, trace silt.	19.81-20.42 SAND, little gravel, trace silt.	22.86-23.47 SAND, some gravel, trace silt.	24.54-25.15 Gravelly SAND, trace silt.	25.91-26.52 SAND, little silt, trace gravel.	
Depth, m	16.76-17.37	19.81-20.42	22.86-23.47	24.54-25.15	25.91-26.52	
Offset, m Depth, m	CL	占	CF	CC	CF	
Station	3+489	3+489	3+489	3+489	3+489	
Boring/Sample No.	BB-GWR-103/12D	BB-GWR-103/14D	BB-GWR-103/16D	BB-GWR-103/17D	BB-GWR-103/18D	
	+	♦		•	4	×

Appendix C

Calculations

Abutment Foundations: Integral driven H-piles

Axial Structural Resistance of H-piles

Ref: AASHTO LRFD Bridge Design Specifications 4th Edition 2007

Look at the following piles:

HP 12 x 53

HP 14 x 73

Note: All matrices set up in this order

HP 14 x 89

HP 14 x 117

H-pile Steel area:

$$A_s := \begin{pmatrix} 15.5 \\ 21.4 \\ 26.1 \\ 34.4 \end{pmatrix} \cdot \text{in}^2 \qquad \qquad \text{yield strength:} \quad F_y := 50 \cdot \text{ksi}$$

Nominal Compressive Resistance $P_n=0.66^{\lambda *}F_v^*A_s$: eq. 6.9.4.1-1

Where λ =normalized column slenderness factor

 $\lambda = (KI/r_s\pi)2*F_v/E$

eq. 6.9.4.1-3

 $\lambda := 0$ as I = unbraced length = 0

$$P_n := 0.66^{\lambda} \cdot F_y \cdot A_s$$

$$P_n := 0.66^{\lambda} \cdot F_y \cdot A_s \qquad \qquad P_n = \begin{pmatrix} 775 \\ 1070 \\ 1305 \\ 1720 \end{pmatrix} \cdot kip \qquad \begin{array}{l} \text{HP 12 x 53} \\ \text{HP 14 x 73} \\ \text{HP 14 x 89} \\ \text{HP 14 x 117} \\ \end{array}$$

STRENGTH LIMIT STATE:

Factored Resistance:

Driving conditions are assumed "severe" due to the presence of cobbles and boulders.

Strength Limit State Axial Resistance factor for piles in compression under severe driving conditions:

From Article 6.5.4.2

 $\phi_c := 0.5$

Factored Compressive Resistance:

$$P_f := \varphi_c \cdot P_n$$

$$P_{f} = \begin{pmatrix} 388 \\ 535 \\ 653 \\ 860 \end{pmatrix} \cdot kip$$

$$P_{f} = \begin{pmatrix} 1724 \\ 2380 \\ 2902 \\ 3825 \end{pmatrix} \cdot kN$$

Strength Limit State

SERVICE/EXTREME LIMIT STATES:

Service and Extreme Limit States Axial Resistance

Nominal Compressive Resistance $P_n = 0.66^{\lambda *} F_v^* A_s$: eq. 6.9.4.1-1

Where λ =normalized column slenderness factor

$$\lambda = (KI/r_s\pi)2*F_v/E$$
 eq. 6.9.4.1-3

 $\lambda := 0$ as I unbraced length is 0

$$P_n := 0.66^{\lambda} \cdot F_y \cdot A_s \qquad \qquad P_n = \begin{pmatrix} 775 \\ 1070 \\ 1305 \\ 1720 \end{pmatrix} \cdot \begin{array}{l} \text{HP 12 x 53} \\ \text{HP 14 x 73} \\ \text{HP 14 x 89} \\ \text{HP 14 x 117} \\ \end{pmatrix}$$

Resistance Factors for Service and Extreme Limit States $\phi = 1.0$ LRFD 10.5.5.1 and 10.5.8.3

$$\phi := 1.0$$

Factored Compressive Resistance for Service and Extreme Limit States:

Geotechnical Resistance

Assume piles will be end bearing on bedrock driven through overlying sand with cobbles and boulders.

Bedrock Type:

Gneiss RQD ranges from 65 to 93% Use RQD = 80% and ϕ = 27 to 34 deg (Tomlinson 4th Ed. pg 139)

Axial Geotechnical Resistance of H-piles

Ref: AASHTO LRFD Bridge Design Specifications 4th Edition 2007

Look at these piles:

HP 12 x 53

HP 14 x 73 Note: All matrices set up in this order

HP 14 x 89

HP 14 x 117

Steel area:

$$A_s = \begin{pmatrix} 15.5 \\ 21.4 \\ 26.1 \\ 34.4 \end{pmatrix} \cdot \text{in}^2 \qquad \qquad \begin{aligned} & \text{Pile depth:} \\ & d := \begin{pmatrix} 11.78 \\ 13.61 \\ 13.83 \\ 14.21 \end{pmatrix} \cdot \text{in} \qquad \qquad \\ & b := \begin{pmatrix} 12.045 \\ 14.585 \\ 14.695 \\ 14.885 \end{pmatrix} \cdot \text{in} \end{aligned}$$

End bearing resistance of piles on bedrock - LRFD code specifies Canadian Geotech Method 1985 (LRFD Table 10.5.5.2.3-1) Canadian Foundation Manual 4th Edition (2006) Section 18.6.3.3.

Average compressive strength of rock core from AASHTO Standard Spec for Highway Bridges 17 Ed. Table 4.4.8.1.2B pg 64

qu for gneiss compressive strength ranges from 3500 to 45000 psi

use
$$\sigma_c := 25000 \cdot psi$$

Determine K_{sp}: From Canadian Foundation Manual 4th Edition (2006) Section 9.2

Spacing of discontinuities: $c := 36 \cdot in$ Assumed based on rock core

Aperture of discontinuities: $\delta := \frac{1}{64} \cdot \text{in}$ joints are tight

Footing width, b: $b = \begin{pmatrix} 12.045 \\ 14.585 \\ 14.695 \\ 14.885 \end{pmatrix} \cdot \text{in} \qquad \begin{array}{l} \text{HP 12 x 53} \\ \text{HP 14 x 73} \\ \text{HP 14 x 117} \\ \text{HP 14 x 117} \\ \end{array}$

 $K_{sp} := \frac{3 + \frac{c}{b}}{10 \cdot \left(1 + 300 \cdot \frac{\delta}{c}\right)^{0.5}} \qquad K_{sp} = \begin{pmatrix} 0.5633 \\ 0.5144 \\ 0.5126 \\ 0.5097 \end{pmatrix} \qquad K_{sp} \text{ includes a factor of safety of 3}$

Length of rock socket, L_s:

$$L_s := 0 \cdot in$$

Pile is end bearing on rock

Diameter of socket, B_s:

$$B_s := 1 \cdot ft$$

depth factor, d_f:
$$d_f := 1 + 0.4 \Biggl(\frac{L_s}{B_s}\Biggr) \qquad \qquad d_f = 1 \label{eq:def}$$

$$d_f = 1$$

should be < or = 3

$$q_a := \sigma_c \cdot K_{sp} \cdot d_f$$

$$q_{a} = \begin{pmatrix} 2028 \\ 1852 \\ 1845 \\ 1835 \end{pmatrix} \cdot ksf$$

Nominal Geotechnical Tip Resistance, R_D:

Multiply by 3 to take out FS=3 on K_{sp}

$$R_p := \overrightarrow{\left(3q_a \cdot A_s\right)}$$

$$R_{p} := \overrightarrow{\left(3q_{a} \cdot A_{s}\right)} \qquad \qquad R_{p} = \begin{pmatrix} 655 \\ 826 \\ 1003 \\ 1315 \end{pmatrix} \cdot \text{kip} \qquad \begin{array}{l} \text{HP 12 x 53} \\ \text{HP 14 x 73} \\ \text{HP 14 x 117} \\ \text{HP 14 x 117} \\ \end{array}$$

STRENGTH LIMIT STATE:

Factored Geotechnical Resistance at Strength Limit State:

Resistance factor, end bearing on rock (Canadian Geotech. Society, 1985 method):

Nominal resistance of Single Pile in Axial Compression -Static Analysis Methods, \$\phi_{\text{stat}}\$

$$\phi_{\text{stat}} := 0.45$$

LRFD Table 10.5.5.2.3-1

$$R_f := \varphi_{stat} \cdot R_p$$

$$R_{f} := \phi_{stat} \cdot R_{p}$$

$$R_{f} = \begin{pmatrix} 295 \\ 372 \\ 452 \\ 592 \end{pmatrix} \cdot \text{kip}$$

$$R_{f} = \begin{pmatrix} 1311 \\ 1653 \\ 2009 \\ 2632 \end{pmatrix} \cdot \text{kip}$$

Strength Limit State

SERVICE/EXTREME LIMIT STATES:

Factored Geotechnical Resistance at the Service/Extreme Limit States:

Resistance Factors for Service and Extreme Limit States $\phi = 1.0$

LRFD 10.5.5.1 and 10.5.8.3

$$\phi := 1.0$$

$$R_{fse} := \phi \cdot R_{p} \qquad R_{fse} = \begin{pmatrix} 655 \\ 826 \\ 1003 \\ 1315 \end{pmatrix} \cdot kip \qquad R_{fse} = \begin{pmatrix} 2913 \\ 3672 \\ 4464 \\ 5849 \end{pmatrix} \cdot kN$$

$$R_{fse} = \begin{pmatrix} 2913 \\ 3672 \\ 4464 \\ 5849 \end{pmatrix} \cdot kN$$

By: Kate Maguire October 2008 Checked by: LK Nov 2008

DRIVABILITY ANALYSIS Ref: LRFD Article 10.7.8

For steel piles in compression or tension $\sigma_{dr} = 0.9 \text{ x } \phi_{da} \text{ x f}_{v} \text{ (eq. 10.7.8-1)}$

 $f_{y} := 50 \cdot ksi \qquad \text{yield strength of steel}$

resistance factor from LRFD Table 10.5.5.2.3-1 $\phi_{da} := 1.0$

Pile Drivability Analysis, Steel piles

 $\sigma_{dr} = 45 \cdot ksi$ driving stresses in pile can not exceed 45 ksi $\sigma_{dr} := 0.9 \cdot \phi_{da} \cdot f_{v}$

Compute Resistance that can be achieved in a drivability analysis:

The resistance that must be achieved in a drivability analysis will be the maximum applied pile axial load (must be less than the the factored geotechnical resistance from above as this governs) divided by the appropriate resistance factor for wave equation analysis and dynamic test which will be required for construction.

Table 10.5.5.2.3-1 pg 10-38 gives resistance factor for dynamic test, ϕ_{dvn} :

$$\phi_{dyn} := 0.65$$

There are 5 piles at each abutment. No reduction of Φ_{dyn} is necessary.

Pile Size = 12×53

Assume Contractor will use a Delmag D19-42 hammer to install 12 x 53 piles

27-Sep-2008 Version 2003	2 FRLWEAP (TM) V	G	State of Maine Dept. Of Transportation Gilead Wild River Bridge				
Energy kips-ft	Stroke feet	Blow Count blows/in	Maximum Tension Stress ksi	Maximum Compression Stress ksi	Ultimate Capacity kips		
21.58 22.24 23.08 23.57 23.59 23.74 23.80 23.88 23.95	7.73 7.97 8.29 8.45 8.48 8.52 8.55 8.58 8.60	3.8 5.5 7.9 12.5 13.8 15.0 16.6 18.5 20.7	6.34 7.42 8.17 8.73 8.72 8.79 8.80 8.87 8.94	35.00 37.75 40.37 42.24 42.53 42.90 43.20 43.47 43.75	300.0 350.0 400.0 450.0 460.0 (470.0 480.0 490.0 500.0		

Limited to blow count to 15 blows per inch

Strength Limit State:

 $R_{dr_12x53_factored} := 470 \cdot kip \cdot \varphi_{dyn}$

 $R_{dr_{12x53_{factored}}} = 1359 \cdot kN$ $R_{dr_12x53_factored} = 306 \cdot kip$

Service and Extreme Limit States: $\phi := 1.0$

 $R_{dr_{12x53_servext}} := 470 \cdot kip$ $R_{dr_{12x53}_{servext}} = 2091 \cdot kN$ Skin Damping Toe Damping

DELMAG D 19-42

Efficiency

Skin Quake

Toe Quake

Helmet Hammer Cushion

Pile Length Pile Penetration

Pile Top Area

110.00 ft 110.00 ft 15.50 in2

Skin Friction

0.800

3.20 kips 109975 kips/in

0.100 in

0.040 in

0.050 sec/ft

0.150 sec/ft

Pile Model

Res. Shaft = 10 % (Proportional)

Pile Size = 14 x 73

Assume Contractor will use a Delmag D36-32 hammer on second fuel setting to install 14 x 73 piles

State of Mair Gilead Wild F	ie Dept. Of Transp River Bridge	oortation	GF	2 RLWEAP (TM) V	7-Sep-2008 ersion 2003
Ultimate Capacity kips	Maximum Compression Stress ksi	Maximum Tension Stress ksi	Blow Count blows/in	Stroke feet	Energy kips-ft
570.0 580.0 590.0 600.0 605.0 610.0 620.0 630.0 640.0	43.62 44.00 44.42 44.80 45.00 45.19 45.56 45.92 46.25	6.56 6.64 6.72 6.79 6.82 6.85 6.89 6.93 6.95	6.0 6.3 6.6 7.0 7.2 7.4 7.9 8.3 8.7	7.07 7.11 7.15 7.20 7.22 7.24 7.28 7.32 7.35	39.76 40.00 40.26 40.50 40.60 40.73 40.89 41.15 41.32

Limit to driving stress to 45 ksi

Strength Limit State:

 $R_{dr_14x73_factored} := 605 \cdot kip \cdot \varphi_{dyn}$

 $R_{dr_14x73_factored} = 393 \cdot kip$

 $R_{dr_14x73_factored} = 1749 \cdot kN$

Service and Extreme Limit States: $\phi := 1.0$

 $R_{dr_14x73_servext} := 605 \cdot kip$

 $R_{dr 14x73 servext} = 2691 \cdot kN$

DELMAG D 36-32

Efficiency 0.800 Helmet 3.20 kips Hammer Cushion 109975 kips/in Skin Quake 0.100 in Toe Quake 0.040 in 0.050 sec/ft Skin Damping Toe Damping 0.150 sec/ft Pile Length 110.00 ft

 Pile Length
 110.00 ft

 Pile Penetration
 110.00 ft

 Pile Top Area
 21.40 in2

Skin Friction
Pile Model
Distribution

Res. Shaft = 10 % (Proportional)

Pile Size = 14×89

Assume Contractor will use a Delmag D36-32 hammer on third fuel setting to install 14 x 89 piles

			G	RLWEAP (TM) V	ersion 2003
Ultimate Capacity kips	Maximum Compression Stress ksi	Maximum Tension Stress ksi	Blow Count blows/in	Stroke feet	Energy kips-ft
600.0 610.0 620.0 630.0 640.0 650.0 660.0 670.0	42.43 42.55 42.95 43.34 43.66 44.00 44.37 44.74 45.05	6.17 6.24 6.29 6.36 6.42 6.48 6.55 6.59	4.7 4.9 5.1 5.3 5.6 5.8 6.1 6.3	7.62 7.59 7.63 7.67 7.70 7.74 7.78 7.82 7.85	43.27 43.10 43.26 43.51 43.68 43.86 44.12 44.27

Limit to driving stress to 45 ksi

Strength Limit State:

$$R_{dr_14x89_factored} := 680 \cdot kip \cdot \varphi_{dyn}$$

$$R_{dr_14x89_factored} = 442 \cdot kip \qquad \qquad R_{dr_14x89_factored} = 1966 \cdot kN$$

Service and Extreme Limit States: $\phi := 1.0$

$$R_{dr_14x89_servext} := 680 \cdot kip$$

$$R_{dr_14x89_servext} = 3025 \cdot kN$$

DELMAG D 36-32

Efficiency	0.800
Helmet	3.20 kips
Hammer Cushion	109975 kips/in
Skin Quake	0.100 in
Toe Quake	0.040 in
Skin Damping	0.050 sec/ft
Toe Damping	0.150 sec/ft
Pile Length	110.00 ft
Pile Penetration	110.00 ft
Pile Top Area	26.10 in2

Skin Friction

Distribution

Res. Shaft = 10 % (Proportional)

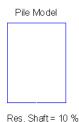
Pile Size = 14 x 117

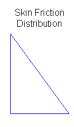
Assume Contractor will use a Delmag D36-32 hammer on highest fuel setting to install 14 x 117 piles

State of Mair Gilead Wild F	ne Dept. Of Transp River Bridge	G	2 RLWEAP (TM) V	7-Sep-2008 ersion 2003	
Ultimate Capacity kips	Maximum Compression Stress ksi	Maximum Tension Stress ksi	Blow Count blows/in	Stroke feet	Energy kips-ft
770.0 780.0 790.0 800.0 810.0 820.0 830.0 835.0	43.55 43.58 43.85 44.15 44.40 44.65 44.86 44.99	5.01 5.07 5.12 5.17 5.22 5.27 5.32 5.34 5.37	5.7 6.0 6.2 6.3 6.5 6.7 7.0 7.1	8.68 8.62 8.64 8.67 8.69 8.71 8.73 8.74	48.05 47.81 47.84 48.02 48.19 48.26 48.29 48.34 48.47

Limit to driving stress to 45 ksi

Strength Limit State:


$$R_{dr_14x117_factored} \coloneqq 835 \cdot kip \cdot \varphi_{dyn}$$


$$R_{dr_14x117_{factored}} = 543 \cdot kip$$
 $R_{dr_14x117_{factored}} = 2414 \cdot kN$

Service and Extreme Limit States: $\phi := 1.0$

 DELMAG D 36-32

Efficiency	0.800
Helmet	3.20 kips
Hammer Cushion	109975 kips/in
Skin Quake	0.100 in
Toe Quake	0.040 in
Skin Damping	0.050 sec/ft
Toe Damping	0.150 sec/ft
Pile Length	110.00 ft
Pile Penetration	110.00 ft
Pile Top Area	34.40 in2

Res. Shaft = 10 % (Proportional)

Pipe Pile Supported Pier

Calculate Depth to Fixity for pipe piles:

Soil conditions at boring BB-GWR-102:

84 ft of fill sand, gravel, cobbles and boulders over bedrock

Consider Pile sizes:

24 in diameter 1/2 in wall 26 in diameter 1/2 in wall 28 in diameter 1/2 in wall 30 in diameter 1/2 in wall

24 in diameter 5/8 in wall 26 in diameter 5/8 in wall

28 in diameter 5/8 in wall 30 in diameter 5/8 in wall Diameter of piles:

Pipe pile wall thickness:

$$dia_{steel} := \begin{pmatrix} 24 \\ 26 \\ 28 \\ 30 \end{pmatrix} \cdot in \qquad wall_t := \begin{pmatrix} \frac{1}{2} \\ \frac{5}{8} \end{pmatrix} \cdot in$$

$$wall_t := \begin{pmatrix} \frac{1}{2} \\ \frac{5}{8} \end{pmatrix} \cdot in$$

Corrosion loss per MaineDOT BDG:

$$cor := \frac{1}{8}in$$

$$dia_{steelcor} := dia_{steel} - 2 \cdot cor$$
 $dia_{steelco}$

$$dia_{steelcor} := dia_{steel} - 2 \cdot cor \qquad dia_{steelcor} = \begin{pmatrix} 23.75 \\ 25.75 \\ 27.75 \\ 29.75 \end{pmatrix} \cdot in \qquad wall_{cor} := wall_t - cor \qquad wall_{cor} = \begin{pmatrix} 0.375 \\ 0.5 \end{pmatrix} \cdot in$$

$$wall_{cor} = \begin{pmatrix} 0.375 \\ 0.5 \end{pmatrix} \cdot ir$$

$$dia_{conccore_0.5} := dia_{steel} - 2 \cdot \frac{1}{2} \cdot in$$

$$dia_{conccore_0.5} = \begin{pmatrix} 23 \\ 25 \\ 27 \\ 20 \end{pmatrix} \cdot in \qquad \begin{array}{c} \text{Diameter concrete core for 1/2" thick} \\ \text{wall} \end{array}$$

$$dia_{conccore_0.625} \coloneqq dia_{steel} - 2 \cdot \frac{5}{8} \cdot in$$

$$dia_{conccore_0.625} = \begin{pmatrix} 22.75 \\ 24.75 \\ 26.75 \\ 20.75 \end{pmatrix}$$
 Diameter concrete core for 5/8" thick wall

$$A_{0.5} := \pi \cdot \left(\frac{dia_{steelcor}}{2}\right)^2 - \pi \cdot \left(\frac{dia_{conccore_0.5}}{2}\right)^2 \qquad A_{0.5} = \begin{pmatrix} 27.54 \\ 29.89 \\ 32.25 \\ 34.61 \end{pmatrix} \cdot in^2 \qquad \text{STEEL AREA FOR 1/2" PILES with 1/8" corrosion loss}$$

$$A_{0.625} := \pi \cdot \left(\frac{\text{dia}_{steelcor}}{2}\right)^2 - \pi \cdot \left(\frac{\text{dia}_{conccore_0.625}}{2}\right)^2 \qquad A_{0.625} = \begin{pmatrix} 36.52\\ 39.66\\ 42.8\\ 45.95 \end{pmatrix} \cdot \text{in}^2 \quad \text{STEEL AREA FOR 5/8" PILES with 1/8" corrosion loss}$$

$$A_{0.625} = \begin{pmatrix} 36.52 \\ 39.66 \\ 42.8 \\ 45.95 \end{pmatrix} \cdot \text{in}^2$$

Transformed pile properties of 1/2 inch wall pile:

unit weight of concrete: wc := 0.15 in kips per cubic foot

compressive strength of concrete: $f_c := 4.45$ in ksi

Modulus of elasticity of concrete: $E_c := 33000 \cdot wc^{1.5} \cdot \sqrt{f_c} \cdot 1000 \cdot psi$ $E_c = 4044 \cdot ksi$

Steel modulus: $E_{\text{steel}} := 29000 \cdot \text{ksi}$

 $n := \frac{E_{steel}}{E_c} \hspace{1cm} \text{MaineDOT Structural engineers routinely use:} \\ n := 7.6$

Moment of inertia of concrete core:

$$I_{c_0.5} := \frac{\pi \cdot \text{dia}_{\text{conccore}_0.5}^{4}}{64} \qquad I_{c_0.5} = \begin{pmatrix} 0.662\\0.925\\1.258\\1.674 \end{pmatrix} \text{ft}^{4}$$

Moment of inertia of steel pipe: $I_{s_0.5} := \frac{\pi \cdot \overline{\left(\operatorname{dia}_{steelcor}^4 - \operatorname{dia}_{conccore_0.5}^4\right)}}{64} \qquad I_{s_0.5} = \begin{pmatrix} 0.091 \\ 0.116 \\ 0.146 \\ 0.146 \end{pmatrix} \text{ft}^4$

Composite Moment of Inertia: $I_{t_0.5} := \overline{\left(\frac{I_{c_0.5}}{n} + I_{s_0.5}\right)} \qquad I_{t_0.5} = \begin{pmatrix} 0.178 \\ 0.238 \\ 0.311 \\ 0.4 \end{pmatrix} ft^4$

Transformed Area: $A_{conc_0.5} := \pi \cdot \frac{dia_{conccore_0.5}^2}{4}$ $A_{conc_0.5} = \begin{pmatrix} 415.48 \\ 490.87 \\ 572.56 \\ 660.52 \end{pmatrix} \cdot in^2$ $A_{conc_0.5} = \begin{pmatrix} 0.571 \\ 0.$

 $A_{t_0.5} := A_{0.5} + \frac{A_{conc_0.5}}{n}$ $A_{t_0.5} = \begin{pmatrix} 0.571 \\ 0.656 \\ 0.747 \\ 0.844 \end{pmatrix} \cdot ft^{2}$

LRFD Eq.10.7.3.13.4-2 for fixity in feet: $1.8*(E_p I_w/n_h)^{0.2}$ (in sands)

Ep Young's modulus of pile in ksi

Iw moment of inertia of pile in ft4

n_h= rate of increase of soil modulus with depth for sands as specified in Table C10.4.6.3-2 in ksi/ft

Use equation for sands in NCHRP#343 pg 61:

$$L_{eq}=L_u+1.8T$$
 where:

L_{eq} = equivalent free standing length of pile

L_u = unsupported length of pile extending above ground

$$T=(E_p*I_p/n_h)^{0.2}$$

Rate of increase of soil modulus with depth: for submerged medium dense sand

$$n_h := 0.556 \cdot \frac{ksi}{ft}$$

T parameter:

$$T_{0.5} := \left(\frac{E_{\text{steel}} \cdot I_{t_0.5}}{n_{\text{h}}}\right)^{0.2} \qquad T_{0.5} = \begin{pmatrix} 6.22 \\ 6.59 \\ 6.95 \end{pmatrix} \text{ft}$$

$$T_{0.5} = \begin{pmatrix} 6.22 \\ 6.59 \\ 6.95 \\ 7.31 \end{pmatrix} \text{ft}$$

Depth of Fixity:

$$D_{\text{fix } 0.5} := 1.8 \cdot T_{0.5}$$

$$D_{\text{fix_0.5}} = \begin{pmatrix} 11\\12\\13\\13 \end{pmatrix} \text{ft}$$
 Depth to fixity for 1/2" wall pipe piles

$$D_{\text{fix_0.5}} = \begin{pmatrix} 3.41 \\ 3.61 \\ 3.81 \\ 4.01 \end{pmatrix} \cdot m$$

Check with LRFD Eq. 10.7.3.13.4-2

$$E_{\text{steel}} = 29000 \cdot \text{ksi}$$

$$I_{t_0.5} = \begin{pmatrix} 0.1779 \\ 0.2377 \\ 0.3113 \\ 0.4003 \end{pmatrix} \text{ft}^4 \qquad \text{Check} := 1.8 \cdot \left(\frac{E_{steel} \cdot I_{t_0.5}}{n_h} \right)^{0.2} \qquad \text{Check} = \begin{pmatrix} 11.19 \\ 11.86 \\ 12.51 \end{pmatrix} \text{ft}$$

Check :=
$$1.8 \cdot \left(\frac{E_{steel} \cdot I_{t_0.5}}{n_h}\right)^{0.2}$$

Check =
$$\begin{pmatrix} 11.19 \\ 11.86 \\ 12.51 \\ 12.16 \end{pmatrix}$$
ft **OK**

Transformed pile properties of 5/8 inch wall pile:

$$n = 7.6$$

Diameter of concrete core:

$$dia_{conccore_0.625} = \begin{pmatrix} 22.75 \\ 24.75 \\ 26.75 \\ 28.75 \end{pmatrix} \cdot \text{Diameter concrete core for 5/8" thick wall}$$

Diameter of steel pipe

$$dia_{steelcor} = \begin{pmatrix} 23.75 \\ 25.75 \\ 27.75 \\ 29.75 \end{pmatrix} \cdot in$$

Moment of inertia of concrete core:

$$I_{c_0.625} := \frac{\pi \cdot dia_{conccore_0.625}}{64} \qquad I_{c_0.625} = \begin{pmatrix} 0.634 \\ 0.888 \\ 1.212 \\ 1.617 \end{pmatrix} ft^4$$

Moment of inertia of steel pipe:

$$I_{s_0.625} := \frac{\pi \cdot \left(\frac{4}{\text{dia}_{\text{steelcor}}} - \frac{4}{\text{dia}_{\text{conccore}_0.625}} \right)}{64} \qquad I_{s_0.625} = \begin{pmatrix} 0.119\\0.152\\0.192\\0.237 \end{pmatrix} \text{ft}^4$$

Composite Moment of Inertia:

$$I_{t_0.625} := \frac{I_{c_0.625}}{n} + I_{s_0.625} \qquad I_{t_0.625} = \begin{pmatrix} 0.202 \\ 0.269 \\ 0.351 \\ 0.45 \end{pmatrix} ft^4$$

Transformed Area:

where area:
$$A_{conc_0.625} := \pi \cdot \frac{dia_{conccore_0.625}^2}{4}$$

$$A_{conc_0.625} = \begin{pmatrix} 406.49 \\ 481.11 \\ 562 \\ 649.18 \end{pmatrix} \cdot in^2$$

$$A_{t_0.625} := A_{0.625} + \frac{A_{conc_0.625}}{n}$$

$$A_{t_0.625} = \begin{pmatrix} 0.625 \\ 0.715 \\ 0.811 \end{pmatrix} \cdot ft^2$$

$$A_{t_0.625} := A_{0.625} + \frac{A_{conc_0.625}}{n}$$

$$A_{t_0.625} = \begin{pmatrix} 0.625 \\ 0.715 \\ 0.811 \\ 0.912 \end{pmatrix} \cdot ft^{2}$$

LRFD Eq.10.7.3.13.4-2 for fixity in feet: $1.8*(E_pI_w/n_h)^{0.2}$ (in sands)

Ep Young's modulus of pile in ksi

Iw moment of inertia of pile in ft4

n_h= rate of increase of soil modulus with depth for sands as specified in Table C10.4.6.3-2 in ksi/ft

Use equation for sands in NCHRP#343 pg 61:

L_{eq} = equivalent free standing length of pile

L_u = unsupported length of pile extending above ground

$$T=(E_p^*I_p/n_h)^{0.2}$$

Rate of increase of soil modulus with depth: for submerged medium dense sand

$$n_{h} := 0.556 \cdot \frac{ksi}{ft}$$

T parameter:

$$T_{0.625} := \left(\frac{E_{steel} \cdot I_{t_0.625}}{n_h}\right)^{0.2} \qquad T_{0.625} = \begin{pmatrix} 6.38\\ 6.75\\ 7.12\\ 7.48 \end{pmatrix} ft$$

Depth of Fixity:

$$D_{\text{fix } 0.625} := 1.8 \cdot T_{0.625}$$

$$D_{\text{fix}_0.625} = \begin{pmatrix} 11\\12\\13\\13 \end{pmatrix} \text{ft}$$
 Depth to fixity for 5/8" wall pipe piles

$$D_{\text{fix}_0.625} = \begin{pmatrix} 3.5\\ 3.71\\ 3.91\\ 4.11 \end{pmatrix} \cdot m$$

Check with LRFD Eq. 10.7.3.13.4-2

$$E_{steel} = 29000 \cdot ksi$$

$$I_{t_0.625} = \begin{pmatrix} 0.2025 \\ 0.2694 \\ 0.3512 \\ 0.4498 \end{pmatrix} ft^4$$

$$I_{t_0.625} = \begin{pmatrix} 0.2025 \\ 0.2694 \\ 0.3512 \\ 0.4498 \end{pmatrix} ft^4 \qquad \text{Check} := 1.8 \cdot \left(\frac{E_{\text{steel}} \cdot I_{t_0.625}}{n_{\text{h}}} \right)^{0.2} \qquad \text{Check} = \begin{pmatrix} 11.48 \\ 12.16 \\ 12.82 \end{pmatrix} ft$$

Check =
$$\begin{pmatrix} 11.48 \\ 12.16 \\ 12.82 \\ 13.47 \end{pmatrix}$$
 ft

ΟK

Nominal Axial Structural Resistance of pipe piles

Ref: AASHTO LRFD Bridge Design Specifications 4th Edition 2007

Pier - Pipe Pile driven to bedrock, assume driven through cohesionless soils to bedrock (refusal)

Axial pile resistance may be controlled by structural resistance if piles are driven to bedrock. Check concurrent axial loading and moments with LRFD Equation 6.9.2.2-1 or 6.9.2.2-2. Use LRFD Equation 6.9.5.1-1 or 6.9.5.1-2 to compute the nominal compressive structural resistance for pipe pile sections.

λ in Equation 6.9.5.1-2 has to be computed for the pipe piles since they have an unbraced length.

Yield strength of steel shell: $F_v := 45 \cdot ksi$

Compressive strength of concrete core: $f_c := 4000 \cdot psi$

Yield strength of longitudinal reinforcement: $F_{yr} := 60 \cdot ksi$

Assume unsupported length is from bottom of curtain wall including 14 feet of scour plus depth to fixity.

Compute λ per 6.9.5.1-3 for composite members:

Effective length factor per LRFD Article 4.6.2.5:

Use case (c) in table C4.6.2.5-1

K := 1.0 Because piles are fixed at the end

Exposed length of pile:

Scour depth calculated to be approximately 14 feet

$$L_{ex} := 14 \cdot ft$$

Unbraced length of column:

$$L_{UB_0.5} := L_{ex} + D_{fix_0.5} \qquad L_{UB_0.5} = \begin{bmatrix} 25.86 \\ 26.51 \\ 27.16 \end{bmatrix} ft$$

$$L_{UB_0.625} := L_{ex} + D_{fix_0.625} \qquad L_{UB_0.625} = \begin{bmatrix} 25.48 \\ 26.16 \\ 26.82 \\ 27.47 \end{bmatrix} ft$$

Longitudinal reinforcement:

Assume longitudinal reinforcement of 12 - #8 bars (1-inch) bars equally spaced for all pile sections.

$$A_r := 12 \cdot \frac{\pi \cdot (1 \cdot in)^2}{4} \qquad A_r = 9.42 \cdot in^2$$

Composite Column Constant per Table 6.9.5.1.1

for tube filled sections:

$$C1 := 1.0$$

$$C2 := 0.85$$

$$C3 := 0.40$$

Variable Fe:

$$F_{e_0.5} := F_y + C1 \cdot F_{yr} \cdot \frac{A_r}{A_{0.5}} + C2 \cdot f_c \cdot \frac{A_{conc_0.5}}{A_{0.5}}$$

$$F_{e_0.5} = \begin{pmatrix} 116.83 \\ 119.75 \\ 122.9 \\ 126.23 \end{pmatrix} \cdot \text{ksi} \qquad \text{for 1/2" walls}$$

$$F_{e_0.625} := F_y + C1 \cdot F_{yr} \cdot \frac{A_r}{A_{0.625}} + C2 \cdot f_c \cdot \frac{A_{conc_0.625}}{A_{0.625}}$$

$$F_{e_0.625} \coloneqq F_y + C1 \cdot F_{yr} \cdot \frac{A_r}{A_{0.625}} + C2 \cdot f_c \cdot \frac{A_{conc_0.625}}{A_{0.625}} \qquad \qquad F_{e_0.625} = \begin{pmatrix} 98.33 \\ 100.5 \\ 102.85 \\ 105.35 \end{pmatrix} \cdot \text{ksi} \qquad \text{for 5/8" walls}$$

Radius of gyration of both sets of steel sections:

$$r_{s_0.5} := \sqrt{\frac{I_{s_0.5}}{A_{0.5}}}$$

$$r_{s_0.5} := \overline{\sqrt{\frac{I_{s_0.5}}{A_{0.5}}}} \qquad \qquad r_{s_0.5} = \begin{pmatrix} 0.6888 \\ 0.7477 \\ 0.8066 \\ 0.8655 \end{pmatrix} \text{ft} \qquad \qquad \text{for 1/2" walls}$$

$$r_{s_{-}0.625} := \sqrt{\frac{I_{s_{-}0.625}}{A_{0.625}}}$$

$$r_{s_0.625} := \sqrt{\frac{I_{s_0.625}}{A_{0.625}}} \qquad \qquad r_{s_0.625} = \begin{pmatrix} 0.6852 \\ 0.7441 \\ 0.803 \\ 0.8619 \end{pmatrix} \text{ft} \qquad \qquad \text{for 5/8" walls}$$

E_e term:

$$E_{e_0.5} := E_{steel} \cdot \left(1 + \frac{C3}{n} \cdot \frac{\overrightarrow{A_{conc_0.5}}}{A_{0.5}} \right)$$

$$E_{e_0.5} := E_{steel} \cdot \left(1 + \frac{C3}{n} \cdot \frac{\overrightarrow{A_{conc_0.5}}}{A_{0.5}}\right) \qquad \qquad E_{e_0.5} = \begin{pmatrix} 52028 \\ 54063 \\ 56097 \\ 58132 \end{pmatrix} \cdot \text{ksi} \qquad \text{for 1/2" walls}$$

$$E_{e_0.625} \coloneqq E_{steel} \cdot \left(1 + \frac{C3}{n} \cdot \frac{\overrightarrow{A_{conc_0.625}}}{A_{0.625}} \right)$$

$$E_{e_0.625} \coloneqq E_{steel} \cdot \left(1 + \frac{C3}{n} \cdot \frac{\overrightarrow{A_{conc_0.625}}}{A_{0.625}}\right) \qquad \qquad E_{e_0.625} = \begin{pmatrix} 45988 \\ 47514 \\ 49040 \\ 50566 \end{pmatrix} \cdot \text{ksi} \qquad \text{for 5/8" walls}$$

Lamda (λ) term for composite members LRFD Eq. 6.9.5.1-3

$$\lambda_{0.5} := \overline{\left[\left(\frac{K \cdot L_{UB_0.5}}{r_{s_0.5} \cdot \pi} \right)^2 \cdot \frac{F_{e_0.5}}{E_{e_0.5}} \right]} \qquad \qquad \lambda_{0.5} = \begin{pmatrix} 0.3043 \\ 0.2684 \\ 0.2398 \\ 0.2166 \end{pmatrix} \qquad \text{for 1/2" walls}$$

$$\lambda_{0.625} \coloneqq \overline{\left[\left(\frac{\text{K} \cdot \text{L}_{\text{UB}_0.625}}{\text{r}_{\text{s}_0.625} \cdot \pi} \right)^2 \cdot \frac{\text{F}_{\text{e}_0.625}}{\text{E}_{\text{e}_0.625}} \right]} \qquad \lambda_{0.625} = \begin{pmatrix} 0.2996 \\ 0.2648 \\ 0.237 \\ 0.2144 \end{pmatrix} \qquad \text{for 5/8" walls}$$

Lamda (λ) term for non composite members LRFD Eq. 6.9.4.1-3

$$\lambda_{0.5_tip} := \overline{\left[\left(\frac{K \cdot L_{UB_0.5}}{r_{s_0.5} \cdot \pi} \right)^2 \cdot \frac{F_y}{E_{steel}} \right]} \qquad \qquad \lambda_{0.5_tip} = \begin{pmatrix} 0.2103 \\ 0.188 \\ 0.1699 \\ 0.1548 \end{pmatrix} \qquad \text{for 1/2" walls}$$

$$\lambda_{0.625_tip} := \overline{\left[\left(\frac{K \cdot L_{UB_0.625}}{r_{s_0.625} \cdot \pi} \right)^2 \cdot \frac{F_y}{E_{steel}} \right]} \qquad \qquad \lambda_{0.625_tip} = \begin{pmatrix} 0.2175 \\ 0.1943 \\ 0.1754 \\ 0.1597 \end{pmatrix} \quad \text{for 5/8" walls}$$

Nominal Axial Structural Resistance of 1/2-inch wall

Since λ <2.25 use LRFD Eq. 6.9.5.1-1

$$P_{n_0.5} := \overline{\left(0.66^{\lambda_{0.5}} \cdot F_{e_0.5} \cdot A_{0.5}\right)} \qquad P_{n_0.5} = \begin{pmatrix} 2835 \\ 3202 \\ 3588 \\ 3993 \end{pmatrix} \cdot kip$$

At the bottom of open-ended piles, or closed ended piles where the conical tip or closed tip experiences breeching, the nominal compressive resistance is a function of only the steel pipe.

$$P_{n_0.5tip} := \overbrace{\left(0.66^{\lambda_{0.5_tip}} \cdot F_y \cdot A_{0.5}\right)} \\ P_{n_0.5tip} = \left(\begin{matrix} 1136 \\ 1244 \\ 1352 \\ 1460 \end{matrix}\right) \cdot \text{kip} \\ \text{for 1/2" walls}$$

Nominal Axial Structural Resistance of 5/8-inch wall

Since
$$\lambda$$
<2.25 use LRFD Eq. 6.9.5.1-1
$$P_{n_0.625} := \overbrace{\left(0.66^{\lambda_{0.625}} \cdot F_{e_0.625} \cdot A_{0.625}\right)}^{\lambda_{0.625}} P_{n_0.625} = \begin{pmatrix} 3171 \\ 3571 \\ 3990 \\ 4428 \end{pmatrix} \cdot \text{kip}$$

At the bottom of open-ended piles, or closed ended piles where the conical tip or closed tip experiences breeching, the nominal compressive resistance is a function of only the steel pipe.

$$P_{n_0.625tip} := \overbrace{\left(0.66^{\frac{\lambda_{0.625_tip}}{\lambda_{0.625_tip}} \cdot F_y \cdot A_{0.625}\right)}^{\lambda_{0.625_tip}} \\ P_{n_0.625tip} = \underbrace{\left(1501 \atop 1646 \atop 1791 \atop 1935\right)}_{\text{tip}} \cdot \text{kip} \\ \text{for 5/8" walls}$$

Factored Axial Structural Resistance of a single Pipe Pile:

Strength limit state resistance factor for pipe piles in compression, severe driving conditions - LRFD 6.5.4.2

$$\phi_c := 0.6$$

Factored Structural Resistance (Pr):

$$\begin{split} P_{r_0.5} &\coloneqq \varphi_c \cdot P_{n_0.5} \\ P_{r_0.5} &\coloneqq \varphi_c \cdot P_{n_0.5} \\ \end{split} \qquad \begin{split} P_{r_0.5} &\coloneqq \left(\begin{array}{c} 1701 \\ 1921 \\ 2153 \\ 2396 \end{array} \right) \cdot \text{kip} \qquad \text{for 1/2" walls} \\ P_{r_0.625} &\coloneqq \varphi_c \cdot P_{n_0.625} \\ \end{split} \qquad \begin{split} P_{r_0.625} &\coloneqq \left(\begin{array}{c} 1902 \\ 2142 \\ 2394 \\ 2657 \end{array} \right) \cdot \text{kip} \qquad \text{for 5/8" walls} \end{split}$$

Factored Structural Resistance (Pr) for the lower portion of open-ended piles or breached close-ended piles is a function of only the steel shell.

$$\begin{split} P_{r_-0.5tip} &:= \varphi_c \cdot P_{n_-0.5tip} \\ P_{r_-0.5tip} &:= \varphi_c \cdot P_{n_-0.5tip} \\ P_{r_-0.625tip} &:= \varphi_c \cdot P_{n_-0.625tip} \\ P_{r_-0.625tip} &:= \varphi_c \cdot$$

Service and Extreme Limit States Axial Structural Resistance

Resistance Factors for Service and Extreme Limit States ϕ = 1.0 LRFD 10.5.5.1 and 10.5.8.3

$$\phi := 1.0$$

Factored Compressive Resistance for Service and Extreme Limit States:

$$P_{_0.5tipf} := \phi \cdot P_{n_0.5tip} \qquad P_{_0.5tipf} = \begin{pmatrix} 1136 \\ 1244 \\ 1352 \\ 1460 \end{pmatrix} \cdot \text{kip} \qquad \text{for 1/2" walls} \qquad P_{_0.5tipf} = \begin{pmatrix} 5051 \\ 5534 \\ 6016 \\ 6496 \end{pmatrix} \cdot \text{kN}$$

$$P_{_0.625tipf} := \varphi \cdot P_{n_0.625tip} \quad P_{_0.625tipf} = \begin{pmatrix} 1501 \\ 1646 \\ 1791 \\ 1935 \end{pmatrix} \cdot \text{kip} \qquad \qquad \qquad P_{_0.625tipf} = \begin{pmatrix} 6679 \\ 7324 \\ 7966 \\ 8607 \end{pmatrix} \cdot \text{kN}$$

COMPUTE GEOTECHNICAL RESISTANCE OF PIPE PILES

Pipe pile capacity based on steel shell end bearing on bedrock - driven through sand, gravel, cobbles and boulders.

Pipe piles evaluated:

24 in diameter 1/2 in wall 26 in diameter 1/2 in wall

28 in diameter 1/2 in wall 30 in diameter 1/2 in wall

24 in diameter 5/8 in wall 26 in diameter 5/8 in wall

28 in diameter 5/8 in wall

30 in diameter 5/8 in wall

RQD of bedrock in pier location= 95%. Bedrock is identified as: GNEISS

Highway Bridges 17th Ed. Table 4.4.8.1.2B pg 64 Granite 3500 - 45000 psi Use 22000 psi

Reference: Pile Design and Construction Practice, M.J. Tomlinson, Fourth Edition pg 139

Friction angle = 27 to 34 degrees

 $Q_{uc} := 25000 \cdot psi$

 $\phi_1 := 32 \cdot \deg$

Uniaxial Compressive Strength of GNEISS from AASHTO Standard Spec for

Diameter of piles: Pipe pile wall thickness:

Corrosion loss per MaineDOT BDG:

$$cor := \frac{1}{8}in$$

$$dia_{steel} := \begin{pmatrix} 24 \\ 26 \\ 28 \\ 30 \end{pmatrix} \cdot in \qquad wall_t := \begin{pmatrix} \frac{1}{2} \\ \frac{5}{8} \end{pmatrix}$$

$$A_{0.5} = \begin{pmatrix} 27.54 \\ 29.89 \\ 32.25 \\ 34.61 \end{pmatrix} \cdot in^2$$

STEEL AREA FOR 1/2" PILES with 1/8" corrosion loss

$$A_{0.625} = \begin{pmatrix} 36.52 \\ 39.66 \\ 42.8 \\ 45.95 \end{pmatrix} \cdot \text{in}^2$$

STEEL AREA FOR 5/8" PILES with 1/8" corrosion loss

LRFD Code specifies Canadian Geotechnical Society Method 1985 for resistance determination of end bearing piles on bedrock. (LRFD Table 10.5.5.2.3-1) Use Canadian Foundation Manual 4th Edition 2006 Section 18.6.3.3.

From Canadian Foundation Manual 4th Edition (2006) Section 9.2 Determine K_{sp}:

Spacing of discontinuities: $c := 36 \cdot in$ Assumed based on rock core

 $\delta := \frac{1}{64} \cdot \text{in}$ joints are tight Aperture of discontinuities:

Footing width, b:

$$b := dia_{steelcor} \qquad b = \begin{pmatrix} 23.75 \\ 25.75 \\ 27.75 \\ 29.75 \end{pmatrix} \cdot in$$

$$K_{sp} := \frac{3 + \frac{c}{b}}{10 \cdot \left(1 + 300 \cdot \frac{\delta}{c}\right)^{0.5}}$$

K_{sp} includes a factor of safety of 3

Length of rock socket, Ls: $L_s := 0 \cdot in \hspace{1cm} \text{Pile is end bearing on rock}$

$$L_s := 0 \cdot in$$

Diameter of socket, B_s:

$$B_s := 0 \cdot ft$$

depth factor, df:
$$d_f:=1+0.4\!\!\left(\!\frac{L_s}{B_s}\!\right) \hspace{1cm} d_f=1 \hspace{1cm} \text{should be < or = 3}$$

OK

$$q_{aA} := Q_{uc} \cdot K_{sp} \cdot d_f$$

$$q_{aA} = \begin{pmatrix} 1529 \\ 1489 \\ 1455 \end{pmatrix} \cdot ksf$$

Nominal Geotechnical Tip Resistance, R_p:

Multiply by 3 to take out FS=3 on K_{sp}

$$R_{pA0.5} := \overrightarrow{\left(3q_{aA} \cdot A_{0.5}\right)} \qquad \qquad R_{pA0.5} = \begin{pmatrix} 877\\928\\978\\1028 \end{pmatrix} \cdot \text{kip} \qquad \qquad \text{for 1/2" walls}$$

$$R_{pA0.625} := \overline{\left(3q_{aA} \cdot A_{0.625}\right)} \qquad R_{pA0.625} = \begin{pmatrix} 1163\\1231\\1298\\1365 \end{pmatrix} \cdot \text{kip} \qquad \text{for 5/8" walls}$$

STRENGTH LIMIT STATE:

Factored Geotechnical Resistance at Strength Limit State:

Resistance factor, end bearing on rock (Canadian Geotech. Society, 1985 method):

Nominal resistance of Single Pile in Axial Compression - $\phi_{stat} := 0.45$ LRFD Table 10.5.5.2.3-1 Static Analysis Methods, ϕ_{stat}

$$R_{f0.5} := \varphi_{stat} \cdot R_{pA0.5} \qquad R_{f0.5} = \begin{pmatrix} 395 \\ 417 \\ 440 \\ 463 \end{pmatrix} \cdot \text{kip} \quad \begin{array}{l} \text{Strength Limit State} \\ \text{for 1/2" walls} \end{array} \qquad \begin{array}{l} R_{f0.5} = \begin{pmatrix} 1756 \\ 1857 \\ 1957 \\ 2057 \end{pmatrix} \cdot \text{kN}$$

$$R_{f0.625} := \phi_{stat} \cdot R_{pA0.625} \quad R_{f0.625} = \begin{pmatrix} 524 \\ 554 \\ 584 \\ 614 \end{pmatrix} \cdot \text{kip} \quad \begin{array}{c} \text{Strength Limit State} \\ \text{for 5/8" walls} \end{array} \qquad \begin{array}{c} \left(2329 \\ 2463 \\ 2598 \\ 2732 \end{array} \right) \cdot \text{kN}$$

SERVICE/EXTREME LIMIT STATES:

Factored Geotechnical Resistance at the Service/Extreme Limit States:

Resistance Factors for Service and Extreme Limit States ϕ = 1.0 LRFD 10.5.5.1 and 10.5.8.3 ϕ := 1.0

$$R_{fse0.5} \coloneqq \varphi \cdot R_{pA0.5} \qquad R_{fse0.5} = \begin{pmatrix} 877 \\ 928 \\ 978 \\ 1028 \end{pmatrix} \cdot \\ kip \qquad \begin{array}{c} \text{Service/Extreme} \\ \text{Limit States} \\ \text{for 1/2" walls} \end{array} \qquad \\ R_{fse0.5} = \begin{pmatrix} 3902 \\ 4126 \\ 4349 \\ 4572 \end{pmatrix} \cdot \\ kN_{fse0.5} = \begin{pmatrix} 3902 \\ 4126 \\ 4349 \\ 4572 \end{pmatrix} \cdot \\ kN_{fse0.5} = \begin{pmatrix} 3902 \\ 4126 \\ 4349 \\ 4572 \end{pmatrix} \cdot \\ kN_{fse0.5} = \begin{pmatrix} 3902 \\ 4126 \\ 4349 \\ 4572 \end{pmatrix} \cdot \\ kN_{fse0.5} = \begin{pmatrix} 3902 \\ 4126 \\ 4349 \\ 4572 \end{pmatrix} \cdot \\ kN_{fse0.5} = \begin{pmatrix} 3902 \\ 4126 \\ 4349 \\ 4572 \end{pmatrix} \cdot \\ kN_{fse0.5} = \begin{pmatrix} 3902 \\ 4126 \\ 4349 \\ 4572 \end{pmatrix} \cdot \\ kN_{fse0.5} = \begin{pmatrix} 3902 \\ 4126 \\ 4349 \\ 4572 \end{pmatrix} \cdot \\ kN_{fse0.5} = \begin{pmatrix} 3902 \\ 4126 \\ 4349 \\ 4572 \end{pmatrix} \cdot \\ kN_{fse0.5} = \begin{pmatrix} 3902 \\ 4126 \\ 4349 \\ 4572 \end{pmatrix} \cdot \\ kN_{fse0.5} = \begin{pmatrix} 3902 \\ 4126 \\ 4349 \\ 4572 \end{pmatrix} \cdot \\ kN_{fse0.5} = \begin{pmatrix} 3902 \\ 4126 \\ 4349 \\ 4572 \end{pmatrix} \cdot \\ kN_{fse0.5} = \begin{pmatrix} 3902 \\ 4126 \\ 4349 \\ 4572 \end{pmatrix} \cdot \\ kN_{fse0.5} = \begin{pmatrix} 3902 \\ 4126 \\ 4349 \\ 4572 \end{pmatrix} \cdot \\ kN_{fse0.5} = \begin{pmatrix} 3902 \\ 4126 \\ 4349 \\ 4572 \end{pmatrix} \cdot \\ kN_{fse0.5} = \begin{pmatrix} 3902 \\ 4126 \\ 4349 \\ 4572 \end{pmatrix} \cdot \\ kN_{fse0.5} = \begin{pmatrix} 3902 \\ 4126 \\ 4349 \\ 4572 \end{pmatrix} \cdot \\ kN_{fse0.5} = \begin{pmatrix} 3902 \\ 4126 \\ 4349 \\ 4572 \end{pmatrix} \cdot \\ kN_{fse0.5} = \begin{pmatrix} 3902 \\ 4126 \\ 412$$

$$R_{fse0.625} \coloneqq \varphi \cdot R_{pA0.625} \qquad R_{fse0.625} = \begin{pmatrix} 1163 \\ 1231 \\ 1298 \\ 1365 \end{pmatrix} \cdot \begin{array}{l} \text{Service/Extreme} \\ \text{Limit States} \\ \text{for 5/8" walls} \\ \end{pmatrix} \cdot \begin{array}{l} R_{fse0.625} = \begin{pmatrix} 5175 \\ 5474 \\ 5772 \\ 6070 \end{pmatrix} \cdot kN$$

By: Kate Maguire October 2008 Checked by: <u>LK Nov 2008</u>

DRIVABILITY ANALYSIS Ref: LRFD Article 10.7.8

For steel piles in compression or tension σ_{dr} = 0.9 x ϕ_{da} x f_y (eq. 10.7.8-1)

 $f_{v} := 45 \cdot ksi \qquad \text{yield strength of steel}$

 $\phi_{da} := 1.0$ resistance factor from LRFD Table 10.5.5.2.3-1

 $\phi_{da} := 1.0$ Pile Drivability Analysis, Steel piles

 $\sigma_{dr} \coloneqq 0.9 \cdot \varphi_{da} \cdot f_v \qquad \qquad \sigma_{dr} = 40.5 \cdot ksi \qquad \text{driving stresses in pile cannot exceed 40 ksi}$

 $\sigma_{dr} = 279.2377 \cdot MPa$

Compute Resistance that can be achieved in a drivability analysis:

The resistance that must be achieved in a drivability analysis will be the maximum applied pile axial load (must be less than the the factored geotechnical resistance from above as this governs) divided by the appropriate resistance factor for wave equation analysis and dynamic test which will be required for construction.

Table 10.5.5.2.3-1 pg 10-38 gives resistance factor for dynamic test, ϕ_{dyn} :

$$\phi_{dyn} := 0.65$$

Greater than 5 piles in pier, no reduction to Φ_{dvn} necessary.

Assume Contractor will use a Delmag D 36-32 hammer on the third fuel setting to install: 24-in Dia. pile with 1/2-in wall thickness

Pile Size = 24"D x 1/2"W

Pier with curtain wall: Unsupported length = preliminary scour depth = 14 ft +11 ft to fixity = 25 ft.

kips ksi ksi blows/in feet ki 570.0 39.28 4.40 3.7 7.58 3 575.0 39.48 4.50 3.8 7.61 4 580.0 39.71 4.57 3.9 7.64 4 585.0 39.95 4.67 3.9 7.68 4 590.0 40.23 4.77 4.0 7.71 4		ne Dept. Of Transp River Bridge Pipe F	GRLWEAP (TM) V	14-Oct-2008 ersion 2003		
575.0 39.48 4.50 3.8 7.61 4 580.0 39.71 4.57 3.9 7.64 4 (585.0 39.95 4.67 3.9 7.68 4 590.0 40.23 4.77 4.0 7.71 4	Capacity	Compression Stress	Tension Stress	Count		Energy kips-ft
605.0 40.98 5.04 4.2 7.83 4	575.0 580.0 585.0 590.0 595.0 600.0 605.0	39.48 39.71 39.95 40.23 40.44 40.72 40.98	4.50 4.57 4.67 4.77 4.85 4.93 5.04	3.8 3.9 3.9 4.0 4.0 4.1 4.1	7.61 7.64 7.68 7.71 7.75 7.79 7.83	39.81 40.00 40.05 40.34 40.54 40.69 40.87 41.17 41.23

Limit driving stress to 40 ksi	Efficiency	0.800
-	Helmet Hammer Cushion	3.20 kips 109975 kips/in
Strength Limit State:	Skin Quake	0.100 in
	Toe Quake	0.040 in
$R_{dr_{24x0.5_{factored}}} := 585 \cdot kip \cdot \phi_{dyn}$	Skin Damping	0.050 sec/ft
	Toe Damping	0.150 sec/ft
	Pile Length	84.00 ft
$R_{dr_24x0.5_factored} = 380 \cdot kip$	Pile Penetration	59.00 ft
ui_24x0.5_iactored 0 0 0 1	Pile Top Area	27.54 in2
$R_{dr_24x0.5_factored} = 1691 \cdot kN$		
di_24x0.3_factored		Skin Friction
	Pile Model	Distribution
Service and Extreme Limit States:	φ := 1.0	
	T	
$R_{dr 24x0.5 servext} := 585 \cdot kip$		
D 0000 1N		
$R_{dr_24x0.5_servext} = 2602 \cdot kN$		
	Doo Shoft = 15 (2/
	Res. Shaft = 15 ((Proportional)	70
	(i roportional)	

Assume Contractor will use a Delmag D 36-32 hammer on the third fuel setting to install: 26-in Dia. pile with 1/2-in wall thickness

Pile Size = 26"D x 1/2"W

Pier with curtain wall: Unsupported length = preliminary scour depth = 14 ft +12 ft to fixity = 26 ft.

14-(GRLWEAP (TM) Vers	State of Maine Dept. Of Transportation Gilead Wild River Bridge Pipe Pile				
Blow Count Stroke blows/in feet	Maximum Tension Stress ksi	Maximum Compression Stress ksi	Ultimate Capacity kips		
3.8 7.59 3.9 7.66 4.0 7.72 4.2 7.77 4.3 7.83 4.4 7.89 4.7 7.86 4.6 7.95 4.8 7.91 5.0 7.95	4.44 4.64 4.82 5.00 5.16 5.33 5.48 5.51 5.62 5.77	37.90 38.35 38.79 39.19 39.61 40.07 40.20 40.54 40.54 40.93	580.0 590.0 600.0 610.0 620.0 630.0 640.0 643.0 650.0 660.0		

Limit driving stress to 40 ksi

Strength Limit State:

$$R_{dr_26x0.5_factored} := 630 \cdot kip \cdot \phi_{dyn}$$

 $R_{dr_26x0.5_factored} = 409 \cdot kip$

 $R_{dr_{26x0.5_{factored}}} = 1822 \cdot kN$

Service and Extreme Limit States:

 $R_{dr_26x0.5_servext} := 630 \cdot kip$

 $R_{dr_26x0.5_{servext}} = 2802 \cdot kN$

DELMAG D 36-32

Efficier	псу	0.80	0
Helmet Hamme	er Cushion	3.2 10997	0 kips 5 kips/in
Skin Qu Toe Qu Skin Da Toe Da	iake amping		
Pile Le Pile Pe Pile To	netration	84.0 58.0 29.8	
Pi	le Model		Friction ibution

Res. Shaft = 15 % (Proportional)

 $\phi := 1.0$

Assume Contractor will use a Delmag D 36-32 hammer on the third fuel setting to install: 28-in Dia. pile with 1/2-in wall thickness

Pile Size = 28"D x 1/2"W

Pier with curtain wall: Unsupported length = preliminary scour depth = 14 ft +13 ft to fixity = 27 ft.

14-Oct-2008) Version 2003	GRLWEAP (TM) \	State of Maine Dept. Of Transportation Gilead Wild River Bridge Pipe Pile			
Energy kips-ft	Stroke feet	Blow Count blows/in	Maximum Tension Stress ksi	Maximum Compression Stress ksi	Ultimate Capacity kips
40.23 40.38 40.44 40.49 40.78 41.05 41.21 41.27 41.54 41.62	7.94 7.99 8.00 8.02 8.06 8.10 8.13 8.15 8.19 8.21	5.2 5.4 5.6 5.8 5.9 6.1 6.3 6.5 6.7	5.73 5.80 5.83 5.90 5.97 6.02 6.08 6.13 6.18 6.23	39.77 40.06 40.13 40.42 40.71 41.09 41.39 41.62 41.94 42.20	680.0 687.0 690.0 700.0 710.0 720.0 730.0 740.0 750.0 760.0

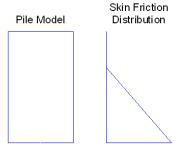
DELMAG D 36-32

Limit	driving	stress	to 40	ksi
-------	---------	--------	-------	-----

Strength Limit State:

$$R_{dr_28x0.5_factored} := 687 \cdot kip \cdot \varphi_{dyn}$$

$$R_{dr \ 28x0.5 \ factored} = 447 \cdot kip$$


$$R_{dr_28x0.5_factored} = 1986 \cdot kN$$

Service and Extreme Limit States: $\phi := 1.0$

$$R_{dr_28x0.5_servext} := 687 \cdot kip$$

$$R_{dr_28x0.5_servext} = 3056 \cdot kN$$

Efficiency 0.800 Helmet 3.20 kips Hammer Cushion 109975 kips/in Skin Quake 0.100 in Toe Quake 0.040 in Skin Damping 0.050 sec/ft Toe Damping 0.150 sec/ft

Res. Shaft = 15 % (Proportional)

Assume Contractor will use a Delmag D 36-32 hammer on the third fuel setting to install: 30-in Dia. pile with 1/2-in wall thickness

Pile Size = 30"D x 1/2"W

Pier with curtain wall: Unsupported length = preliminary scour depth = 14 ft +13 ft to fixity = 27 ft.

Maximum Ultimate Compression Capacity Stress kips ksi 680.0 38.31 687.0 38.52 690.0 38.61 700.0 38.99	Maximum Tension Stress ksi	Blow Count blows/in	Stroke	Energy
687.0 38.52 690.0 38.61		DIOTESTITE	feet	kips-ft
710.0 39.10 720.0 39.41 730.0 39.67 742.0 40.02 750.0 40.24	5.13 5.18 5.18 5.23 5.27 5.31 5.34 5.38	5.1 5.2 5.3 5.6 5.7 5.9 6.1	7.95 7.98 7.99 8.03 7.99 8.03 8.06 8.09	39.42 39.70 39.73 39.90 39.69 39.88 40.10 40.28

Limit driving stress to 40 ksi		Efficiency	0.800
Ç .		Helmet Hammer Cushion	3.20 kips 109975 kips/in
Strength Limit State: $R_{dr_30x0.5_factored} \coloneqq 742 \cdot kip \cdot \varphi_{dyn}$		Skin Quake Toe Quake Skin Damping Toe Damping	0.100 in 0.040 in 0.050 sec/ft 0.150 sec/ft
$R_{dr_30x0.5_factored} = 482 \cdot kip$		Pile Length Pile Penetration Pile Top Area	84.00 ft 57.00 ft 34.61 in2
$R_{dr_30x0.5_factored} = 2145 \cdot kN$		Pile Model	Skin Friction Distribution
Service and Extreme Limit States:	φ := 1.0		
$R_{dr_30x0.5_servext} := 742 \cdot kip$			
$R_{dr_30x0.5_servext} = 3301 \cdot kN$			
		Res. Shaft = 15 % (Proportional)	

Assume Contractor will use a Delmag D 36-32 hammer on the third fuel setting to install: 24-in Dia. pile with 5/8-in wall thickness

Pile Size = 24"D x 5/8"W

Pier with curtain wall: Unsupported length = preliminary scour depth = 14 ft +11 ft to fixity = 25 ft.

State of Maine Dept. Of Transportation Gilead Wild River Bridge Pipe Pile			GRLWEAP (TM) V	14-Oct-2008 ersion 2003	
Ultimate Capacity kips	Maximum Compression Stress ksi	Maximum Tension Stress ksi	Blow Count blows/in	Stroke feet	Energy kips-ft
750.0	38.92	4.77	6.1	8.05	39.49
760.0	39.14	4.78	6.3	8.07	39.52
770.0	39.40	4.80	6.5	8.09	39.57
780.0	39.67	4.81	6.6	8.12	39.75
790.0	39.94	4.82	6.8	<u>8.15</u>	39.90
(795.0	40.03	4.83	6.9	8.16	40.00
810.0	40.42	4.89	7.2	8.20	40.25
820.0	40.67	4.95	7.5	8.22	40.31
830.0	40.93	5.00	7.7	8.25	40.47
840.0	41.12	5.05	8.0	8.28	40.50

Limit driving stress to 40 ksi	Efficiency	0.800
	Helmet Hammer Cushion	3.20 kips 109975 kips/in
Strength Limit State:	Skin Quake	0.100 in
$R_{dr_24x0.625_factored} := 795 \cdot kip \cdot \phi_{dyn}$	Toe Quake	0.040 in
	Skin Damping Toe Damping	0.050 sec/ft 0.150 sec/ft
	Pile Length	84.00 ft
$R_{dr_24x0.625_factored} = 517 \cdot kip$	Pile Penetration	59.00 ft
	Pile Top Area	36.52 in2
$R_{dr_24x0.625_factored} = 2299 \cdot kN$		
	Pile Model	Skin Friction
	Pile Model	Distribution
Service and Extreme Limit States:	þ := 1.0	
$R_{dr_24x0.625_servext} := 795 \cdot kip$		
$R_{dr_24x0.625_servext} = 3536 \cdot kN$		
rui_24x0.025_servext 3550 kr		
	Res. Shaft = 15 (Proportional)	%

Assume Contractor will use a Delmag D 36-32 hammer on the third fuel setting to install: 26-in Dia. pile with 5/8-in wall thickness

Pile Size = 26"D x 5/8"W

Pier with curtain wall: Unsupported length = preliminary scour depth = 14 ft +12 ft to fixity = 26 ft.

	ne Dept. Of Transp River Bridge Pipe F	GRLWEAP (TM) V	14-Oct-2008 ersion 2003		
Ultimate Capacity kips	Maximum Compression Stress ksi	Maximum Tension Stress ksi	Blow Count blows/in	Stroke feet	Energy kips-ft
850.0	39.41	4.26	7.8	8.22	39.43
860.0	39.68	4.30	8.0	8.24	39.53
870.0	39.88	4.36	8.2	8.27	39.73
880.0	40.09	4.41	8.5	8.29	39.72
890.0	40.36	4.46	8.7	8.31	39.94
900.0	40.52	4.52	9.0	8.34	40.01
910.0	40.77	4.58	9.3	8.35	40.14
920.0	40.99	4.63	9.6	8.38	40.22
930.0	41.17	4.68	9.8	8.40	40.33
940.0	41.33	4.72	10.1	8.42	40.45

Limit driving stress to 40 ksi		Efficiency	0.800
		Helmet Hammer Cushion	3.20 kips 109975 kips/in
Strength Limit State: $R_{dr_26x0.625_factored} \coloneqq 880 \cdot kip \cdot \varphi_{dyn}$		Skin Quake Toe Quake Skin Damping	0.100 in 0.040 in 0.050 sec/ft
		Toe Damping	0.150 sec/ft
$R_{dr_26x0.625_factored} = 572 \cdot kip$		Pile Length Pile Penetration Pile Top Area	84.00 ft 58.00 ft 39.66 in2
$R_{dr_26x0.625_factored} = 2544 \cdot kN$			Skin Friction
		Pile Model	Distribution
Service and Extreme Limit States:	ф := 1.0		
$R_{dr_26x0.625_servext} := 880 \cdot kip$			
$R_{dr_26x0.625_servext} = 3914 \cdot kN$			
		Res. Shaft = 15 % (Proportional)	

Assume Contractor will use a Delmag D 36-32 hammer on the third fuel setting to install: 28-in Dia. pile with 5/8-in wall thickness

Pile Size = 28"D x 5/8"W

Pier with curtain wall: Unsupported length = preliminary scour depth = 14 ft +13 ft to fixity = 27 ft.

State of Maine Dept. Of Transportation			1	4-Oct-2008	
Gilead Wild River Bridge Pipe Pile			GRLWEAP (TM) V	ersion 2003	
Ultimate Capacity kips	Maximum Compression Stress ksi	Maximum Tension Stress ksi	Blow Count blows/in	Stroke feet	Energy kips-ft
950.0	39.85	4.19	9.6	8.39	39.49
(960.0	40.01	4.22	9.9	8.40	39.53
970.0	40.22	4.27	10.1	8.42	39.58
980.0	40.37	4.33	10.4	8.43	39.63
990.0	40.55	4.40	10.6	8.45	39.81
1000.0	40.70	4.44	11.0	8.46	39.74
1010.0	40.88	4.50	11.2	8.48	39.90
1020.0	41.07	4.55	11.5	8.49	39.96
1030.0	41.22	4.62	11.8	8.52	40.11
1040.0	41.38	4.66	12.1	8.52	40.06

Limit driving stress to 40 ksi	E	Efficiency	0.800
		lelmet lammer Cushion	3.20 kips 109975 kips/in
Strength Limit State: $R_{dr_28x0.625_factored} := 960 \cdot kip \cdot \varphi_{dyn}$	Ti S	kin Quake oe Quake kin Damping oe Damping	0.100 in 0.040 in 0.050 sec/ft 0.150 sec/ft
$R_{dr_28x0.625_factored} = 624 \cdot kip$	Р	ile Length ile Penetration ile Top Area	84.00 ft 57.00 ft 42.80 in2
$R_{dr_28x0.625_factored} = 2776 \cdot kN$		Pile Model	Skin Friction Distribution
Service and Extreme Limit States:	φ := 1.0		
$R_{dr_28x0.625_servext} := 960 \cdot kip$			
$R_{dr_28x0.625_servext} = 4270 \cdot kN$			
		Res. Shaft = 15 % (Proportional)	

Assume Contractor will use a Delmag D 36-32 hammer on the third fuel setting to install: 30-in Dia. pile with 5/8-in wall thickness

Pile Size = 30"D x 5/8"W

Pier with curtain wall: Unsupported length = preliminary scour depth = 14 ft +13 ft to fixity = 27 ft.

State of Maine Dept. Of Transportation Gilead Wild River Bridge Pipe Pile			GRLWEAP (TM) V	4-Oct-2008 ersion 2003	
Ultimate Capacity kips	Maximum Compression Stress ksi	Maximum Tension Stress ksi	Blow Count blows/in	Stroke feet	Energy kips-ft
1020.0 1025.0 1030.0 1035.0 1040.0 1045.0 1050.0	39.45 39.53 39.59 39.68 39.78 39.85 39.91 40.04	4.07 4.11 4.14 4.16 4.19 4.22 4.23	10.8 10.8 11.0 11.1 11.2 11.4 11.5	8.44 8.45 8.45 8.46 8.47 8.47 8.49	38.89 39.03 39.04 39.03 39.12 39.14 39.12 39.23
1060.0 1065.0	40.10 40.18	4.30 4.32	11.8 11.9	8.50 8.50	39.25 39.26

DELMAG D 36-32

	Efficiency	0.800
Limit driving stress to 40 ksi	Helmet Hammer Cushion	3.20 kips 109975 kips/in
Strength Limit State: $R_{dr_30x0.625_factored} \coloneqq 1055 \cdot kip \cdot \varphi_{dyn}$	Skin Quake Toe Quake Skin Damping Toe Damping	0.100 in 0.040 in 0.050 sec/ft 0.150 sec/ft
$R_{dr_30x0.625_factored} = 686 \cdot kip$	Pile Length Pile Penetration Pile Top Area	84.00 ft 57.00 ft 45.95 in2
$R_{dr_30x0.625_factored} = 3050 \cdot kN$	Pile Model	Skin Friction Distribution
Service and Extreme Limit States: $\phi := 1.0$		
$R_{dr_30x0.625_servext} := 1055 \cdot kip$		
$R_{dr_30x0.625_servext} = 4693 \cdot kN$	Res. Shaft = 15 % (Proportional)	6

H-pile supported Pier

Calculate Depth to Fixity for H-piles:

Soil conditions at boring BB-GWR-102:

84 ft of fill sand, gravel, cobbles and boulders over bedrock

Consider Pile sizes:

HP 12x53

HP 14x73

HP 14x 89

HP 14x117

H-pile Steel area: $A_s := \begin{bmatrix} 21.4 \\ 26.1 \\ 34.4 \end{bmatrix} \cdot \text{in}^2$

LRFD Eq.10.7.3.13.4-2 for fixity in feet: 1.8*(Epl_w/n_h)^0.2 (in sands)

Ep Young's modulus of pile in ksi

Iw moment of inertia of pile in ft4

n_h= rate of increase of soil modulus with depth for sands as specified in Table C10.4.6.3-2 in ksi/ft

Steel modulus:

$$E_{steel} := 29000 \cdot ksi$$

Moment of Inertia:

$$I_{w} := \begin{pmatrix} 393 \\ 729 \\ 904 \\ 1220 \end{pmatrix} \cdot \text{in}^{4}$$

Rate of increase of soil modulus with depth: $n_h := 0.556 \cdot \frac{ksi}{c}$ for submerged medium dense sand

$$n_h := 0.556 \cdot \frac{ksi}{ft}$$

T parameter:

$$T_{H} := \left(\frac{E_{steel} \cdot I_{w}}{n_{h}}\right)^{0.2} \qquad \qquad T_{H} = \begin{pmatrix} 3.97 \\ 4.49 \\ 4.69 \end{pmatrix} ft$$

$$T_{H} = \begin{pmatrix} 3.97 \\ 4.49 \\ 4.69 \\ 4.98 \end{pmatrix} ft$$

Depth of Fixity:

$$D_{fixH} := 1.8 \cdot T_H$$

$$D_{fixH} = \begin{pmatrix} 7 \\ 8 \\ 8 \\ 9 \end{pmatrix} \text{ft}$$
 Depth to fixity for H-piles

$$D_{fixH} = \begin{pmatrix} 2.18 \\ 2.47 \\ 2.57 \\ 2.73 \end{pmatrix} \cdot m$$

Check with LRFD Eq. 10.7.3.13.4-2

$$E_{\text{steel}} = 29000 \cdot \text{ksi}$$

$$I_{w} = \begin{pmatrix} 0.019 \\ 0.0352 \\ 0.0436 \\ 0.0588 \end{pmatrix} ft^{4} \qquad \qquad Check := 1.8 \cdot \left(\frac{E_{steel} \cdot I_{w}}{n_{h}} \right)^{0.2} \qquad \qquad Check = \begin{pmatrix} 7.15 \\ 8.09 \\ 8.45 \\ 8.97 \end{pmatrix} ft$$

For total unbraced length of H-pile:

Use equation for sands in NCHRP#343 pg 61:

$$L_{eq}=L_u+1.8T$$
 where:

L_{eq} = equivalent free standing length of pile

L_u = unsupported length of pile extending above ground

$$T=(E_p*I_p/n_h)^{0.2}$$

For H-piles supporting a curtain wall in the Wild River the unsupported length = scour depth

Total unbraced length L_{eaH}:

$$L_{UBH} := 14 \cdot ft$$
 $L_{eqH} := L_{UBH} + D_{fixH}$

$$L_{eqH} = \begin{pmatrix} 21 \\ 22 \\ 22 \\ 23 \end{pmatrix} \text{ft} \qquad \qquad \text{Total unbraced length}$$

Nominal Axial Structural Resistance of H-piles

Ref: AASHTO LRFD Bridge Design Specifications 4th Edition 2007

Pier - H-Pile driven to bedrock, assume driven through cohesionless soils to bedrock (refusal)

Axial pile resistance may be controlled by structural resistance if piles are driven to bedrock. Check concurrent axial loading and moments with LRFD Equation 6.9.2.2-1 or 6.9.2.2-2. Use LRFD Equation 6.9.4.1-1 or 6.9.4.1-2 to compute the nominal compressive structural resistance for pile sections.

λ in Equation 6.9.4.1-1 and -2 has to be computed for the H-piles since they have an unbraced length.

$$λ = (KI/r_sπ)^{2(F_v/E)}$$
 Compute $λ$ per 6.9.4.1-3 for noncomposite members:

Effective length factor, K, per LRFD Article 4.6.2.5:

Use case (c) in table C4.6.2.5-1

K := 1.0 Piles are fixed at the end

Unbraced length is from bottom of curtain wall including 14 feet of scour plus depth to fixity.

$$L_{eqH} = \begin{pmatrix} 21\\22\\22\\23 \end{pmatrix} ft$$

Radius of gyration, r_s:

$$\mathbf{r}_{sH} := \sqrt{\frac{\mathbf{I}_{w}}{\mathbf{A}_{s}}}$$

$$\mathbf{r}_{sH} = \begin{pmatrix} 0.4196 \\ 0.4864 \\ 0.4904 \\ 0.4963 \end{pmatrix} \mathbf{f}$$

Yield strength of steel: $F_v := 50 \cdot ksi$

Steel modulus of elasticity: $E_{steel} := 29000 \cdot ksi$

Lamda (λ) term for noncomposite members LRFD Eq. 6.9.4.1-3

$$\lambda_{H} := \overline{\left[\left(\frac{K \cdot L_{eqH}}{r_{sH} \cdot \pi}\right)^{2} \cdot \frac{F_{y}}{E_{steel}}\right]}$$

$$\lambda_{H} = \begin{bmatrix} 0.4438 \\ 0.3603 \\ 0.3659 \\ 0.3742 \end{bmatrix}$$

Nominal Axial Compressive Structural Resistance of H-pile

Since λ <2.25 use LRFD Eq. 6.9.4.1-1

$$P_{nH} := \overbrace{\left(0.66^{\lambda_H} \cdot F_y \cdot A_s\right)} \qquad \qquad P_{nH} = \begin{pmatrix} 644 \\ 921 \\ 1121 \\ 1472 \end{pmatrix} \cdot kip$$

Factored Axial Structural Resistance of a single H-Pile:

Strength limit state resistance factor for H-piles in compression, severe driving conditions - LRFD 6.5.4.2

$$\phi_c := 0.5$$

Factored Structural Resistance (Pr):

$$P_{rH} := \varphi_c \cdot P_{nH} \qquad \qquad P_{rH} = \begin{pmatrix} 322 \\ 461 \\ 560 \\ 736 \end{pmatrix} \cdot \text{kip} \qquad \qquad P_{rH} = \begin{pmatrix} 1433 \\ 2049 \\ 2493 \\ 3275 \end{pmatrix} \cdot \text{kN} \qquad \qquad \begin{array}{l} \text{HP 12 x 53} \\ \text{HP 14 x 73} \\ \text{HP 14 x 89} \\ \text{HP 14 x 117} \\ \end{array}$$

Service and Extreme Limit States Axial Structural Resistance

Resistance Factors for Service and Extreme Limit States ϕ = 1.0 LRFD 10.5.5.1 and 10.5.8.3

$$\phi := 1.0$$

Factored Compressive Resistance for Service and Extreme Limit States:

$$P_{r_servext} := \phi \cdot P_{nH}$$

$$P_{r_servext} = \begin{pmatrix} 644 \\ 921 \\ 1121 \\ 1472 \end{pmatrix} \cdot kip$$

$$P_{r_servext} = \begin{pmatrix} 2867 \\ 4098 \\ 4986 \\ 6549 \end{pmatrix} \cdot kN$$

$$HP 12 x 53 \\ HP 14 x 73 \\ HP 14 x 89 \\ HP 14 x 117$$

Geotechnical Resistance for H-pile supported pier

Assume piles will be end bearing on bedrock driven through overlying sand with cobbles and boulders.

Bedrock Type:

Gneiss RQD = 95% at boring BB-GWR-102 Use RQD = 95% and ϕ = 27 to 34 deg (Tomlinson 4th Ed. pg 139)

Axial Geotechnical Resistance of H-piles

Ref: AASHTO LRFD Bridge Design Specifications 4th Edition 2007

Look at these piles:

HP 12 x 53

HP 14 x 73

Note: All matrices set up in this order

HP 14 x 89

HP 14 x 117

Steel area:

$$A_s = \begin{pmatrix} 15.5 \\ 21.4 \\ 26.1 \\ 34.4 \end{pmatrix} \cdot in^2 \qquad \qquad \text{Pile depth:} \qquad \qquad d := \begin{pmatrix} 11.78 \\ 13.61 \\ 13.83 \\ 14.21 \end{pmatrix} \cdot in \qquad \qquad \text{Pile width:}$$

End bearing resistance of piles on bedrock - LRFD code specifies Canadian Geotech Method 1985 (LRFD Table 10.5.5.2.3-1) Canadian Foundation Manual 4th Edition (2006) Section 18.6.3.3.

Average compressive strength of rock core from AASHTO Standard Spec for Highway Bridges 17 Ed. Table 4.4.8.1.2B pg 64

 q_{u} for gneiss compressive strength ranges from 3500 to 45000 psi

use
$$\sigma_c := 25000 \cdot psi$$

Determine K_{sp}: From Canadian Foundation Manual 4th Edition (2006) Section 9.2

Spacing of discontinuities: $c := 36 \cdot in$ Assumed based on rock core

Aperture of discontinuities: $\delta := \frac{1}{64} \cdot \text{in}$ joints are tight

Footing width, b: (12.045)

$$b = \begin{pmatrix} 12.045 \\ 14.585 \\ 14.695 \\ 14.885 \end{pmatrix} \cdot \text{in} \qquad \begin{array}{l} \text{HP 12 x 53} \\ \text{HP 14 x 73} \\ \text{HP 14 x 89} \\ \text{HP 14 x 117} \\ \end{array}$$

$$K_{sp} := \frac{3 + \frac{c}{b}}{10 \cdot \left(1 + 300 \cdot \frac{\delta}{c}\right)^{0.5}}$$

$$K_{sp} = \begin{pmatrix} 0.5633 \\ 0.5144 \\ 0.5126 \\ 0.5097 \end{pmatrix}$$

$$K_{sp} \text{ includes a factor of safety of 3}$$

Length of rock socket, L_s:

$$L_s := 0 \cdot in$$

Pile is end bearing on rock

Diameter of socket, B_s:

$$B_s := 1 \cdot ft$$

depth factor, d_f:
$$d_f:=1+0.4 \left(\frac{L_s}{B_s}\right) \qquad \qquad d_f=1 \qquad \text{ should be < or = 3}$$

$$d_f =$$

$$q_a \coloneqq \sigma_c \cdot K_{sp} \cdot d_f$$

$$q_{a} = \begin{pmatrix} 2028 \\ 1852 \\ 1845 \\ 1835 \end{pmatrix} \cdot ksf$$

Nominal Geotechnical Tip Resistance, R_D:

Multiply by 3 to take out FS=3 on K_{sp}

$$R_p := \overrightarrow{\left(3q_a \cdot A_s\right)}$$

$$R_{p} := \overrightarrow{\left(3q_{a} \cdot A_{s}\right)} \qquad \qquad R_{p} = \begin{pmatrix} 655 \\ 826 \\ 1003 \\ 1315 \end{pmatrix} \cdot \text{kip} \qquad \begin{array}{l} \text{HP 12 x 53} \\ \text{HP 14 x 73} \\ \text{HP 14 x 117} \\ \text{HP 14 x 117} \\ \end{array}$$

STRENGTH LIMIT STATE:

Factored Geotechnical Resistance at Strength Limit State:

Resistance factor, end bearing on rock (Canadian Geotech. Society, 1985 method):

Nominal resistance of Single Pile in Axial Compression -Static Analysis Methods, ϕ_{stat}

$$\phi_{\text{stat}} := 0.45$$

LRFD Table 10.5.5.2.3-1

$$R_f := \varphi_{stat} \cdot R_p$$

$$R_{f} := \phi_{stat} \cdot R_{p}$$

$$R_{f} = \begin{pmatrix} 295 \\ 372 \\ 452 \\ 592 \end{pmatrix} \cdot kip$$

$$R_{f} = \begin{pmatrix} 1311 \\ 1653 \\ 2009 \\ 2632 \end{pmatrix} \cdot kN$$

Strength Limit State

SERVICE/EXTREME LIMIT STATES:

Factored Geotechnical Resistance at the Service/Extreme Limit States:

Resistance Factors for Service and Extreme Limit States $\phi = 1.0$

LRFD 10.5.5.1 and 10.5.8.3

$$\phi := 1.0$$

$$R_{fse} := \phi \cdot R_{p}$$
 $R_{fse} = \begin{pmatrix} 655 \\ 826 \\ 1003 \\ 1315 \end{pmatrix} \cdot kip$ $R_{fse} = \begin{pmatrix} 655 \\ 826 \\ 1003 \\ 1315 \end{pmatrix}$

$$R_{fse} = \begin{pmatrix} 2913 \\ 3672 \\ 4464 \\ 5849 \end{pmatrix} \cdot kN$$

By: Kate Maguire October 2008 Checked by: LK Nov 2008

DRIVABILITY ANALYSIS Ref: LRFD Article 10.7.8

For steel piles in compression or tension $\sigma_{dr} = 0.9 \text{ x } \phi_{da} \text{ x f}_{v} \text{ (eq. 10.7.8-1)}$

yield strength of steel $f_v := 50 \cdot ksi$

resistance factor from LRFD Table 10.5.5.2.3-1 $\phi_{da} := 1.0$

Pile Drivability Analysis, Steel piles

 $\sigma_{dr} \coloneqq 0.9 \cdot \varphi_{da} \cdot f_y$ $\sigma_{dr} = 45 \cdot ksi$ driving stresses in pile cannot exceed 45 ksi

 $\sigma_{dr} = 310.2641 \cdot MPa$

Compute Resistance that can be achieved in a drivability analysis:

The resistance that must be achieved in a drivability analysis will be the maximum applied pile axial load (must be less than the the factored geotechnical resistance from above as this governs) divided by the appropriate resistance factor for wave equation analysis and dynamic test which will be required for construction.

Table 10.5.5.2.3-1 pg 10-38 gives resistance factor for dynamic test, ϕ_{dyn} :

$$\phi_{dyn} := 0.65$$

Greater than 5 piles in pier, no reduction to Φ_{dyn} necessary.

Pile Size = 12×53

Assume Contractor will use a Delmag D19-42 hammer to install 12 x 53 piles

15-Oct-2008 P (TM) Version 2003	State of Maine Dept. Of Transportation 15-Oct-2008 Gilead Wild River Bridge GRLWEAP (TM) Version 2003				
roke Energy feet kips-ft	Stroke feet	Blow Count blows/in	Maximum Tension Stress ksi	Maximum Compression Stress ksi	Ultimate Capacity kips
8.55 22.46 9.07 23.86 9.36 24.67 9.42 24.85 9.48 24.97 9.55 25.14 9.60 25.33 9.65 25.47	8.07 8.55 9.07 9.36 9.42 9.48 9.55 9.60 9.65 9.70	3.3 4.4 6.0 8.4 9.1 9.8 10.5 11.3 12.1 13.1	4.91 6.21 6.93 7.69 7.84 7.95 8.04 8.15 8.24 8.32	36.06 39.49 42.72 45.00 45.45 45.87 46.31 46.69 47.06 47.39	300.0 350.0 400.0 450.0 460.0 470.0 480.0 490.0 500.0 510.0

Limited driving stresses to 45 ksi

Strength Limit State:

$$R_{drpier_12x53_factored} := 450 \cdot kip \cdot \varphi_{dyn}$$

 $R_{drpier_12x53_factored} = 293 \cdot kip$

 $R_{drpier_12x53_factored} = 1301 \cdot kN$

Service and Extreme Limit States: $\phi := 1.0$


 $R_{drpier_12x53_servext} := 450 \cdot kip$

 $R_{drpier_12x53_servext} = 2002 \cdot kN$

DELMAG D 19-42

Efficiency	0.800	
Helmet Hammer Cushion	3.20 109975	
Skin Quake Toe Quake Skin Damping Toe Damping	0.100 0.040 0.050 0.150	in sec/ft
Pile Length Pile Penetration Pile Top Area	84.00 63.00 15.50	ft

Res. Shaft = 10 % (Proportional)

Pile Size = 14×73

Assume Contractor will use a Delmag D36-32 hammer to install 14 x 73 piles

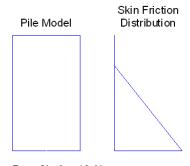
State of Maine Dept. Of Transportation Gilead Wild River Bridge			GRLWEAP (TM) V	15-Oct-2008 ersion 2003	
Ultimate Capacity kips	Maximum Compression Stress ksi	Maximum Tension Stress ksi	Blow Count blows/in	Stroke feet	Energy kips-ft
500.0 510.0 520.0 530.0 540.0 550.0	41.67 42.34 43.00 43.63 44.27 44.55 45.00	5.51 5.62 5.72 5.81 5.90 5.98 6.05	3.7 3.8 4.0 4.1 4.3 4.5	6.88 6.97 7.07 7.16 7.25 7.26	36.13 36.61 37.09 37.57 37.97 37.96
560.0 570.0 580.0	45.12 45.60 46.05	6.06 6.14 6.23	4.7 4.9 5.1	7.33 7.39 7.45	38.33 38.53 38.84

Limited driving stresses to 45 ksi

Strength Limit State:

$$R_{drpier_14x73_factored} := 558 \cdot kip \cdot \varphi_{dyn}$$

 $R_{drpier_14x73_factored} = 363 \cdot kip$


 $R_{drpier_14x73_factored} = 1613 \cdot kN$

Service and Extreme Limit States: $\phi := 1.0$

 $R_{drpier_14x73_servext} := 558 \cdot kip$

 $R_{drpier_14x73_servext} = 2482 \cdot kN$

Efficiency	0.800	
Helmet Hammer Cushion	3.20 109975	•
Skin Quake Toe Quake Skin Damping Toe Damping	0.100 0.040 0.050 0.150	in sec/ft
Pile Length Pile Penetration Pile Top Area	84.00 62.00 21.40	ft

Res. Shaft = 10 % (Proportional)

Pile Size = 14×89

Assume Contractor will use a Delmag D36-32 hammer to install 14 x 89 piles

State of Maine Dept. Of Transportation Gilead Wild River Bridge			GRLWEAP (TM) V	15-Oct-2008 ersion 2003	
Ultimate Capacity kips	Maximum Compression Stress ksi	Maximum Tension Stress ksi	Blow Count blows/in	Stroke feet	Energy kips-ft
600.0	44.30	4.83	4.1	7.95	42.27
610.0	44.83	5.00	4.2	8.02	42.66
(615.0	45.02	5.08	4.3	8.05	42.79
620.0	45.31	5.17	4.3	8.09	43.07
630.0	45.48	5.33	4.6	8.07	42.92
640.0	45.85	5.47	4.7	8.11	43.15
650.0	46.27	5.60	4.9	8.17	43.43
660.0	46.69	5.75	5.1	8.22	43.79
670.0	47.14	5.88	5.3	8.27	44.09
680.0	47.51	6.00	5.5	8.32	44.29

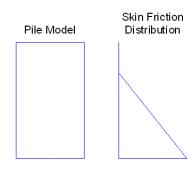
DELMAG D 36-32

Limited driving stresses to 45 ksi

Strength Limit State:

$$R_{drpier_14x89_factored} \coloneqq 615 \cdot kip \cdot \varphi_{dyn}$$

 $R_{drpier_14x89_factored} = 400 \cdot kip$


 $R_{drpier_14x89_factored} = 1778 \cdot kN$

Service and Extreme Limit States: $\phi := 1.0$

 $R_{drpier_14x89_servext} := 615 \cdot kip$

 $R_{drpier_14x89_servext} = 2736 \cdot kN$

Efficiency	0.800	
Helmet Hammer Cushion	3.20 109975	
Skin Quake Toe Quake Skin Damping Toe Damping	0.100 0.040 0.050 0.150	in sec/ft
Pile Length Pile Penetration Pile Top Area	84.00 62.00 26.10	ft

Res. Shaft = 10 % (Proportional)

Pile Size = 14×117

Assume Contractor will use a Delmag D36-32 hammer to install 14 x 117 piles

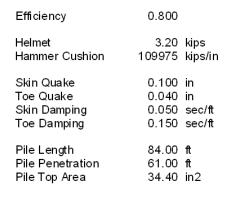
State of Maine Dept. Of Transportation Gilead Wild River Bridge			GF	RLWEAP (TM) V	15-Oct-2008 ersion 2003
Ultimate Capacity kips	Maximum Compression Stress ksi	Maximum Tension Stress ksi	Blow Count bl/ft	Stroke feet	Energy kips-ft
700.0	43.45	5.33	51.2	8.87	46.80
710.0	43.86	5.42	52.5	8.93	47.14
720.0	44.20	5.52	53.9	8.97	47.42
730.0	44.59	5.61	55.5	9.02	47.60
740.0	44.94	5.68	57.0	9.06	47.86
743.0	45.01	5.71	57.6	9.08	47.91
750.0	45.31	5.77	58.7	9.12	48.06
760.0	45.62	5.84	60.3	9.15	48.33
770.0	45.96	5.88	61.8	9.19	48.59
780.0	46.30	5.91	63.4	9.24	48.82

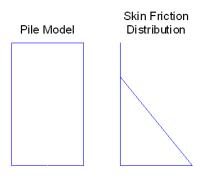
DELMAG D 36-32

Limited driving stresses to 45 ksi

Strength Limit State:

$$R_{drpier_14x117_factored} := 743 \cdot kip \cdot \varphi_{dyn}$$


 $R_{drpier_14x117_factored} = 483 \cdot kip$


 $R_{drpier_14x117_factored} = 2148 \cdot kN$

Service and Extreme Limit States: $\phi := 1.0$

 $R_{drpier_14x117_servext} := 743 \cdot kip$

 $R_{drpier_14x117_servext} = 3305 \cdot kN$

Res. Shaft = 10 % (Proportional)

Abutment and Wingwall Passive and Active Earth Pressure:

For cases where interface friction is considered (for gravity structures) use Coulomb Theory

Coulomb Theory - Passive Earth Pressure from Maine DOT Bridge Design Guide Section 3.6.6 pg 3-8

Angle of back face of wall to the horizontal: $\alpha := 90 \cdot deg$

Angle of internal soil friction: $\phi := 32 \cdot \deg$

Friction angle between fill and wall:

From LRFD Table 3.11.5.3-1 range from 17 to 22 $\delta := 20 \cdot \deg$

Angle of backfill to the horizontal $\beta := 0 \cdot \deg$

$$\begin{split} K_p &:= \frac{\sin(\alpha - \varphi)^2}{\sin(\alpha)^2 \cdot \sin(\alpha + \delta) \cdot \left(1 - \sqrt{\frac{\sin(\varphi + \delta) \cdot \sin(\varphi + \beta)}{\sin(\alpha + \delta) \cdot \sin(\alpha + \beta)}}\right)^2} \\ K_p &= 6.89 \end{split}$$

Rankine Theory - Passive Earth Pressure from Bowles 5th Edition Section 11-5 pg 602

Angle of backfill to the horizontal $\beta := 0 \cdot deg$

Angle of internal soil friction: $\phi := 32 \cdot deg$

$$K_{p_rank} := \frac{\cos(\beta) + \sqrt{\cos(\beta)^2 - \cos(\varphi)^2}}{\cos(\beta) - \sqrt{\cos(\beta)^2 - \cos(\varphi)^2}}$$

$$K_{p_rank} = 3.25$$

Bowles does not recommend the use of the Rankine Method for K_p when $\beta>0$.

Rankine Theory - Active Earth Pressure from Maine DOT Bridge Design Guide Section 3.6.5.2 pg 3-7

For a horizontal backfill surface:

$$\varphi := 32 \cdot deg$$

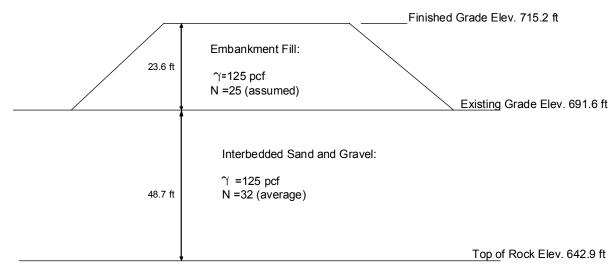
$$K_a := tan \left(45 \cdot deg - \frac{\varphi}{2} \right)^2$$

$$K_a = 0.307$$

By: Kate Maguire October 2008 Checked by: <u>LK Nov 2008</u>

Settlement Analysis:

Reference: FHWA Soils and Foundation Workshop Manual (FHWA HI-88-009) Bazaraa 1967 pg 168


Look at fill behind abutments to bring site to bridge deck elevation.

Maximum of ~24 feet of fill behind Abutment No. 1

Maximum of ~33 feet of fill behind Abutment No. 2

Abutment No. 1

Boring BB-GWR-101

Bedrock

Divide sand and gravel layer up into 10 ' layers:

Layer 1:	$H_1 := 10 \cdot ft$	$N_1 := 48$
Layer 2:	$H_2 := 10 \cdot ft$	$N_2 := 17$
Layer 3:	$H_3 := 10 \cdot ft$	$N_3 := 19$
Layer 4:	$H_4 := 10 \cdot ft$	$N_4 := 43$
Layer 5:	$H_5 := 8.7 \cdot ft$	$N_5 := 45$

LOADING ON AN INFINITE S	STRIP - VERTICAL EM	IBANKMENT LOADING		
Project Name: Wild River Brid	dge Client: Gilead	Project Number: 15619.00		
Project Manager: JWentworth	n Date: 10/16/08	Computed by: km		
Embank. width	e a = 48.00(ft) h b = 68.00(ft) ea = 3000.00(psf)			
INCREMENT OF STRES X = 50.0		ON		
Z	Vert. Δz			
(ft)	(psf)			
0.00	3000.00			
2.00	2990.62			
4.00	2958.05		at 5.0 ft	$\Delta \sigma_{z1} := 2934.09 \cdot psf$
6.00	2910.13		ut 0.0 1t	20 Z1 := 255 1.05 psi
8.00	2849.97			
10.00 12.00	2779.44			
14.00	2700.86 2616.81			
16.00	2529.76		at 15.0 ft	$\Delta \sigma_{z2} := 2573.29 \cdot psf$
18.00	2441.83			22
20.00	2354.65			
22.00	2269.41			
24.00	2186.90			
26.00	2107.62		at 25.0 ft	$\Delta \sigma_{z3} := 2147.26 \cdot psf$
28.00	2031.83			
30.00	1959.64			
32.00	1891.05			
34.00	1825.97			
36.00	1764.29		at 35.0 ft	$\Delta \sigma_{z4} := 1795.13 \cdot psf$
38.00	1705.85			
40.00	1650.48			
42.00	1598.03			
44.00	1548.31		-+ 44 4 #	A 1,520,00 C
46.00	1501.17		at 44.4 π	$\Delta \sigma_{z5} := 1538.88 \cdot psf$
48.00	1456.44			
50.00	1413.97			

Height of Layer 1: $H_1 := 10 \cdot ft$

Unit weight of sand and gravel: $\gamma_{sagr} \coloneqq 125 \cdot pcf$

Determine corrected SPT value N': N'/N - Ratio of Corrected blow count to SPT Value

$$\sigma_{1o} := \frac{H_1}{2} \cdot \gamma_{sagr}$$
 $\sigma_{1o} = 625 \cdot psf$ at mid-point

SPT N-value (bpf)
$$N_1 = 48$$
 At $P_0 = 625$ psf $N'/N = r1 := 1.75$

 $\mbox{Corrected Blow Count} \qquad N'_1 := r \mathbf{1} \cdot N_1 \qquad \qquad N'_1 = 84$

From Figure 13 using the "well graded silty SAND & GRAVEL" curve

Bearing Capacity Index: C1 := 300

$$\Delta\sigma_{z1} = 2934.09 \cdot psf$$

Height of Layer 2: $H_2 := 10 \cdot ft$

Unit weight of sand and gravel: $\gamma_{sagr} \coloneqq 125 \cdot pcf$

Determine corrected SPT value N': N'/N - Ratio of Corrected blow count to SPT Value

$$\sigma_{2o} \coloneqq H_1 \cdot \gamma_{sagr} + \frac{H_2}{2} \cdot \gamma_{sagr} \qquad \quad \sigma_{2o} = 1875 \cdot psf \qquad \quad \text{at mid-point}$$

SPT N-value (bpf)
$$N_2 = 17$$
 At $P_0 = 1875$ psf N'/N = $r2 := 0.96$

Corrected Blow Count
$$N_2 := r2 \cdot N_2$$
 $N_2 = 16$

From Figure 13 using the "well graded silty SAND & GRAVEL" curve

Bearing Capacity Index:
$$C2 := 60$$

Use STRESS to determine the change in stress at the mid point of the layer under consideration (above)

$$\Delta \sigma_{z2} = 2573.29 \cdot psf$$

Height of Layer 3: $H_3 := 10 \cdot ft$

Unit weight of sand and gravel: $\gamma_{sagr} := 125 \cdot pcf$

Determine corrected SPT value N': N'/N - Ratio of Corrected blow count to SPT Value

$$\sigma_{3o} := \left(H_1 + H_2\right) \cdot \gamma_{sagr} + \frac{H_3}{2} \cdot \gamma_{sagr} \qquad \quad \sigma_{3o} = 3125 \cdot psf \qquad \quad \text{at mid-point}$$

SPT N-value (bpf)
$$N_3 = 19$$
 At $P_0 = 3125$ psf N'/N = $r_3 := 0.83$

Corrected Blow Count
$$N_3 := r3 \cdot N_3$$
 $N_3 = 16$

From Figure 13 using the "well graded silty SAND & GRAVEL" curve

Bearing Capacity Index:
$$C3 := 60$$

Use STRESS to determine the change in stress at the mid point of the layer under consideration (above)

$$\Delta \sigma_{z3} = 2147.26 \cdot psf$$

Height of Layer 4: $H_4 := 10 \cdot ft$

Unit weight of sand and gravel:
$$\gamma_{sagr} := 125 \cdot pcf$$

Determine corrected SPT value N': N'/N - Ratio of Corrected blow count to SPT Value

$$\sigma_{4o} := \left(H_1 + H_2 + H_3\right) \cdot \gamma_{sagr} + \frac{H_4}{2} \cdot \gamma_{sagr} \qquad \qquad \sigma_{4o} = 4375 \cdot psf \qquad \qquad \text{at mid-point}$$

SPT N-value (bpf)
$$N_4 = 43$$
 At $P_0 = 4375$ psf $N'/N = r4 := 0.72$

Corrected Blow Count
$$N'_4 := r4 \cdot N_4$$
 $N'_4 = 31$

From Figure 13 using the "well graded silty SAND & GRAVEL" curve

Bearing Capacity Index:
$$C4 := 105$$

$$\Delta \sigma_{z4} = 1795.13 \cdot psf$$

By: Kate Maguire October 2008 Checked by: LK Nov 2008

Height of Layer 5: $H_5 = 8.7 \, \text{ft}$

Unit weight of sand and gravel: $\gamma_{sagr} := 125 \cdot pcf$

Determine corrected SPT value N': N'/N - Ratio of Corrected blow count to SPT Value

$$\sigma_{5o} \coloneqq \left(H_1 + H_2 + H_3 + H_4\right) \cdot \gamma_{sagr} + \frac{H_5}{2} \cdot \gamma_{sagr} \qquad \qquad \sigma_{5o} = 5543.75 \cdot psf \qquad \text{at mid-point}$$

SPT N-value (bpf)
$$N_5 = 45$$
 At $P_0 = 5544$ psf N'/N = $r_5 := 0.66$

Corrected Blow Count
$$N_5' := r5 \cdot N_5$$
 $N_5' = 30$

From Figure 13 using the "well graded silty SAND & GRAVEL" curve

Bearing Capacity Index:
$$C5 := 103$$

Use STRESS to determine the change in stress at the mid point of the layer under consideration (above)

$$\Delta \sigma_{z5} = 1538.88 \cdot psf$$

Settlement at each layer Intebedded sand and gravel:

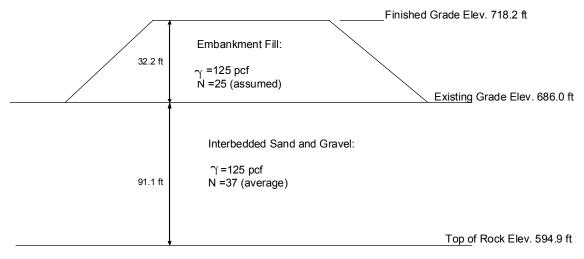
$$\Delta H_1 := H_1 \cdot \frac{1}{C1} \cdot log \Biggl(\frac{\sigma_{1o} + \Delta \sigma_{z1}}{\sigma_{1o}} \Biggr) \qquad \qquad \Delta H_1 = 0.3 \cdot in$$

$$\Delta H_2 := H_2 \cdot \frac{1}{C2} \cdot log \left(\frac{\sigma_{2o} + \Delta \sigma_{z2}}{\sigma_{2o}} \right) \qquad \qquad \Delta H_2 = 0.75 \cdot in$$

$$\Delta H_3 := H_3 \cdot \frac{1}{C3} \cdot log \left(\frac{\sigma_{3o} + \Delta \sigma_{z3}}{\sigma_{3o}} \right) \qquad \qquad \Delta H_3 = 0.45 \cdot in$$

$$\Delta H_4 := H_4 \cdot \frac{1}{C4} \cdot log \left(\frac{\sigma_{4o} + \Delta \sigma_{z4}}{\sigma_{4o}} \right) \qquad \qquad \Delta H_4 = 0.17 \cdot in$$

$$\Delta H_5 := H_5 \cdot \frac{1}{C5} \cdot log \left(\frac{\sigma_{5o} + \Delta \sigma_{z5}}{\sigma_{5o}} \right) \qquad \qquad \Delta H_5 = 0.11 \cdot in$$


Total settlement =

$$\Delta H_{A1} := \Delta H_1 + \Delta H_2 + \Delta H_3 + \Delta H_4 + \Delta H_5$$
 $\Delta H_{A1} = 1.7853 \cdot in$ At Abutment No. 1

$$\Delta H_{A1} = 45.3478 \cdot \text{mm}$$

Wild River Bridge Over Wild River Gilead, Maine By: Kate Maguire October 2008 Checked by: <u>LK Nov 2008</u> PIN 15619.00

Abutment No. 2
Boring BB-GWR-103

Bedrock

Divide sand and gravel layer up into 10 ' layers:

Layer 1:	$H_1 := 10 \cdot ft$	$N_1 := 28$
Layer 2:	$H_2 := 10 \cdot \text{ft}$	$N_2 := 58$
Layer 3:	$H_3 := 10 \cdot ft$	$N_3 := 28$
Layer 4:	$H_4 := 10 \cdot ft$	$N_4 := 26$
Layer 5:	$H_5 := 10 \cdot ft$	$N_5 := 33$
Layer 6:	$H_6 := 10 \cdot ft$	$N_6 := 29$
Layer 7:	$H_7 := 10 \cdot ft$	$N_7 := 37$
Layer 8:	$H_8 := 10 \cdot ft$	$N_8 := 45$
Layer 9:	$H_9 := 11.1 \cdot ft$	$N_9 := 43$

LOADING ON AN INFINI	ITE STRIP - VERTICAL EM	BANKMENT LOADING		
Project Name: Wild Rive Project Manager : JWen		Project Number: 15619.00 Computed by : km		
Embank.	slope a = 48.00(ft) width b = 68.00(ft) t area = 3000.00(psf)			
	T OF STRESSES FOR Z-D	RECTION		
X =	50.00(ft)			
Z	Vert. Δz			
(ft)	(psf)			
0.00	3000.00			
2.00	2990.62			
4.00	2958.05		at 5.0 ft	$\Delta \sigma_{z1} := 2934.09 \cdot psf$
6.00	2910.13			
8.00	2849.97			
10.00	2779.44			
12.00	2700.86		at 15 0 ft	A 2572.20 C
14.00	2616.81		at 15.0 It	$\Delta \sigma_{z2} := 2573.29 \cdot psf$
16.00	2529.76			
18.00	2441.83			
20.00	2354.65			
22.00 24.00	2269.41		at 25.0 ft	$\Delta \sigma_{z3} := 2147.26 \cdot \text{psf}$
26.00	2186.90 2107.62		at 25.0 it	$\Delta o_{z3} = 2147.20^{\circ} \text{ psi}$
28.00	2031.83			
30.00	1959.64			
32.00	1891.05			
34.00	1825.97		at 35.0 ft	$\Delta \sigma_{z4} := 1795.13 \cdot psf$
36.00	1764.29			
38.00	1705.85			
40.00	1650.48			
42.00	1598.03			
44.00	1548.31		at 45.0 ft	$\Delta \sigma_{z5} := 1524.74 \cdot psf$
46.00	1501.17			
48.00	1456.44			
50.00	1413.97			
52.00	1373.63			
54.00	1335.27		at 55.0 ft	$\Delta \sigma_{z6} := 1317.02 \cdot psf$
56.00	1298.77		at 00.0 it	20 z ₀ := 1317.02 psi
58.00	1264.01			
60.00	1230.89			
62.00	1199.30			
64.00 66.00	1169.15 1140.36			
68.00	1112.84		at 65.0 ft	$\Delta \sigma_{z7} := 1154.76 \cdot psf$
70.00	1086.51			Z/ · F
72.00	1061.30			
74.00	1037.16			
76.00	1014.02			
78.00	991.81		at 75.0 ft	$\Delta \sigma_{z8} := 1025.59 \cdot psf$
80.00	970.50			_
82.00	950.03			
84.00	930.35			
86.00	911.43			
88.00	893.21			
90.00	875.68		at 88.2 ft	$\Delta \sigma_{z9} := 891.46 \cdot psf$
92.00	858.78			*

By: Kate Maguire October 2008

Checked by: LK Nov 2008

 $\text{Height of Layer 1:} \quad H_1 := 10 \cdot \mathrm{ft}$

Unit weight of sand and gravel: $\gamma_{sagr} \coloneqq 125 \cdot pcf$

Determine corrected SPT value N': N'/N - Ratio of Corrected blow count to SPT Value

$$\sigma_{1o} \coloneqq \frac{H_1}{2} \cdot \gamma_{sagr} \qquad \quad \sigma_{1o} = 625 \cdot psf \qquad \quad \text{at mid-point}$$

SPT N-value (bpf) $N_1 = 28$ At $P_0 = 625$ psf N'/N = $r_1 := 1.75$

Corrected Blow Count $N'_1 := r1 \cdot N_1$ $N'_1 = 49$

From Figure 13 using the "well graded silty SAND & GRAVEL" curve

Bearing Capacity Index: C1 := 165

Use STRESS to determine the change in stress at the mid point of the layer under consideration (above)

$$\Delta \sigma_{z1} = 2934.09 \cdot psf$$

Height of Layer 2: $H_2 := 10 \cdot ft$

Unit weight of sand and gravel: $\gamma_{sagr} \coloneqq 125 \cdot pcf$

Determine corrected SPT value N': N'/N - Ratio of Corrected blow count to SPT Value

$$\sigma_{2o} := H_1 \cdot \gamma_{sagr} + \frac{H_2}{2} \cdot \gamma_{sagr} \hspace{1cm} \sigma_{2o} = 1875 \cdot psf \hspace{1cm} \text{at mid-point}$$

SPT N-value (bpf) $N_2 = 58$ At $P_0 = 1875$ psf N'/N = r2 := 0.96

Corrected Blow Count $N'_2 := r2 \cdot N_2$ $N'_2 = 56$

From Figure 13 using the "well graded silty SAND & GRAVEL" curve

Bearing Capacity Index: C2 := 200

Use STRESS to determine the change in stress at the mid point of the layer under consideration (above)

$$\Delta \sigma_{z2} = 2573.29 \cdot psf$$

Height of Layer 3: $H_3 := 10 \cdot ft$

Unit weight of sand and gravel: $\gamma_{sagr} \coloneqq 125 \cdot pcf$

Determine corrected SPT value N': N'/N - Ratio of Corrected blow count to SPT Value

$$\sigma_{3o} := \left(H_1 + H_2\right) \cdot \gamma_{sagr} + \frac{H_3}{2} \cdot \gamma_{sagr}$$
 $\sigma_{3o} = 3125 \cdot psf$ at mid-point

 $N_3 = 28$ At $P_0 = 3125 \text{ psf}$ N'/N = $r_3 := 0.83$ SPT N-value (bpf)

Corrected Blow Count $N'_3 := r3 \cdot N_3$ $N'_3 = 23$

From Figure 13 using the "well graded silty SAND & GRAVEL" curve

Bearing Capacity Index: C3 := 85

$$\Delta \sigma_{z3} = 2147.26 \cdot psf$$

Height of Layer 4: $H_4 := 10 \cdot ft$

Unit weight of sand and gravel: $\gamma_{sagr} := 125 \cdot pcf$

Determine corrected SPT value N': N'/N - Ratio of Corrected blow count to SPT Value

$$\sigma_{4o} \coloneqq \left(H_1 + H_2 + H_3\right) \cdot \gamma_{sagr} + \frac{H_4}{2} \cdot \gamma_{sagr} \qquad \qquad \sigma_{4o} = 4375 \cdot psf \qquad \qquad \text{at mid-point}$$

SPT N-value (bpf) $N_4 = 26$ At $P_0 = 4375$ psf N'/N = r4 := 0.72

Corrected Blow Count $N'_4 := r4 \cdot N_4$ $N'_4 = 19$

From Figure 13 using the "well graded silty SAND & GRAVEL" curve

Bearing Capacity Index: C4 := 75

Use STRESS to determine the change in stress at the mid point of the layer under consideration (above)

$$\Delta \sigma_{z4} = 1795.13 \cdot psf$$

Height of Layer 5: $H_5 = 10 \, \text{ft}$

Unit weight of sand and gravel: $\gamma_{sagr} := 125 \cdot pcf$

Determine corrected SPT value N': N'/N - Ratio of Corrected blow count to SPT Value

$$\sigma_{5o} \coloneqq \left(H_1 + H_2 + H_3 + H_4\right) \cdot \gamma_{sagr} + \frac{H_5}{2} \cdot \gamma_{sagr} \qquad \qquad \sigma_{5o} = 5625 \cdot psf \qquad \qquad \text{at mid-point}$$

SPT N-value (bpf) $N_5 = 33$ At $P_0 = 5625$ psf N'/N = $r_5 := 0.65$

Corrected Blow Count $N_5' := r5 \cdot N_5$ $N_5' = 21$

From Figure 13 using the "well graded silty SAND & GRAVEL" curve

Bearing Capacity Index: C5 := 80

Use STRESS to determine the change in stress at the mid point of the layer under consideration (above)

$$\Delta \sigma_{z5} = 1524.74 \cdot psf$$

Height of Layer 6: $H_6 = 10 \, \text{ft}$

Unit weight of sand and gravel: $\gamma_{\text{sagr}} := 125 \cdot \text{pcf}$

Determine corrected SPT value N': N'/N - Ratio of Corrected blow count to SPT Value

$$\sigma_{6o} := \left(H_1 + H_2 + H_3 + H_4 + H_5\right) \cdot \gamma_{sagr} + \frac{H_6}{2} \cdot \gamma_{sagr} \qquad \qquad \sigma_{6o} = 6875 \cdot psf \qquad \text{at mid-point}$$

SPT N-value (bpf) $N_6 = 29$ At $P_0 = 6875$ psf N'/N = $r_6 := 0.60$

Corrected Blow Count $N_6' := r6 \cdot N_6$ $N_6' = 17$

From Figure 13 using the "well graded silty SAND & GRAVEL" curve

Bearing Capacity Index: C6 := 70

$$\Delta \sigma_{z6} = 1317.02 \cdot psf$$

Height of Layer 7: $H_7 = 10 \, \text{ft}$

 $\gamma_{\text{sagr}} := 125 \cdot \text{pcf}$ Unit weight of sand and gravel:

Determine corrected SPT value N': N'/N - Ratio of Corrected blow count to SPT Value

$$\sigma_{7o} \coloneqq \left(H_1 + H_2 + H_3 + H_4 + H_5 + H_6\right) \cdot \gamma_{sagr} + \frac{H_7}{2} \cdot \gamma_{sagr} \qquad \sigma_{7o} = 8125 \cdot psf \quad \text{ at mid-point } \sigma$$

SPT N-value (bpf) $N_7 = 37$ At $P_0 = 8125 \text{ psf}$ N'/N = r7 := 0.60

Corrected Blow Count

 $N'_7 := r7 \cdot N_7$ $N'_7 = 22$

From Figure 13 using the "well graded silty SAND & GRAVEL" curve

Bearing Capacity Index: C7 := 82

Use STRESS to determine the change in stress at the mid point of the layer under consideration (above)

$$\Delta \sigma_{77} = 1154.76 \cdot \text{psf}$$

Height of Layer 8: $H_8 = 10 \, \text{ft}$

Unit weight of sand and gravel: $\gamma_{sagr} \coloneqq 125 \cdot pcf$

Determine corrected SPT value N': N'/N - Ratio of Corrected blow count to SPT Value

$$\sigma_{8o} := \left(H_1 + H_2 + H_3 + H_4 + H_5 + H_6 + H_7 \right) \cdot \gamma_{sagr} + \frac{H_8}{2} \cdot \gamma_{sagr} \qquad \sigma_{8o} = 9375 \cdot psf \quad \text{ at mid-point}$$

 $N_8 = 45$ At $P_0 = 9375$ psf N'/N = r8 := 0.60SPT N-value (bpf)

Corrected Blow Count $N'_8 := r8 \cdot N_8$

From Figure 13 using the "well graded silty SAND & GRAVEL" curve

Bearing Capacity Index: C8 := 95

Use STRESS to determine the change in stress at the mid point of the layer under consideration (above)

$$\Delta \sigma_{78} = 1025.59 \cdot psf$$

Height of Layer 9: $H_9 = 11.1 \, ft$

 $\gamma_{\text{sagr}} := 125 \cdot \text{pcf}$ Unit weight of sand and gravel:

Determine corrected SPT value N': N'/N - Ratio of Corrected blow count to SPT Value

$$\sigma_{9o} := \left(H_1 + H_2 + H_3 + H_4 + H_5 + H_6 + H_7 + H_8 \right) \cdot \gamma_{sagr} + \frac{H_9}{2} \cdot \gamma_{sagr} \qquad \sigma_{9o} = 10693.75 \cdot psf \qquad \text{at mid-point}$$

SPT N-value (bpf) $N_9 = 43$ At $P_0 = 10690$ psf N'/N = $r_9 := 0.60$

Corrected Blow Count $N'_0 := r9 \cdot N_0$ $N'_{9} = 26$

From Figure 13 using the "well graded silty SAND & GRAVEL" curve

Bearing Capacity Index: C9 := 93

$$\Delta \sigma_{z9} = 891.46 \cdot psf$$

Settlement at each layer Intebedded sand and gravel:

$$\Delta H_1 := H_1 \cdot \frac{1}{C1} \cdot log \Biggl(\frac{\sigma_{1o} + \Delta \sigma_{z1}}{\sigma_{1o}} \Biggr) \qquad \qquad \Delta H_1 = 0.55 \cdot in$$

$$\Delta H_2 \coloneqq H_2 \cdot \frac{1}{\text{C2}} \cdot \text{log}\!\!\left(\frac{\sigma_{2o} + \Delta \sigma_{z2}}{\sigma_{2o}}\right) \qquad \quad \Delta H_2 = 0.23 \cdot \text{in}$$

$$\Delta H_3 := H_3 \cdot \frac{1}{C3} \cdot log \Biggl(\frac{\sigma_{3o} + \Delta \sigma_{z3}}{\sigma_{3o}} \Biggr) \qquad \quad \Delta H_3 = 0.32 \cdot in$$

$$\Delta H_4 := H_4 \cdot \frac{1}{C4} \cdot log \Biggl(\frac{\sigma_{4o} + \Delta \sigma_{z4}}{\sigma_{4o}} \Biggr) \qquad \quad \Delta H_4 = 0.24 \cdot in$$

$$\Delta H_5 \coloneqq H_5 \cdot \frac{1}{C5} \cdot log \Biggl(\frac{\sigma_{5o} + \Delta \sigma_{z5}}{\sigma_{5o}} \Biggr) \qquad \quad \Delta H_5 = 0.16 \cdot in$$

$$\Delta H_6 \coloneqq H_6 \cdot \frac{1}{C6} \cdot log \Biggl(\frac{\sigma_{6o} + \Delta \sigma_{z6}}{\sigma_{6o}} \Biggr) \qquad \quad \Delta H_6 = 0.13 \cdot in$$

$$\Delta H_7 := H_7 \cdot \frac{1}{C7} \cdot log \left(\frac{\sigma_{7o} + \Delta \sigma_{z7}}{\sigma_{7o}} \right) \qquad \quad \Delta H_7 = 0.08 \cdot in$$

$$\Delta H_8 \coloneqq H_8 \cdot \frac{1}{C8} \cdot log\!\!\left(\!\frac{\sigma_{8o} + \Delta \sigma_{z8}}{\sigma_{8o}}\right) \qquad \quad \Delta H_8 = 0.06 \cdot in$$

$$\Delta H_9 := H_9 \cdot \frac{1}{C9} \cdot log \left(\frac{\sigma_{9o} + \Delta \sigma_{z9}}{\sigma_{9o}} \right) \qquad \Delta H_9 = 0.05 \cdot in$$

Total settlement =

$$\Delta H_{A2} := \Delta H_1 + \Delta H_2 + \Delta H_3 + \Delta H_4 + \Delta H_5 + \Delta H_6 + \Delta H_7 + \Delta H_8 + \Delta H_9$$

$$\Delta H_{A2} = 1.8121 \cdot in$$
 At Abutment No. 2

$$\Delta H_{A2} = 46.0268 \cdot mm$$

Frost Protection:

Method 1 - MaineDOT Design Freezing Index (DFI) Map and Depth of Frost Penetration Table are in BDG Section 5.2.1.

From the Design Freezing Index Map: Gilead, Maine DFI = 1550 degree-days

From the lab testing: soils are coarse grained assume a water content = ~10%

From Table 5-1 MaineDOT BDG for Design Freezing Index of 1550 frost penetration = 83.5 inches

Frost_depth := 83.5in Frost_depth = $6.9583 \cdot ft$ Frost_depth = $2.1209 \cdot m$

Note: The final depth of footing embedment may be controlled by the scour susceptibility of the foundation material and may, in fact, be deeper than the depth required for frost protection.

Method 2 - Check Frost Depth using Modberg Software

Closest Station is Rumford

Air Design Freez N-Factor Surface Design I Mean Annual Te Design Length o	Freezing Ir mperature	= 0 ndex = : =	.80 1305 F-4 43.5 deg	days j F				
Layer #:Type	t	w%	d	Cf	Cu	Kf	Ku	L
1-Coarse	78.5	10.0	125.0	28	34	2.0	1.6	1,800
t = Layer thickne w% = Moisture c d = Dry density, Cf = Heat Capac Cu = Heat Capac Kf = Thermal cor Ku = Thermal co	ontent, in lbs/cubity of frozently of thavenductivity inductivity inductivity	percenta ic ft. en phase ved phas n frozen	, in BTU/ se, in BTU phase, ir d phase,	(cubic f J/(cubic BTU/(t degree oft degre ft hr degr	e F). ee).		

$$Frost_depth_{modberg} := 78.5 \cdot in \\ Frost_depth_{modberg} = 6.5417 \, ft \\ Frost_depth_{modberg} = 1.9939 \cdot m$$

Use Modberg Frost Depth = 2.0 meters for design

Seismic:

```
PIN 15619.00
Gilead Wild River Bridge
Date and Time: 11/17/2008 4:22:07 PM
Conterminous 48 States
2007 AASHTO Bridge Design Guidelines
AASHTO Spectrum for 7% PE in 75 years
State - Maine
Zip Code - 04217
Zip Code Latitude = 44.407000
Zip Code Longitude = -070.790000
Site Class B
Data are based on a 0.05 deg grid spacing.
  Period
              Sa
   (sec)
              (g)
             0.090
    0.0
                     PGA - Site Class B
    0.2
             0.183
                     Ss - Site Class B
                     S1 - Site Class B
    1.0
             0.050
Conterminous 48 States
2007 AASHTO Bridge Design Guidelines
Spectral Response Accelerations SDs and SD1
State - Maine
Zip Code - 04217
Zip Code Latitude = 44.407000
Zip Code Longitude = -070.790000
As = FpgaPGA, SDs = FaSs, and SD1 = FvS1
Site Class D - Fpga = 1.60, Fa = 1.60, Fv = 2.40
Data are based on a 0.05 deg grid spacing.
  Period
              Sa
   (sec)
              (g)
                     As - Site Class D
    0.0
             0.144
                     SDs - Site Class D
    0.2
             0.293
                     SD1 - Site Class D
    1.0
             0.119
```