MAINE DEPARTMENT OF TRANSPORTATION BRIDGE PROGRAM GEOTECHNICAL SECTION AUGUSTA, MAINE

GEOTECHNICAL DESIGN REPORT

For the Replacement of:

GREAT WORKS RIVER BRIDGE OVER THE GREAT WORKS RIVER STATE ROUTE 236 SOUTH BERWICK, MAINE

Prepared by:

Kathleen Maguire, P.E. Geotechnical Engineer

Reviewed by:

Laura Krusinski, P.E. Senior Geotechnical Engineer

York County PIN 15609.00 Soils Report No. 2009-04 Bridge No. 5610

February 5, 2009

GEO	TECHNICAL DESIGN SUMMARY	1
1.0	INTRODUCTION	
2.0	GEOLOGIC SETTING	3
3.0	SUBSURFACE INVESTIGATION	4
4.0	LABORATORY TESTING	4
5.0	SUBSURFACE CONDITIONS	5
6.0	FOUNDATION ALTERNATIVES	6
7.0	FOUNDATION CONSIDERATIONS AND RECOMMENDATIONS	7
7.1	INTEGRAL ABUTMENT H-PILES	7
7.2	INTEGRAL STUB ABUTMENTS AND WINGWALLS	11
7.3	ESTIMATED DEPTHS TO PILE FIXITY	12
7.4	BUCKLING AND COMBINED AXIAL AND FLEXURE	13
7.5	SCOUR AND RIPRAP	13
7.6	Settlement	14
7.7	FROST PROTECTION	14
7.8	SEISMIC DESIGN CONSIDERATIONS	14
7.9	CONSTRUCTION CONSIDERATIONS	15
8.0	CLOSURE	15
Table	8	
Table	1 - Summary of Bedrock Depths, Elevations and RQD	6
Table	2 - Estimated Pile Lengths Piles for Installed to Bedrock Surface	7
Table Table	3 - Factored Axial Resistances for Abutment Piles at the Strength Limit State4 - Factored Axial Resistances for Abutment Piles	9
	at the Service and Extreme Limit States	10
Table	5 - Equivalent Height of Soil for Estimating Live Load Surcharge	12
Table	6 - Preliminary Estimates of Depth to Fixity	13

Table of Contents

Sheets

- Sheet 1 Location Map
- Sheet 2 Boring Location Plan
- Sheet 3 Interpretive Subsurface Profile
- Sheet 4 Boring Logs

Appendices

Appendix A - Boring Logs Appendix B - Laboratory Data Appendix C - Calculations Appendix D – Special Provisions

Great Works River Bridge Over the Great Works River South Berwick, Maine PIN 15609.00

GEOTECHNICAL DESIGN SUMMARY

The purpose of this design report is to make geotechnical recommendations for the replacement of the Great Works River Bridge on State Route 236 over the Great Works River in South Berwick, Maine. The proposed replacement bridge will consist of welded steel plate girders on H-pile supported integral abutments. The following design recommendations are discussed in detail in the attached report:

Integral Abutment H-piles - The use of stub abutments founded on a single row of driven integral H-piles is a viable foundation system for use at the site. The piles should be end bearing, driven to the required resistance on or within the bedrock. Piles may be HP 12x53, HP 14x73, HP 14x89, or HP 14x117 depending on the design axial loads. Piles should be 50 ksi, Grade A572 steel H-piles. Piles should be driven with their weak axis perpendicular to the center line of the beams. Piles should be fitted with driving points to protect the tips, improve penetration and improve friction at the pile tip to support a pinned pile tip assumption. The designer shall design the H-piles at the strength limit state considering the structural resistance of the piles, the geotechnical resistance of the pile and loss of the lateral support due to scour at the design flood event. Extreme limit state design shall check that the nominal pile resistance remaining after scour due to the design flood can support the unfactored strength limit state loads with a resistance factor of 1.0. The structural resistance check should include checking axial, lateral, and flexural resistance. The design of the Hpiles at the service limit state shall consider tolerable horizontal movement of the piles, overall stability of the pile group and scour at the design flow event. Since the abutment piles will be subjected to lateral loading, piles should be analyzed for axial loading and combined axial and flexure. The Contractor is required to perform a wave equation analysis of the proposed pile-hammer system and a dynamic pile test at each abutment. The first pile driven at each abutment should be dynamically tested to confirm capacity and verify the stopping criteria developed by the Contractor in the wave equation analysis. The ultimate pile resistance that must be achieved in the wave equation analysis and dynamic testing will be the factored axial pile load divided by a resistance factor of 0.65. The factored pile load should be shown on the plans.

Abutments and Wingwalls - Integral stub abutments and wingwalls shall be designed for all relevant strength, service and extreme limit states and load combinations specified in LRFD Articles 3.4.1 and 11.5.5. The design of pile supported abutments and wingwalls at the strength limit state shall consider pile stability and structural resistance. Extreme limit state design shall also consider foundation resistance after scour due to the design flood. For abutments that are pile supported, design for resistance against sliding and overturning is not required. In designing integral abutments for passive earth pressure, the Rankine earth pressure coefficient (K_p) of 3.25 is recommended. All abutment designs shall include a drainage system to intercept any water. To avoid water intrusion behind the abutment, the approach slab should connect directly to the abutment.

Scour and Riprap- The consequences of changes in foundation conditions resulting from the design flood for scour shall be considered at the strength, service and extreme limit states. These changes in foundation conditions shall be investigated at the abutments and wingwalls. For scour protection, any footings which are constructed on granular deposits, should be embedded a minimum of 3 feet below the design scour depth and armored with 3 feet of riprap.

Settlement - Post-construction settlements are anticipated to be less than 1 inch and will occur during construction having negligible effect of the finished structure. Any settlement of the bridge abutments will be due to the elastic compression of the piling and will also be negligible.

Frost Protection – Any foundations placed on granular soils should be founded a minimum of 4.5 feet below finished exterior grade for frost protection. Integral abutments shall be embedded a minimum of 4.0 feet for frost protection.

Seismic Design Considerations - The Great Works River Bridge is located on State Route 236 and is not on the National Highway System (NHS). Therefore, the bridge is not considered to be functionally important. Since the bridge construction costs will not exceed \$10 million, the bridge is not classified as a major structure. A detailed seismic analysis is not required for single-span bridges regardless of seismic zone. However, superstructure connections and minimum support length requirements shall be satisfied per LRFD Articles 3.10.9 and 4.7.4.4, respectively.

Construction Considerations - There is potential for boulders and cobbles to impact the pile driving/installation operations. Obstructions may be cleared by conventional excavation methods, pre-augering, pre-drilling, or down-hole hammers or as approved by the Resident. Since the proposed bridge design will rely on the riprap slopes to provide scour protection for the integral abutment piles, slope construction and riprap placement are of critical importance. The existing riprap slopes shall be reconstructed in their entirety. Care should be taken in construction of the riprap slopes to assure that they are constructed in accordance with MaineDOT Special Provisions 610 and 703 and the plans.

Great Works River Bridge Over the Great Works River South Berwick, Maine PIN 15609.00

1.0 INTRODUCTION

A subsurface investigation for the replacement of the Great Works River Bridge on State Route 236 over the Great Works River in South Berwick, York County, Maine has been completed. The purpose of the investigation was to explore subsurface conditions at the site in order to develop geotechnical recommendations for the bridge replacement. This report presents the soils information obtained at the site, geotechnical design recommendations, and foundation recommendations.

The existing bridge was constructed in 1955 and consists of a 95 foot long, single span, riveted deck girder founded on pile supported concrete abutments. Maine Department of Transportation (MaineDOT) maintenance inspection reports indicate that the deck is in poor condition (rating of 4), the superstructure is in satisfactory condition (rating of 6) and the abutments are in good condition (rating of 7). Inspection notes state that the deck has several areas of large "pop outs" with exposed rebar, the bearings are heavily rusted, and the girder ends and diaphragms are delaminating with moderate section loss. The year 2008 MaineDOT Bridge Maintenance inspection reports indicate a Bridge Sufficiency Rating of 71.6. It is understood that the existing bridge superstructure will be completely removed and replaced. The existing piles in the bridge substructure will be cut off below grade and left in place.

The proposed bridge will consist of a 100 foot long, single span, welded steel plate girder superstructure on driven H-pile supported integral abutments. The new structure will have a similar horizontal alignment to the existing bridge. The vertical alignment will have a 0.5 percent grade across the bridge section and will be raised less than 1 foot at both abutments. In order to minimize impacts due to slopes, 1H to 1.75V riprapped slopes will be utilized in front of the abutments.

2.0 GEOLOGIC SETTING

The Great Works River Bridge on Route 236 in South Berwick crosses the Great Works River approximately 0.28 miles northerly of York Woods Road as shown on Sheet 1 - Location Map found at the end of this report. The Great Works River flows in a westerly direction to the Salmon Falls River which flows south into the Piscataqua River which flows in a south easterly direction into Portsmouth Harbor and the Atlantic Ocean.

According to the Surficial Geologic Map of Maine published by the Maine Geological Survey (1985) the surficial soils in the vicinity of the site consist of glaciomarine deposits. Soils in the site area are generally comprised of silt, clay, sand and minor amounts of gravel. Sand is dominant in some areas, but may be underlain by finer-grained sediments. The unit contains small areas of till that are not completely covered by marine sediments. The unit generally is deposited in areas where the topography is gently sloping except where dissected by modern streams and commonly has a branching network of steep-walled stream gullies. These soils were generally deposited as glacial sediments that accumulated on the ocean floor during the late-glacial marine submergence of lowland areas in southern Maine.

According to the Surficial Bedrock Map of Maine, published by the Maine Geological Survey (1985), the bedrock at the site is identified as Silurian-Precambrian calcareous feldspathic sandstone of the Kittery Formation.

3.0 SUBSURFACE INVESTIGATION

Subsurface conditions were explored by drilling three (3) test borings at the site. Test boring BB-SBGWR-101 was drilled behind the location of Abutment No. 2 (north). Test borings BB-SBGWR-102 and BB-SBGWR-102A were drilled behind the location of Abutment No. 1 (south). The exploration locations are shown on Sheet 2 - Boring Location Plan found at the end of this report. An interpretive subsurface profile depicting the site stratigraphy is shown on Sheet 3 - Interpretive Subsurface Profile found at the end of this report. The borings were drilled between November 19 and 29, 2007 using the Maine Department of Transportation (MaineDOT) drill rig. Details and sampling methods used, field data obtained, and soil and groundwater conditions encountered are presented in the boring logs provided in Appendix A - Boring Logs and on Sheet 4 - Boring Logs found end of this report.

The borings were drilled using driven cased wash boring, spun casing and solid stem auger techniques. Soil samples were obtained where possible at 5-foot intervals using Standard Penetration Test (SPT) methods. During SPT sampling, the sampler is driven 24 inches and the hammer blows for each 6 inch interval of penetration are recorded. The standard penetration resistance, N-value, is the sum of the blows for the second and third intervals. The MaineDOT drill rig is newly equipped with a CME automatic hammer to drive the split spoon. The hammer was calibrated by MaineDOT in August of 2007 and was found to deliver approximately 30 percent more energy during driving than the standard rope and cathead system. All N-values discussed in this report are corrected values computed by applying an average energy transfer factor of 0.77 to the raw field N-values. This hammer efficiency factor (0.77) and both the raw field N-value and the corrected N-value are shown on the boring logs.

In-situ vane shear tests were made where possible in soft soil deposits to measure the shear strength of the strata. The bedrock was cored in the borings using an NQ core barrel and the Rock Quality Designation (RQD) of the core was calculated. The MaineDOT geotechnical team member selected the boring locations and drilling methods, designated type and depth of sampling techniques, and identified field and laboratory testing requirements. A MaineDOT geotechnical team member and/or a Certified Subsurface Inspector logged the subsurface conditions encountered. The borings were located in the field by use of a tape after completion if the drilling program.

4.0 LABORATORY TESTING

Laboratory testing for samples obtained in the borings consisted of four (4) standard grain size analyses and four (4) grain size analyses with hydrometer. The results of these laboratory tests are provided in Appendix B - Laboratory Data at the end of this report. Moisture content information and other soil test results are included on the Boring Logs in Appendix A and on Sheet 4 - Boring Logs found at the end of this report.

5.0 SUBSURFACE CONDITIONS

The general soil stratigraphy encountered at the abutments consisted of fill materials, overlying a thin gravel layer, overlying a silt layer, overlying sand and gravel layers all overlying bedrock. An interpretive subsurface profile depicting the site stratigraphy is show on Sheet 3 - Interpretive Subsurface Profile found at the end of this report. The following paragraphs discuss the subsurface conditions encountered in detail:

Fill Materials with Cobbles and Boulders. Beneath the pavement, a layer of fill materials was encountered in all of the borings. This layer was found to be brown, damp to wet, fine to coarse sand, with some gravel, trace silt and frequent cobbles and boulders with depth. Drilling was very difficult through the cobbles and boulders present in the fill. The thickness of the fill layer ranged from approximately 21.7 feet in boring BB-SBGWR-101 to approximately 26.8 feet in boring BB-SBGWR-102A. Corrected SPT N-values in the fill layer ranged from 15 to 53 blows per foot (bpf) indicating that the soil is medium dense to very dense in consistency. Water contents from three (3) samples obtained within this layer range from approximately 3% to 5%. Three (3) grain size analyses conducted on samples from this layer indicate that the soil is classified as an A-1-b or A-1-a by the AASHTO Classification System and a SW-SM, SM or GW-GM by the Unified Soil Classification System.

Gravel. A thin layer of gravel was encountered beneath the fill in boring BB-SBGWR-102A. This layer was found to be grey, wet, gravel, with some fine to coarse sand, some silt and some clay. The thickness of the gravel layer was approximately 1.0 foot. One corrected SPT N-value in the gravel layer was 5 bpf indicating that the gravel is loose in consistency. One (1) water content from the gravel was approximately 26%. One (1) grain size analyses conducted on a sample from this layer indicate that the soil is classified as an A-4 by the AASHTO Classification System and a GC-GM by the Unified Soil Classification System.

Silt. A layer of silt was encountered in boring BB-SBGWR-102A beneath the gravel layer. This layer was found to be grey, wet, silt, with some to little clay, trace sand and trace gravel. The thickness of the silt layer was approximately 3.8 feet. Corrected SPT N-values obtained in the silt layer ranged from 5 to 9 bpf indicating that the soil is medium stiff to stiff in consistency. One vane shear test conducted within the silt layer showed an undrained shear strength of approximately 290 psf while the remolded shear strength was approximately 67 psf. Based on the ratio of peak to remolded shear strengths from the vane shear tests, the silt was determined to have sensitivity of approximately 4.3 and is classified as sensitive. Water contents from three (3) samples obtained within this layer range from approximately 22% to 36%. Three (3) grain size analyses with hydrometer conducted on samples from this layer indicate that the soil is classified as an A-7-5 or A-4 by the AASHTO Classification System and a CL or CL-ML by the Unified Soil Classification System.

Sand. A layer of sand was encountered beneath the silt in boring BB-SBGWR-102A. This layer was found to be grey to brown, wet, fine to coarse sand, with some gravel, trace silt and frequent cobbles with depth. The thickness of the sand layer was approximately 12.2 feet. Corrected SPT N-values in the layer ranged from 40 to 58 blows per foot (bpf) indicating that the soil is dense to very dense in consistency. A water content from one (1) sample obtained

within this layer was approximately 11%. One (1) grain size analysis conducted on a sample from this layer indicated that the soil is classified as an A-2-4 by the AASHTO Classification System and a SM by the Unified Soil Classification System.

Gravel. A thin layer of gravel was encountered beneath the sand overlying the bedrock in boring BB-SBGWR-102A. This layer was found to be grey, wet, gravel, with some medium to coarse sand, and trace silt. The thickness of the gravel layer was approximately 1.4 feet.

Bedrock. Bedrock was encountered and cored in two of the borings. Table 1 below presents the bedrock findings:

Boring Number/ Location	Depth to Bedrock	Bedrock Elevation	RQD
BB-SBGWR-102A Abutment No. 1	44.9 feet	47.4 feet	0%
BB-SBGWR-101 Abutment No. 2	21.7 feet	71.6 feet	0%

Table 1 – Summary of Bedrock Depths, Elevations and RQD

The bedrock at the site can be identified as grey, fine-grained, sedimentary, sandstone, which is highly fractured. The most notable feature of the rock is the presence of dissolution vugs within the rock matrix. Vugs are defined as small cavities inside rock made up of cracks and fissures which have been filled with secondary minerals which are later removed through the dissolution process leaving irregular voids. The inner surfaces of the voids are typically coated with some of the dissolved mineral matter. The vugs are oriented along healed fractures in the rock. The bedrock is a part of the Kittery Formation. The RQD of the bedrock was 0% indicating a rock mass quality of very poor quality.

6.0 FOUNDATION ALTERNATIVES

Based on the subsurface conditions encountered during the subsurface exploration program, the following foundation alternatives, with varying levels of risk and effectiveness, may be considered for the bridge replacement:

- Cast-in-place concrete or precast concrete integral abutments supported on driven steel H-piles
- Cast-in-place, full height abutments founded on spread footings bearing on native sand and/or bedrock

After consideration of the foundation alternatives the structural team chose to use the cast-inplace concrete integral abutments supported on driven steel H-piles. This report addresses only this foundation type.

7.0 FOUNDATION CONSIDERATIONS AND RECOMMENDATIONS

The following sections will discuss geotechnical design recommendations for cast-in-place integral stub abutments and butterfly wingwalls founded on a single row of integral H-piles driven to bedrock which has been identified as the optimal substructure for the site. The use of short pile supported integral abutments is under consideration by the MaineDOT Bridge Program. Initial results indicate that although fixity is not achieved for piles less than 13 feet long, the structure can accommodate cyclic live and thermal loading without any major consequence. The current study¹ indicates that the use of short pile supported integral abutments for bridges with spans not exceeding 115 feet is applicable. However, in consideration of the consequences scour and pile exposure and the need to limit pile tip movement, a minimum pile length of 10 feet is recommended.

7.1 Integral Abutment H-piles

The use of stub abutments founded on a single row of driven integral H-piles is a viable foundation system for use at the site. The piles should be end bearing, driven to the required resistance on or within the bedrock. Piles may be HP 12x53, HP 14x73, HP 14x89, or HP 14x117 depending on the design axial loads. Piles should be driven with their weak axis perpendicular to the center line of the beams. Piles should be 50 ksi, Grade A572 steel H-piles. Piles should be fitted with driving points to protect the tips, improve penetration and improve friction at the pile tip to support a pinned pile tip assumption.

Location	Estimated Pile Cap Bottom Elevation	Depth to Bedrock From Ground Surface	Top of Rock Elevation	Rock Quality Designation	Estimated Pile Length
Abutment No. 1					
BB-SBGWR-102A	81.0 feet	44.9 feet	47.4 feet	0%	35 feet
Abutment No. 2					
BB-SBGWR-101	81.5 feet	21.7 feet	71.6 feet	0%	10 feet

Pile lengths at the proposed abutments may be estimated based on the data in Table 2 below:

Table 2 – Estimated Pile Lengths for Piles Installed to Bedrock Surface

These pile lengths do not take into account the additional five (5) feet of pile required for dynamic testing instrumentation or any additional pile length needed to accommodate the Contractor's leads and driving equipment.

The designer shall design the H-piles at the strength limit state considering the structural resistance of the piles, the geotechnical resistance of the pile and loss of the lateral support due to scour at the design flood event. The structural resistance check should include

¹ MaineDOT Technical Report ME-01-7, June 2005, "Behavior of Pile Supported Integral Abutments at Bridge Sites with Shallow Bedrock - Phase 1"

checking axial, lateral, and flexural resistance. Resistance factors for use in the design of piles at the strength limit state are discussed below. Short piles supporting integral abutments should be designed in accordance with AASHTO LRFD criteria and checked for pile tip movement as described in the design example found in Appendix B of Technical Report ME-01-7, June 2005, "Behavior of Pile Supported Integral Abutments at Bridge Sites with Shallow Bedrock - Phase 1" and Chapter 5 of that report.

The design of the H-piles at the service limit state shall consider tolerable horizontal movement of the piles, overall stability of the pile group and scour at the design flow event. Extreme limit state design shall check that the nominal pile resistance remaining after scour due to the design flood can support the unfactored strength limit state loads with a resistance factor of 1.0. The design flood scour is defined in AASHTO LRFD Bridge Design Specifications 4th Edition (LRFD) Articles 2.6.4.4.2 and 3.7.5.

Since the abutment piles will be subjected to lateral loading, the piles should be analyzed for combined axial compression and flexure resistance as prescribed in LRFD Articles 6.9.2.2 and 6.15.2. An L-Pile[®] analysis is recommended to evaluate the soil-pile interaction for combined axial and flexure, with factored axial loads, movements and pile head displacements. Achievement of an assumed pinned condition at the pile tip should also be confirmed with an L-Pile[®] analysis. As the proposed piles for Abutment No. 2 will be short and will not achieve fixity, the resistance for the pile will be determined for structural compliance with interaction equation.

The integrity of the bridge approach fills and riprap abutment slopes must be maintained as these provide the only lateral support to the short pile group. The stream velocity should be low and there should be low potential for scour action, wave action, storm surge, and ice damage.

7.1.1 Strength Limit State

The nominal structural compressive resistance (P_n) in the strength limit state for piles loaded in compression shall be as specified in LRFD Article 6.9.4.1. It is the responsibility of the structural engineer to recalculate the column slenderness factor (λ) for the upper and lower portions of the H-pile based on unbraced lengths and K-values from project specific L-Pile[®] analyses and determine structural pile resistances. Preliminary estimates of the factored structural axial compressive resistances of the four proposed H-pile sections were calculated using a resistance factor, ϕ_c , of 0.50 (severe driving conditions) and a λ of 0.

The nominal geotechnical compressive resistances of the H-pile sections in the strength limit state were calculated using Goodman's Method and FHWA software Driven 1.0. The factored geotechnical compressive resistances of the four proposed H-pile sections were calculated using a resistance factor, ϕ_{stat} , of 0.45.

The drivability of the four proposed H-pile sections was considered. The maximum driving stresses in the pile, assuming the use of 50 ksi steel, shall be less than 45 ksi. As the piles will be driven to refusal on bedrock a drivability analysis to determine the resistance that

must be achieved was conducted. The resistance factor for a single pile in axial compression when a dynamic test is done given in LRFD Table 10.5.5.2.3-1 is $\phi_{dyn} = 0.65$.

The calculated factored axial compressive structural, geotechnical and drivability resistances of the four proposed H-pile sections for each abutment are summarized in Table 3 below. Supporting calculations are included in Appendix C- Calculations found at the end of this document.

		Factored Res	istance (kips)							
Pile Section	Structural	Geotechnical	Drivability	Governing Pile						
	Resistance*	Resistance	Resistance	Resistance						
Abutment No. 1										
12 x 53	388	347	298	298						
14 x 73	535	479	335	335						
14 x 89	653	499	440	440						
14 x 117	860	529	647	647						
		Abutment No. 2								
12 x 53	388	84	223	223						
14 x 73	535	116	304	304						
14 x 89	653	141	390	390						
14 x 117	860	186	547	547						

*based on preliminary assumption of $\lambda=0$ for the lower portion of the pile in only axial compression (no flexure)

Table 3 – Factored Axial Resistances for Abutment Piles at the Strength Limit State

LRFD Article 10.7.3.2.3 states that the nominal resistance of piles driven to point bearing on hard rock where pile penetration into the rock formation is minimal is controlled by the structural limit state. However, the factored axial drivability resistance is less than the factored axial structural resistance and local experience supports the estimated factored resistance from the drivability analyses. Therefore, it is recommended that the maximum factored axial pile load used in design for the strength limit state should not exceed the factored drivability resistance shown in Table 3 above.

Per LRFD Article 6.5.4.2, at the strength limit state, for H-piles in compression and bending, the axial resistance factor $\phi_c=0.7$ and the flexural resistance factor $\phi_f=1.0$ shall be applied to the combined axial and flexural resistance of the pile in the interaction equation (LRFD Eq. 6.12.2.2.1-1 or -2). The combined axial compression and flexure should be evaluated in accordance with the applicable sections of LRFD Articles 6.9.2.2 and 6.12.2.

7.1.2 Service and Extreme Limit States

For the service and extreme limit states resistance factors of 1.0 are recommended for structural and geotechnical pile resistances. For preliminary analysis, the H-piles were assumed fully embedded and λ was taken as 0. It is the responsibility of the structural engineer to recalculate the column slenderness factor (λ) for the upper and lower portions of

the H-pile based on unbraced lengths and K-values from project specific L-Pile[®] analyses and determine structural pile resistances.

The calculated factored axial structural and geotechnical resistances of the four proposed Hpile sections for each abutment are summarized in Table 4 below. Supporting calculations are included in Appendix C- Calculations found at the end of this report.

		Factored Res	istance (kips)							
Pile Section	Structural	Geotechnical	Drivability	Governing Pile						
	Resistance [*]	Resistance	Resistance	Resistance						
Abutment No. 1										
12 x 53	775	771	459	459						
14 x 73	1070	1065	516	516						
14 x 89	1305	1108	677	677						
14 x 117	1720	1177	996	996						
		Abutment No. 2								
12 x 53	775	186	343	343						
14 x 73	1070	257	467	467						
14 x 89	1305	313	600	600						
14 x 117	1720	413	842	842						

*based on preliminary assumption of $\lambda=0$ for the lower portion of the pile in only axial compression (no flexure)

Table 4 - Factored Axial Resistances for Abutment Piles at the Service and Extreme Limit States

LRFD Article 10.7.3.2.3 states that the nominal resistance of piles driven to point bearing on hard rock where pile penetration into the rock formation is minimal is controlled by the structural limit state. However, the factored axial drivability resistance is less than the factored axial structural resistance and local experience supports the estimated factored resistance from the drivability analyses. Therefore, it is recommended that the maximum factored axial pile load used in design for the service and extreme limit states should not exceed the factored drivability resistance shown in Table 4 above.

7.1.3 Pile Resistance and Pile Quality Control

The Contractor is required to perform a wave equation analysis of the proposed pile-hammer system and a dynamic pile test at each abutment. The first pile driven at each abutment should be dynamically tested to confirm capacity and verify the stopping criteria developed by the Contractor in the wave equation analysis. The ultimate pile resistance that must be achieved in the wave equation analysis and dynamic testing will be the factored axial pile load divided by a resistance factor of 0.65. The factored pile load should be shown on the plans.

Piles should be driven to an acceptable penetration resistance as determined by the Contractor based on the results of a wave equation analysis and as approved by the Resident. Driving stresses in the pile determined in the drivability analysis shall be less than 45 ksi in

accordance with LRFD Article 10.7.8. A hammer should be selected which provides the required resistance when the penetration resistance for the final 3 to 6 inches is 8 to 13 blows per inch. If an abrupt increase in driving resistance is encountered, the driving could be terminated when the penetration is less than 0.5-inch in 10 consecutive blows.

7.2 Integral Stub Abutments and Wingwalls

Integral stub abutments and wingwalls shall be designed for all relevant strength, service and extreme limit states and load combinations specified in LRFD Articles 3.4.1 and 11.5.5. The design of pile supported abutments and wingwalls at the strength limit state shall consider pile stability and structural resistance.

A resistance factor of $\phi = 1.0$ shall be used to assess abutment design at the service limit state including: settlement, horizontal movement, overall stability and scour at the design flood. The overall global stability of the foundation should be investigated at the Service I Load Combination and a resistance factor, ϕ , of 0.65. Extreme limit state design checks for abutments supported on piles shall include pile structural resistance pile geotechnical resistance, pile resistance in combined axial and flexure, and overall stability. Resistance factors, ϕ , for the extreme limit state shall be taken as 1.0. Extreme limit state design shall also check that the nominal resistance remaining after scour due to the design flood can support the unfactored strength limit state loads with a resistance factor of 1.0. The unfactored strength limit state loads include any debris loads occurring during the flood event.

Integral abutments and wingwall sections that are integral with the abutment should be designed to withstand a passive earth pressure state. In designing for passive earth pressure associated with integral abutments, the Coulomb state is recommended. Experience in designing wingwalls and integral abutments has shown that the use of the Coulomb passive earth pressure K_p =6.89 may result in uneconomical wall sections. For this reason, consideration may be given to using a Rankine passive earth pressure, K_p =3.25 when designing integral abutments and integral wingwall extensions.

Additional lateral earth pressure due to construction surcharge or live load surcharge is required per Section 3.6.8 of the MaineDOT BDG for the return wings when traffic loads are located within a horizontal distance equal to one-half of the wall height behind the back of the wall. Use of an approach slab may be required per the MaineDOT BDG Sections 5.4.2.10 and 5.4.4. When a structural approach slab is specified, reduction, not elimination, of the surcharge loads on abutments is permitted per LRFD Article 3.11.6.5. The live load surcharge may be estimated as a uniform horizontal earth pressure due to an equivalent height (h_{eq}) taken from Table 5 below:

Abutment Height	h _{eq}
5 feet	4.0 feet
10 feet	3.0 feet
≥20 feet	2.0 feet

 Table 5 – Equivalent Height of Soil for Estimating Live Load Surcharge

The Designer may assume Soil Type 4 (MaineDOT BDG Section 3.6.1) for backfill material soil properties. The backfill properties are as follows: $\phi = 32$ degrees, $\gamma = 125$ pcf.

All abutment designs shall include a drainage system behind the abutments to intercept any water. Drainage behind the structure shall be in accordance with Section 5.4.1.4 Drainage, of the MaineDOT BDG. Geocomposite drainage board applied to the backsides of the abutments and wingwalls with weep holes will provide adequate drainage. To avoid water intrusion behind the abutment, the approach slab should connect directly to the abutment.

Backfill within 10 feet of the abutments and wingwalls and side slope fill shall conform to Granular Borrow for Underwater Backfill - MaineDOT Specification 709.19. This gradation specifies 10 percent or less of the material passing the No. 200 sieve. This material is specified in order to reduce the amount of fines and to minimize frost action behind the structure.

7.3 Estimated Depths to Pile Fixity

Stability of the piles shall be evaluated in accordance with the provisions in LRFD Article 6.9 using an equivalent pile length that accounts for the laterally unsupported length of the pile plus the embedment depth to fixity. It is anticipated that the abutments will be protected with newly constructed riprap slopes underlain by a geotextile as scour protection. Historically, there have been no major scour issues at the site and the existing riprap design has proven to be adequate. Therefore, no unsupported length of pile needs to be considered in the evaluation of pile fixity.

Preliminary depths to fixity for the four (4) proposed H-pile sections were calculated, assuming only axial loading and without consideration of lateral loads, using the methodology from the Mass Highway Bridge Manual (1999). Table 6 below summarizes the calculated depths to fixity for the four (4) proposed H-pile sections. Supporting calculations are included in Appendix C- Calculations found at the end of this report.

H-pile Section	Preliminary Estimates of Depth to Fixity w/ no lateral loads applied
12 x 53	19 feet
14 x 73	20 feet
14 x 89	22 feet
14 x 117	23 feet

Table 6 - Preliminary Estimates of Depth to Fixity

In general it is recommended that piles be designed to achieve a fixed condition at the pile toe. Due to the depth of the overburden at the site, it is anticipated that the pile sections at Abutment No. 1 will all achieve a fixed condition while the pile sections at Abutment No. 2 will not achieve a fixed condition assuming a pile penetration to the top of bedrock. Short piles supporting integral abutments should be designed in accordance with AASHTO LRFD

criteria and checked for pile tip movement as described in the design example found in Appendix B of Technical Report ME-01-7, June 2005, "Behavior of Pile Supported Integral Abutments at Bridge Sites with Shallow Bedrock - Phase 1" and Chapter 5 of that report.

When the lateral and axial pile load groups are known, this data should be provided to the geotechnical engineer. A more refined analysis of pile fixity can then be performed using LPile[®] software.

7.4 Buckling and Combined Axial and Flexure

Pile group design shall consider loading effects due to combined axial and flexural loading, as outlined in LRFD Article 6.15. For a pile group composed of only vertical piles which is subjected to lateral loads, the pile structural analysis shall include consideration of soil-structure interaction effects as specified in LRFD Article 6.9. The recommended design approach considers the non-linear response of soil with lateral displacement. Soil-structure interaction considering the non-linear response of soil can be modeled using L-Pile[®] computer software.

The factored structural resistances for pile sections in combined axial compression and flexure are not provided in this report as these analyses are considered part of the structural design and the responsibility of the structural engineer.

7.5 Scour and Riprap

If using integral abutments at the site, pile lengths will be short and, therefore, scour protection will be critical. For scour protection, the integral abutments should be located away from the channel. Since the proposed bridge design will rely on the riprap slopes to provide scour protection for the integral abutment piles, slope construction and riprap placement are of critical importance.

The consequences of changes in foundation conditions resulting from the design flood for scour shall be considered at the strength, service and extreme limit states. These changes in foundation conditions shall be investigated at the abutments and wingwalls. For scour protection, any footings for wingwalls, which are constructed on granular deposits, should be embedded a minimum of 3 feet below the design scour depth and armored with 3 feet of riprap. Refer to MaineDOT BDG Section 2.3.11 for information regarding scour design.

Riprap conforming to Special Provisions 610 and 703 shall be placed at the toes of abutments and wingwalls. Special Provisions 610 and 703 are provided in Appendix D – Special Provisions found at the end of this report. Riprap shall be 3 feet thick. In front of the wingwalls, the bottom of the riprap section shall be constructed 4.5 feet above the bottom of the structures for frost protection. The riprap shall extend 1.5 feet horizontally in front of the wall before sloping at a maximum 1.75H:1V slope to the existing ground surface. The toe of the riprap section shall be constructed 1 foot below the streambed elevation. The riprap section shall be underlain by a 1 foot thick layer of bedding material conforming to item number 703.19 of the Standard Specification and Class "A" Erosion Control Geotextile per Standard Detail 610 (02-04).

7.6 Settlement

The grades of the existing bridge approaches will be raised in order to accommodate the change in horizontal alignment of the proposed bridge. Additionally, roadway will be widened to both sides at both abutments. The maximum fill to be placed at the site is approximately 5.5 feet and will result in less than 1 inch of settlement. This settlement is anticipated to occur during construction and will have minimal effect of the finished structure. Any settlement of the bridge abutments will be due to the elastic compression of the piling and will be negligible.

7.7 Frost Protection

Any foundation placed on granular subgrade soils should be designed with an appropriate embedment for frost protection. According to the MaineDOT frost depth maps for the State of Maine (MaineDOT BDG Figure 5-1) the site has a design-freezing index of approximately 1200 F-degree days. This correlates to a frost depth of 6.0 feet. The design frost depth was also calculated according to the US Army Corps Cold Regions Research and Engineering (USACE CRREL) Modberg computer program. According to the CRREL Modberg program, the site has a design freezing index of 1123 F-degree days. A water content of 5% from laboratory testing was used for the damp fill soils above the water table. These components correlate to a frost depth of 4.5 feet. It is believed that this frost depth is a more accurate assessment of the actual frost depth at the site.

Therefore, any foundations placed on granular soils should be founded a minimum of 4.5 feet below finished exterior grade for frost protection. This minimum embedment depth applies only to foundations placed on subgrade soils. Integral abutments shall be embedded a minimum of 4.0 feet for frost protection per Figure 5-2 of the MaineDOT BDG. See Appendix C- Calculations at the end of this report for supporting documentation.

7.8 Seismic Design Considerations

The following parameters were determined for the site from the USGS Seismic Parameters CD provided with the LRFD manual:

- Peak Ground Acceleration coefficient (PGA) = 0.101g
- Short-term (0.2-second period) spectral acceleration coefficient = 0.192g
- Long-term (1.0-second period) spectral acceleration coefficient = 0.045g

Per LRFD Article 3.10.3.1 the site is assigned to Site Class D (stiff soil) based on the average N-value obtained at the site during drilling activities. Per LRFD Article 3.10.6 the site is assigned to Seismic Zone 1 based on a calculated S_{D1} of 0.109g (LRFD Eq. 3.10.4.2-6).

According to Figure 2-2 of the Maine DOT BDG, the Great Works River Bridge is not on the National Highway System (NHS) and is therefore not considered to be functionally important, and since the bridge construction costs should not exceed \$10 million the bridge is not classified as a major structure. In conformance with LRFD Article 4.7.4.2 seismic analysis is not required for single-span bridges regardless of seismic zone. However, superstructure connections and minimum support length requirements shall be satisfied per LRFD Articles 3.10.9 and 4.7.4.4, respectively.

7.9 Construction Considerations

Boulders and cobbles were encountered within the existing abutment backfill in both of the borings. There is potential for these obstructions to impact the pile driving and/or installation operations. Obstructions may be cleared by conventional excavation methods, pre-augering, pre-drilling, or down-hole hammers. Care should be taken to drive piles within allowable tolerances. Alternative methods to clear obstructions may be used as approved by the Resident.

Since the proposed bridge design will rely on the riprap slopes to provide scour protection for the integral abutment piles, slope construction and riprap placement are of critical importance. The existing riprap slopes shall be reconstructed in their entirety. Care should be taken in construction of the riprap slopes to assure that they are constructed in accordance with MaineDOT Special Provisions 610 and 703 and the plans.

8.0 CLOSURE

This report has been prepared for the use of the MaineDOT Bridge Program for specific application to the proposed replacement of the Great Works River Bridge in South Berwick, Maine in accordance with generally accepted geotechnical and foundation engineering practices. No other intended use is implied. In the event that any changes in the nature, design, or location of the proposed project are planned, this report should be reviewed by a geotechnical engineer to assess the appropriateness of the conclusions and recommendations and to modify the recommendations as appropriate to reflect the changes in design. Further, the analyses and recommendations are based in part upon limited soil explorations at discrete locations completed at the site. If variations from the conditions encountered during the investigation appear evident during construction, it may also become necessary to re-evaluate the recommendations made in this report.

We also recommend that we be provided the opportunity for a general review of the final design and specifications in order that the earthwork and foundation recommendations may be properly interpreted and implemented in the design.

<u>Sheets</u>

CONTOUR INTERVAL 20 FEET

ivision: GEOTECH Username: terry.white Date:1/30/2

 $\overline{\mathbf{O}}$ OTE ы

592	2+00	59 <i>3</i> +00 /05	TE OF MAINE F OF TRANSPORTATION	15609.00	PIN 15609.00 BRIDGE PLANS
		100	STA DEPARTMEN		BRIDGE NO. 5610
		90 90			
		80	VTE SIGNATURE	P.E. NUMBER	 DATE
		70	ВY DA К MAGUIRE T WHITE		
		60	PROJ. MANAGER DESIGN-DETAILED CHECKED-REVIEWED	PESIGN3-DETAILED3 REVISIONS 1	LL REVISIONS 2 REVISIONS 3 FIELD CHANGES
		55	RIDGE R RK COUNTY		CE PROFI
		45 40	KS RIVER I Works riv	YC	SUBSURFA
		35	GREAT WOR GREAT	BERWICK	PRETIVE 5
592 s is intended to oundaries betwe e been develop ations and sam	et oo o convey een strata ed by ples.	59 <i>3</i> •00	SHFF	SOUTH	
probably more the exploration	erratic. logs.			3	יישבת
			0	F 4	

Dril Opero	ler: stor:		MaineDOT E. Giguere		Ele Dat	vation um:	(ft.)	92. NAVI	3) 88	Auger ID/DD: 5" Solid Stem Sampler: Standard Split	Spoon
Logge Date	ed By: Start/F	inish:	K. Maguire/ 11/20,26-28	G. Lidstone	Rig Dri] Type: ling	Metho	od:	CME Cas	45C ed Wasi	Hammer Wt./Fall: 140#/30" Auto Boring Core Barrel: N0-2"	
uorir Hamme Defini	iy LOCO er Effic itions:	ciency Fo	uctor: 0.77	R = Rock	Cas Ham Core So	nmer Ty omple	, UU: pe:	ļ	⊓₩ 4	utic⊠ S _u = In:	wuter Level* None Observed Hydraulic Rope & Cathead itu Field Vane Shear Strength (psf) Su(lab) = Lab Vane Shear Strength	ength (p
D = Sp MD = L U = Th MU = '	olit Spoor Insuccessi nin Wall 1 Insuccessi	n Sample iul Split S iube Sample iul Thic Ma	poon Sample at	SSA = So tempt HSA = Ho RC = Rol attempt WOH = we	lid Ster llow Ste ler Cone ight of	m Auger em Auger e 14016- P	nommer			T _v = Poi q _p = Uni N-uncori Hammer ¹	ket Torvane Shear Strength (psf) WC = water content, percent onfined Compressive Strength (ksf) LL = Liquid Limit ected = Raw field SPT N-value PL = Plastic Limit ficiency Factor = Annual Calibration Value Pl = Plastic Limit	
~0 0 V = (r WV = (nsitu Vane Insuccessi	Shear Tes ul Insitu	t, PP = Poo Vane Shear Tes	ket PenetrometerWOR/C = w tattempt WO1P = W Sample Information	weight o	of rods o f one per	or cas rson	ing		N ₆₀ = SI N ₆₀ = (1	T N-uncorrected corrected for hammer efficiency C = Grain Size Analysis ammer Efficiency Factor/60%1#N-uncorrected C = Consolidation Test	
Hh (ft.)	ole No.	./Rec. (in.	ole Depth .)	vs (/6 in. ar sngth F) ROD (%)	ncorrected		ing	VS	/ation .)	bhic Log	Lat Tr Visual Description and Remarks A A	borato esting esults ASHTO and
d Dep.	Sam	Pen	Sam (ft.	BLO Shee Stree	N-U	N60	se o SSA		Elev (ff.	Gra	Unif See Boring BB-SBGWR-102 for material description for 0.0-6.7' bas.	ied Cl
											0.0-0.1 095.	
								_				
5 -							\mathbf{k}	/			Shun HW Cosing from 5 0-10 5' has	
							нw					
									82.60		Combination of BOULDERS, COBBLES and SOIL mixture from 6.7-25.0' bgs.	
	R1	60/47	9.80 -				NO	_		鼺		
10 -			14.80				NW	/			R1: Black and white, coarse grained Granite. Core Times (min:sec) 9.8-10.8' (2:08)	
								_			11.8-12.8' (2:40) 12.8-13.8' (2:35) 13.8-14.8' (3:05) 78% Recovery	
											Spun NW Casing from 10.5-45.2 bgs.	
15 -	R2	60/51	14.80 - 19.80					_			R2: Black and white, coarse grained Granite. Core Times (minisec)	
							╞				15.8-16.8' (2:58) 16.8-17.8' (2:40) 17.8-18.8' (2:35)	
							$\left \right \right $	-			18.8-19.8' (3:05) 85% Recovery	
20 -	R3	60/47	19.80 - 24.80								R3: Black and white, coarse grained Granite and grey	
								┥			Core Times (min:sec) 19.8-20.8' (2:08) 20.8-21.8' (2:58)	
											21.8-22.8 (2:40) 22.8-23.8' (2:35) 23.8-24.8' (3:05) 78% Recovery Pulled casing back, replaced spent spin shoe. Spun	
25	R4	24/4	24.80 - 26.80					_			Casing to 29.5′ bgs.	
25 -	10./	J 4 14 -	26.80 -	2 /0 /0 /0				Δ			R4: Sandstone. Core Times (min:sec) 24.8-25.8' (2:08) 25.8-26.8' (2:58) 17% Recovery	
	IU/AB	24/14	28.80	5/2/2/2	4	5		-	65.50 64.80		(1D/A) 26.8-27.5' bgs. Grey, wet, loose, GRAVEL, some A-	#209920 4. GC-0 C=26.2
								1			(1D/B) 27.5-28.8' bgs. Grey, wet, medium stiff, Clayey SILT, trace fine sand. W(#20992 -7-5. C C=36.4
30 -	2D/AC V1	24/20	30.00 - 32.00	WOH/2/5/7 Su=290/67 psf	7	9		_		\square	Washed ahead of casing from 29.5-30.0' bgs. (2D/A) 30.0-30.9' bgs. Grey, wet, stiff, SILT, some clay, trace sand. 55x110 mm vane raw torque readings:	#209920 4. CL-1 C=27.2
			30.17 30.54						61.00		V1: 6.5/1.5 ft lbs. V1 stopped at 30.9' bgs, pulled back 0.1' and did shear A-4 test. (20/8) 30.9-31.3' bgs.	#209929 4. CL-I C=22.1
								-			Grey, wet, stiff, SLLT, little clay, trace gravel and fine sand. (2D/C) 31.3-32.0' bas.	
35 -	20	24/14	35.00 -	17/25/20/21	45				57.80		Grey, wet, loose, silty fine SAND, trace gravel. Brown, moist, very dense, fine to coarse SAND, some gravel, some silt.	#20993
	30	24714	37.00	17725720721	45	58		_			- A- W(-2-4. S C=11.0
									54.30		Similar to above, but with cobbles.	
40 -	MD	24/0	39.20 - 41.20	13/16/15/15	31	40					Failed sample attempt.	
							+	1				
	4D	8.4/6	44.50 -	17/31(2.4")			\mathbb{V}	_	48.80		Grey, wet, GRAVEL, some medium to coarse sand, trace silt. Roller Coned ghead from 44.5-45.4' bas, soun NW Casing	
45 •	R5	52.8/47	45.70 - 50.10	ROD = 0%			NO		47.40 47.10		From 44.5-45.5' bgs. 44.90- Weathered ROCK. 45.20-	
								_			NW Casing to 45.5' bgs. Bedrock: Light grey, fine grained, sedimentary, SANDSTDNE, po obvigue bedrog, biobly fractured, yugay	
											(Kittery Formation). Rock Mass Quality = Verry Poor. R5:Core Times (min:sec) 45.7-46.7' (3:36)	
50 -	R6	46.8/ 46.8	50.10 - 54.00	ROD = 0%			\vdash	-			47.7-48.7' (3:00) 48.7-49.7' (3:45) 49.7-50.1' (2:06) 90% Recovery Care Blocked at 50.1' bas	
								_			R6:Core Times (min:sec) 50.1-51.1' (4:01) 51.1-52.1' (3:25) 52.1-53.1' (2:58)	
											53.1-54.0' (3:50) 100% Recovery	
55 -	R7	54/54	54.00 - 58.50	ROD = 0%							54.0-55.0' (2:40) 55.0-56.0' (3:12) 56.0-57.0' (2:40)	
								_			57.0-58.0° (2:47) 58.0-58.5° (1:54) 100% Recovery Core Blocked at 58.5° bgs.	
							$ \downarrow \rangle$	/	33.80			
60 -									-		воттоm of Exploration at 58.50 feet below ground surface.	
								_				
								-				
65 -												
								-				
70 -								_				
								┥				
75 Remo	rks :											

Ē

Ma	Maine Department of Transportation							ect:	Great	Work	River Bridge #5610	Boring No.:	Boring No.: <u>BB-SBG</u>		
		<u>So</u>	il/Rock Exp US CUSTOMA	loration Log ARY UNITS			Loca	tion	n: Rou	te 236	• South Berwick• Maine	PIN:	1560)9.00	
Dril	ler:		MaineDOT		Ele	evatio	n (ft	.)	92.	3		Auger 1D/0D:	5" Solid Ste	em	
Oper	ator:		E. Giguere		Da	tum:			NAV	D 88	Sampler:	Standard Split Spoon			
Logg	ed By:		K. Maguire	/G. Lidstone	Rid	n Type	:		CMF	450		Hammer Wt./Fall:	140#/30" Auto		
Date Stort/Eigisb: 11/19/07: 10:45-11:45							Moth	od.	Case	od Was	h Boriog	Core Barrelt	N/A		
Dare	310117	+	500.30 0	10.0.1.+	0	i i i i i i i i i		00.	CUS	eu w ua	n boi nig		N/A		
BOLI	ng Loca		588+/0.9.	10.0 LT.	Cas	sing I	0/00:		NW			Water Level*:	None Ubserve	ed	
Hamm	er Effi	ciency F	actor: 0.77	7 R = Rock	Har	mmer I	ype:		Automo	otic ⊠	Hydraulic 🗆	Rope & Cathead		r Strength Inst	
D = S MD = U = T MU = V = 1 MV =	plit Spoo Unsuccess hin Wall Unsuccess nsitu Van	on Sample iful Split S Tube Sample iful Thin We he Shear Tes iful Insitu	Spoon Sample a e all Tube Sample st. PP = Po Vage Shear Te	SSA = So ttempt HSA = Ho RC = Rol e attempt WOH = we cket PenetrometerWOR/C = st attempt WO1P = W	lid Ste llow St ler Con ight of weight	em Auger em Auge 1401b. of rods	r hammei or ca: erson	sing		$T_v = Pc$ $q_p = Ur$ N-uncor Hammer $N_{60} = S$ $N_{60} = S$	cket Torvane Shear Strength (confined Compressive Strength rected = Raw field SPT N-valu Efficiency Factor = Annual Ca PT N-uncorrected corrected for Hammer Efficiency Factor/602)	(ksf) WC = v (ksf) LL = L e PL = F libration Value PI = F r hammer efficiency G = Gr	iquid Limit iquid Limit lastic Limit lasticity Index ain Size Analysis nsolidation Test	cent	
	<u> </u>	~		Sample Information											
Depth (ft.)	Sample No.	Pen./Rec. (in.	Sample Depth (ft.)	Blows (/6 in. Shear Strength (psf) or ROD (%)	N-uncorrected	N60	Casing	Blows	Elevation (ft.)	Graphic Log	Visual De	scription and Remarks	s	Laboratory Testing Results/ AASHTO and hified Class	
0							54	۸			Pavement				
	1D	24/13	1.00 - 3.00	12/11/6/8	17	22		^	91.60		Brown, damp, medium d gravel, trace silt, (ense, fine to coarse Fill).	GAND, Some	G#209986 A-1-b. SW-SM WC=5.1%	
									88 50				3 80-		
								,	00.00		Cobble from 3.8-4.5'	bgs. (Fill).	5.80-		
. ₅ .								/	87.80		Brown, damp, medium d	ense, fine to coarse	SAND: some	C#200087	
	2D	24/12	5.00 - 7.00	13/6/6/9	12	15	3()			gravel, little silt,	(Fill).		A-1-b, SM WC=4.9%	
							30)							
							05	0	84 80		950 blows for 6".				
								0	04.00		Bottom of Exploration	ys. at 7 50 feet below a	7.50		
											NO REF	USAL, "See Remarks"	ound surtace.		
	———														
10.															
10 -															
							_								
	<u> </u>														
15 .															
13															
										1					
I I										1					
I I	<u> </u>					<u> </u>	-			1					
I										1					
						1				1					
20 •	 					_	-			1					
										1					
	<u> </u>		1			<u> </u>	1			1					
I										1					
						1				1					
25 Remo	rks:	I				1	1		l	1				l	
Aba	indoned	hole at	7.5′ bgs. C	asing will not driv	e stro	aight.									
Stra+	ification	lines rep	resent approvi	mate boundaries hetween «	ioil tvi	Desi tra	Insitio	ns m	ay be a	radual		Page 1 of 1			
			un en									. 595 1 01 1			
* Wat than	er level h those pr	readings ha	ove been mode (he time measur	at times and under condit ements were made.	ions s	tated.	uround	wate	r fluct	uations	may occur due to conditions o	Boring No.	: BB-SBGWR	₹-102	

Dril Oper Logg Date Bor:	ine ler: ator: ed By: Start/ ng Loca)epar <u>so</u> Finish: tion:	tment <u>US CUSTOM</u> MaineDOT E. Giguere G. Lidston 11/28/07-1 589+97.9.	of Transpor <u>location Loa</u> <u>ARY UNITS</u> e 1/29/07 9.4 Rt.	Ele Dat Rig Dri Cas	ON evation tum: g Type: illing sing IN	In Project: Great Works River Bridge #5610 Boring No.: BB-SBGW Location: Route 236. South Berwick. Maine PIN: 15609 ation (ft.) 93.3 Auger ID/OD: 5" Solid Stem m: NAVD 88 Sampler: Standard Spli Type: CME 45C Hammer Wt./Fall: 140#/30" Auto ling Method: Cased Wash Boring Core Barrel: N/A					WR-101 9.00 m it Spoon o		[+]	ORTATION		
Hamm Defin D = S MD = U = T MU = V = [MV =	er Effi itions: plit Spoo Unsuccess hin Wall Unsuccess nsitu Var	ciency Fe ful Split S Tube Sample ful Thin Wa e Shear Tes ful Insitu	actor: 0.7 Spoon Sample c a bil Tube Sampl st. PP = Pc Vane Shear Te	7 R = Rc SSA = ttempt HSA = RC = R e attempt WDH = tcket PenetrometerWDR/C ska attempt WDIP =	Ham ick Core Si Solid Ster Hollow Str coller Con- weight of = weight of : Weight of	nmer Ty ample m Auger em Auger ie 1401b. of rods of one pe	hammer or casine	Autor 9	natic () S _u = 1 T _v = P q _p = U N-unco Hammer N ₆₀ = N ₆₀ =	Hydraulic Rope & Cat situ Field Vane Shear Strength (psf) confined Compressive Strength (ksf) rected = Raw field SPT N-value Efficiency Factor = Annual Calibration Valu PT N-uncorrected for hammer effic Mammer Efficiency Factor/50%19%-uncorrected	thead Su(lab) = Lab Vane Shear WC = water content, pero LL = Liquid Limit PL = Plastic Limit ue PI = Plasticity Index ciency G = Grain Size Analysis d C = Consolidation Test	Strength (psf) ent		MAINI	ANSP	00	
Depth (ft.)	Sample No.	Pen./Rec. (in.)	Sample Depth (ft.)	Samble Intormation Shear (/6 in. Shear (stength or ROD (%) or ROD (%)	N-uncorrected	N60	Casing Blows	Elevation (ft.)	Graphic Log	Visual Description c	and Remarks U	Laboratory Testing Results/ AASHTO and nified Class	, .s.	TE OF	COF T	15609	PIN
- 0	1D	24/13	1.30 - 3.30	10/13/16/12	29	37	SSA	92.50		Pavement Damp, dense, GRAVEL, some brown. cobbles, little silt, (Fill).	0.80- . fine to coarse sand.	G#210000 A-1-a, GW-GN WC=3.3%	м	STA'	MENT		
- 5 -	20	24/5	5.50 - 7.50	7/11/30/24	41	53	SPUN HW	-		BOULDER from 4.4-5.4′ bgs. Damp, very dense, GRAVEL, cobble coarse sand, little silt. (Fill Spun HW Casing to 7.7′ bgs.	es, some brown, fine to).				PART		
								-		COBBLE from 7.6-8.5' bgs. Roller Coned ahead from 7.7-8.6' Spun Casing from 7.7-10.5' bgs. Soil Layer from 8.5-9.8' bgs.	′bgs.				DE		
- 10 -	R1	50.4/39	10.90 - 15.10					82.30		Granite BDULDER from 9.8-12.6' t Roller Coned ahead from 10.5-10. R1: Granite and Sandstone Core Times (min:sec) 10.9-11.9' (3:32) 11.9-12.9' (3:19)	bgs. .9′ bgs11.00-						
• 15 •								-		12.9-13.9' (3:40) 13.9-14.9' (3:09) 14.9-15.1' (0:21) Spun NW Casing from 10.9-15.0' t COBBLES and GRAVEL from 12.6-13. Granite BOULDER from 13.8-14.9' VOID from 14.9-16.1' bgs. Spun NW Casing from 15.0-20.0' t	bgs. .8' bgs. bgs.						
	R2	48/22	16.10 - 20.10				ОЛ	-		Failed Sample attempt at 16.1't Recovery. 10 blows/0". Started f R2: Granite and Sandstone Core Times (min:sec) 16.1–17.1'(2:29) 17.1–18.1'(1:38) 18.1–19.1'(2:42)	bgs 0″ penatration/0″ R2+						
- 20 -	R3	40.8/26	20.10 - 23.50					71.60		19.1-20.1' (1:37) Granite COBBLE from 16.1-16.9' t Soil Layer from 16.9-17.2' bg Grey COBBLES from 17.2-17.8' bg GRAVEL and COBBLES from 17. Soft GRAVEL and COBBLES from 17. COBBLE from 20.0-20.6' bgs. R3: Sandstone Core Times (min:sec)	bgs. 's. '8-19.8' bgs.				TURE	UMBER	
- 25 -	R4	45.6/45	23.50 - 27.30	ROD = 0%				-		20.1-21.1' (4:27) 21.1-22.1' (2:37) 22.1-23.1' (3:20) 23.1-23.5' (3:39) Soil Layer from 20.6-21.7' bgs. Top of Bedrock at Elev. 71.6. Bedrock: Light grey. fine grain SANDSTORE. no obvious bedring. I	21.70- ed. sedimentary, highly fractured, vuggy,				SIGNA	 P.F. N	
								66.00	, 	with iron staining. (Kittery For Ouality = Very Poor. R4:Core Times (min:sec) 23.5-24.5' (3:43) 24.5-25.5' (3:43) 25.5-26.5' (3:52) 26.5-27.3' (4:10) 98% Recovery	rmation). Rock Moss			DATE			
- 30 -								-		Bottom of Exploration at 27.3 surface.	30 feet below ground			- BY	T WHITE		
								-							K MAGUIRE		
- 35 -								-						ANAGER	DETAILED D-REVIEWED	DETAILED2 DETAILED3 NS 1	5 2 2 2 2 7 2 2 4 7 2 2 4
- 40 -								-						PROJ. M	DE SIGN- CHECKE	DESIGN2 DESIGN3 RFVISIOI	REVISIOI REVISIOI REVISIOI
								-								NΤΥ	
• 45 ·								-						G E		COU	
<u>- 50 .</u> <u>Remo</u>	rks:							-						BRID	ЕR)RK	
11/ Strat * Wat	28/07; ification er level h those pu	12:00-14 lines repr readings ha resent at t	:30, 11/29, resent approxi ave been made he time measu	'07: 9:15-14:30 mote boundaries between of times and under conv rements were made.	n soil typ ditions st	best tran	nsitions Groundwat	may be -	gradual. tuations	may occur due to conditions other Bor	al of 1 ing No.: BB-SBGWR	-101		VER	S RIV	ΥC	LOGS
														REAT WORKS RI	GREAT WORK	BERWICK	BORING

SHEET	NUMBER

4

SOUTH

Appendix A

Boring Logs

	UNIFIE		ASSIFICA	TION SYSTEM		TERMS I DENSITY/		CY.		
MA.			GROUP SYMBOLS			BERGHTIK				
COARSE- GRAINED SOILS	GRAVELS	CLEAN GRAVELS	GW	Well-graded gravels, gravel- sand mixtures, little or no fines	Coarse-grained s sieve): Includes (1 clayey or gravelly pepetration resista	<u>oils</u> (more than half o) clean gravels; (2) si sands. Consistency i	of material is larger Ity or clayey gravels is rated according to	than No. 200 s; and (3) silty, o standard		
COLO	f of coarse · than No. 4 ze)	(little or no fines)	GP	Poorly-graded gravels, gravel sand mixtures, little or no fines	<u>Descrip</u> tr	Modified B tive Term_ ace	urmister System <u>Porti</u>	<u>ion of Total</u>)% - 10%		
l is ize)	re than hal ion is large sieve si	GRAVEL WITH FINES	GM	Silty gravels, gravel-sand-sill mixtures.	adjective (e.g.	ttie ome . sandy, clayey)	1 2 3	1% - 20% 1% - 35% 6% - 50%		
of materia 00 sieve s	(mo fracti	(Appreciable amount of fines)	GC	Clayey gravels, gravel-sand-clay mixtures.	Den Cohesion Very	Density or Standard Penet Cohesionless Soils N-Value (bl) Very loose 0 Loose 5				
e than half than No. 2	SANDS	CLEAN SANDS	SW	Well-graded sands, gravelly sands, little or no fines	Mediur De Very	n Dense ense Dense		11 - 30 31 - 50 > 50		
(mor larger	of coarse than No. e)	(little or no fines)	SP	Poorly-graded sands, gravelly sand, little or no fines.	Fine-grained soil	<u>s</u> (more than half of n	naterial is smaller th	nan No. 20(
	than half is smaller sieve siz	SANDS WITH FINES	SM	Silty sands, sand-silt mixtures	sieve): Includes (1 or silty clays; and strength as indicat) inorganic and organ (3) clayey silts. Cons ed.	ic silts and clays; (istency is rated acc Approximate	2) gravelly, sandy cording to shear		
	(more fraction	(Appreciable amount of fines)	SC	Clayey sands, sand-clay mixtures.	Consistency of Cohesive soils	SPT N-Value blows per foot	<u>Undrained</u> <u>Shear</u> Strength (psf)	<u>Field</u> Guidelines		
FINE- GRAINED SOILS			ML	Inorganic silts and very fine sands, rock flour, silty or clayey fine sands, or clayey silts with slight plasticity.	Very Soft Soft Medium Stiff	WOH, WOR, WOP, <2 2 - 4 5 - 8	0 - 250 250 - 500 500 - 1000	Fist easily Penetrates Thumb easily penetrates Thumb penetrates with moderate effort		
			CL	Inorganic clays of low to medium plasticity, gravelly clays, sandy clays silty clays lean clays	Stiff Very Stiff Hard	9 - 15 16 - 30 >30	1000 - 2000 2000 - 4000 over 4000	Indented by thumb with great effort Indented by thumbnai		
	(liquid limit l	ess than 50)	OL	Organic silts and organic silty clays of low plasticity.	RQD =	ignation (RQD): sum of the lengths	of intact pieces of	with difficulty		
al is size)					length of core advance *Minimum NQ rock core (1.88 in. OD of cor					
ulf of materi . 200 sieve	SILTS AN	ID CLAYS	MH	Inorganic silts, micaceous or diatomaceous fine sandy or silty soils, elastic silts.	Rock Ma	Correlation of RQI	D to Rock Mass (ass Quality RQD		
ore than he er than Nc			СН	Inorganic clays of high plasticity, fat clays.	P F G	<pre><23% 6% - 50% 1% - 75% 6% - 90%</pre>				
(mc small	(liquid limit gr	eater than 50)	ОН	Organic clays of medium to high plasticity, organic silts	Excellent 91% - 100% Desired Rock Observations: (in this order) Color (Munsell color chart)					
	HIGHLY (SO	ORGANIC DILS	Pt	Peat and other highly organic soils.	Lithology (igneo Hardness (very Weathering (tres	us, sedimentary, m hard, hard, mod. h sh, very slight, sligh	e.) netamorphic, etc.) ard, etc.) nt, moderate, mod) d. severe,		
Desired So	oil Observat	tions: (in th	is order)		Coolerie	severe, etc.)				
Color (Mun Moisture (d	sell color ch ry, damp, m	art) oist, wet, sa	turated)		Geologic discon	tinuities/jointing: -dip (horiz - 0-5, lo	w angle - 5-35, m	nod. dipping -		
Density/Cor	nsistency (fr	om above ri	ght hand si	de) artions - trace little, etc.)		35-55, steep	- 55-85, vertical	- 85-90)		
Gradation (well-graded	, poorly-grad	led, uniforn	n, etc.)		close 30-100 cr	n, wide - 1-3 m, v	/ery wide >3 m)		
Plasticity (n Structure (la	on-plastic, s avering. frac	slightly plast tures, crack	c, moderates, etc.)	ely plastic, highly plastic)		-tightness (tight, op -infilling (arain size	pen or healed)			
Bonding (w	ell, moderat	ely, loosely,	etc., if app		Formation (Wate	erville, Ellsworth, C	ape Elizabeth, et	tc.)		
Geologic O	rigin (till, ma	rine clay, al	luvium, etc.)	ref: AASHTO	Standard Specifica	tion for Highway	r, poor, etc.) Bridges		
Unified Soil Groundwate	Classification or level	on Designat	ion		17th Ed. Table Recovery	e 4.4.8.1.2A		-		
	Maina	Donorter	nt of Tra	neportation	Sample Cont	ainer Labeling I	Requirements			
	waine L	Geotech	nical Sec	nsponation	PIN Bridge Name	/ Town	Blow Counts Sample Reco	overy		
Ke	y to Soil a	and Rock	Descrip	tions and Terms	Boring Number	er	Date Personnel Ini	tials		
	Fie	ld Identific	ation Info	ormation	Sample Depth	1				

	Main	e Dep	artment	of Transporta	tion		Proje	ct:	Great	Works F	River Bridge #5610	Boring No.:	BB-SBC	GWR-101
			Soil/Rock Exp US CUSTOM	loration Log ARY UNITS			Locat	ion	: Rou	te 236, S	outh Berwick, Maine	PIN:	156	09.00
Drill	er:		MaineDOT		Eleva	tion	(ft.)		93.3			Auger ID/OD:	5" Solid Stem	
Ope	rator:		E. Giguere		Datur	n:			NA	VD 88		Sampler:	Standard Split	Spoon
Log	ged By:		G. Lidstone		Rig T	ype:			СМ	E 45C		Hammer Wt./Fall:	140#/30" Auto	
Date	Start/Fi	inish:	11/28/07-11/2	9/07	Drillir	Drilling Method: Cased Wash Boring						Core Barrel:	N/A	
Bori	ng Loca	tion:	589+97.9, 9.4	Rt.	Casin	Casing ID/OD: HW & NW						Water Level*:	None Observed	1
Ham	mer Effi	iciency Fa	actor: 0.77		Hamn	ner [·]	Туре:		Autom	atic 🖂	Hydraulic 🗆	Rope & Cathead □		
Defini D = S MD = U = TI MU = V = In MV =	tions: plit Spoon S Unsuccess hin Wall Tu Unsuccess situ Vane S <u>Unsuccess</u>	Sample sful Split Spor be Sample sful Thin Wall Shear Test, sful Insitu Var	on Sample attemp Tube Sample att PP = Pocket Per ne Shear Test atte	R = Rock SSA = So pt RC = Roll empt WOH = w verterometer WOR/C = empt WOHP = W Scample Information	Core Sampl id Stem Au llow Stem A er Cone eight of 140 weight of ro Veight of on	le ger Auger Ib. ha ods or <u>ne per</u>	mmer casing son			$S_{u} = InsiT_{v} = Pocq_{p} = UncN-uncorrHammerN_{60} = SFN_{60} = (H$	u Field Vane Shear Strength (psf) ket Torvane Shear Strength (psf) onfined Compressive Strength (ksf) octed = Raw field SPT N-value Efficiency Factor = Annual Calibrati PT N-uncorrected corrected for ham ammer Efficiency Factor/60%)*N-u	Su(i; WC LL = PL = ion Value PI = mer efficiency G = ncorrected C =	ab) = Lab Vane Shear S = water content, percen Liquid Limit Plastic Limit Plastic Limit Plasticity Index Grain Size Analysis Consolidation Test	itrength (psf) t
				Sample Information	8					1				Laboratory
Depth (ft.)	Sample No.	Pen./Rec. (in.	Sample Dept ^t (ft.)	Blows (/6 in.) Shear Strength (psf) or RQD (%)	N-uncorrected	N ₆₀	Casing	DIUWS	Elevation (ft.)	Graphic Log	Visual De	scription and Remarks	3	Testing Results/ AASHTO and Unified Class.
0							SSA	4			Pavement			
	1D	24/13	1.3 - 3.3	10/13/16/12	29	37			92.5		Damp, dense, GRAVEL, sor silt, (Fill).	ne brown, fine to coarse	0.8 sand, cobbles, little	G#210000 A-1-a, GW-GM WC=3.3%
- 5 -	2D	24/5	5.5 - 7.5	7/11/30/24	41	53	SPU HW	/ N /			BOULDER from 4.4-5.4' bg Damp, very dense, GRAVEI little silt, (Fill). Spun HW Casing to 7.7' bgs	s. L, cobbles, some brown,	fine to coarse sand,	
- 10 -											COBBLE from 7.6-8.5' bgs. Roller Coned ahead from 7.7 Spun Casing from 7.7-10.5' Soil Layer from 8.5-9.8' bgs Granite BOULDER from 9.3	7-8.6' bgs. bgs. · 3-12.6' bgs.		
	R1	50.4/39	10.9 - 15.1				`NW NQ	ľ 	82.3		Roller Coned ahead from 10 R1: Granite and Sandstone Core Times (min:sec) 10.9-11.9' (3:32) 11.9-12.9' (3:19) 12.9-13.9' (3:40)	.5-10.9' bgs.	11.0	
- 15 -								/			13.9-14.9' (3:09) 14.9-15.1' (0:21) Spun NW Casing from 10.9- COBBLES and GRAVEL fr Granite BOULDER from 13 VOID from 14.0 LUbra	-15.0' bgs. om 12.6-13.8' bgs. .8-14.9' bgs.		
	R2	48/22	16.1 - 20.1				NQ	2			Spun NW Casing from 15.0. Failed Sample attempt at 16. 0". Started R2. R2: Granite and Sandstone Core Times (min:sec) 16.1-17.1' (2:29)	-20.0' bgs. I' bgs 0" penatration/0"	Recovery, 10 blows	
- 20 -	R3	40.8/26	20.1 - 23.5					/		220520020020 0020000000 002000000000000	17.1-18.1' (1:38) 18.1-19.1' (2:42) 19.1-20.1' (1:37) Granite COBBLE from 16.1 Soil Layer from 16.9-17.2' h	-16.9' bgs.		
		45.6/45	23.5 - 27.3	RQD = 0%					71.6		Grey COBBLES from 17.2 o Grey GRAVEL and COBBL Soil Layer from 19.8-20.0' b COBBLE from 20.0-20.6' by R3: Sandstone Core Times (min:sec) 20.1.211 (4.27)	17.8' bgs. ES from 17.8-19.8' bgs. gs. gs.		
25 <u>Rem</u>	arks:										21.1-22.1' (2:37)			

11/28/07; 12:00-14:30, 11/29/07; 9:15-14:30

Stratification lines represent approximate boundaries between soil types; transitions may be gradual.	Page 1 of 2
* Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other than those present at the time measurements were made.	Boring No.: BB-SBGWR-101

	Maine Department of Transporta						Project:	Great	Works	River Bridge #5610	Boring No.:	BB-SBC	GWR-101	
		•	Soil/Rock Exp	Dioration Log IARY UNITS			Locatio	n: Rou	te 236,	South Berwick, Maine	PIN:	156	09.00	
Drille	er:		MaineDOT		Eleva	tion	(ft.)	93.3	;		Auger ID/OD:	5" Solid Stem		
Ope	rator:		E. Giguere		Datur	n:		NA	VD 88		Sampler:	Standard Split	Spoon	
Log	ged By:		G. Lidstone		Rig T	ype		СМ	E 45C		Hammer Wt./Fall:	140#/30" Auto		
Date	Start/Fi	inish:	11/28/07-11/2	29/07	Drillin	ng M	ethod:	Cas	ed Wasł	Boring	Core Barrel:	N/A		
Bori	ng Loca	tion:	589+97.9, 9.4	Rt.	Casir	ng ID	/OD:	HW	& NW		Water Level*:	None Observed	1	
Ham	mer Effi	iciency F	actor: 0.77		Hamr	ner	Туре:	Autom	atic 🖂	Hydraulic 🗆	Rope & Cathead □			
Definit D = SI MD = U = TI MU = V = In MV =	tions: plit Spoon S Unsuccess hin Wall Tu Unsuccess situ Vane S <u>Unsuccess</u>	Sample sful Split Sp ibe Sample sful Thin Wa Shear Test, sful Insitu Va	oon Sample attem all Tube Sample at PP = Pocket Pe ane Shear Test att	R = Rock SSA = Sc upt HSA = H RC = Rol tempt WOH = w netrometer WOR/C = tempt WOIP =	Core Samp olid Stem Au ollow Stem A ller Cone veight of 140 = weight of ro Weight of or	le ger Auger Ib. ha ods or <u>ne per</u>	mmer casing son		$S_u = Ins$ $T_v = Port q_p = Unit N-uncor Hammer N60 = S N60 = (H$	tu Field Vane Shear Strength (psf) ket Torvane Shear Strength (psf) sonfined Compressive Strength (ksf) fected = Raw field SPT N-value Efficiency Factor = Annual Calibrat PT N-uncorrected corrected for ham lammer Efficiency Factor/60%)*N-u	Su(lat WC = LL = L PL = F ion Value PI = P imer efficiency G = G <u>ncorrected C = C</u>	$S_{U(lab)} = Lab Varie Shear Strength (psi) WC = water content, percent LL = Liquid Limit PL = Plastic Limit on Value PI = Plasticity Index ner efficiency G = Grain Size Analysis corrected C = Consolidation Test$		
				Sample Information	75			1	-				Laboratory	
Depth (ft.)	Sample No.	Pen./Rec. (in.	Sample Deptt (ft.)	Blows (/6 in.) Shear Strength (psf) or RQD (%)	N-uncorrected	N ₆₀	Casing Blows	Elevation (ft.)	Graphic Log	Visual De	scription and Remarks		Testing Results/ AASHTO and Unified Class	
25										22.1-23.1' (3:20) 23.1-23.5' (3:39) Soil Layer from 20.6-21.7' b	gs.			
							$+ \vee$	66.0		Top of Bedrock at Elev. 71. Bedrock: Light grey, fine gr	5. ained. sedimentary. SANI	21.7- DSTONE, no		
										obvious bedding, highly frac Formation) Rock Mass Qua	ctured, vuggy, with iron st lity = Very Poor	aining, (Kittery		
								-		R4:Core Times (min:sec)				
20										24.5-25.5' (3:43)				
- 30 -										25.5-26.5' (3:52) 26.5-27.3' (4:10) 98% Recov	very			
										Bottom of Exploration	at 27.30 feet below grou	27.3-		
								-		r · · · ·				
- 35 -								-						
								-						
								-						
- 40 -														
								-						
								-						
1-														
- 45 -								1						
			+					1	1					
								-						
]	1					
									1					
								1	1					
50 Rem	arks													
	<u></u> 28/07·12:	.00 14.20	11/20/07-0-15	14:30										

Stratification lines represent approximate boundaries between soil types; transitions may be gradual.	Page 2 of 2
* Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other than those present at the time measurements were made.	Boring No.: BB-SBGWR-101

	Main	Maine Department of Transporta			tion		Proje	ect:	Great	Works	River Bridge #5610 Boring No.: BB-SBC	GWR-102
			Soil/Rock Exp US CUSTOM	oloration Log ARY UNITS			Loca	tion	1: Rou	te 236,	South Berwick, Maine PIN: <u>156</u>	09.00
Drill	er:		MaineDOT		Elev	/ation	(ft.)		92.3		Auger ID/OD: 5" Solid Stem	
Ope	rator:		E. Giguere		Datu	um:			NA	VD 88	Sampler: Standard Split	Spoon
Log	ged By:		K. Maguire/G	. Lidstone	Rig	Type:			СМ	E 45C	Hammer Wt./Fall: 140#/30" Auto	
Date	Start/Fi	inish:	11/19/07; 10:4	45-11:45	Drill	ling M	etho	d:	Cas	ed Wasl	Boring Core Barrel: N/A	
Bori	ing Loca	tion:	588+70.9, 10.	0 Lt.	Casi	ing ID	OD:		NW		Water Level*: None Observe	1
Ham	mer Effi	iciency Fa	actor: 0.77		Ham	nmer ⁻	Гуре:		Autom	atic 🛛	Hydraulic □ Rope & Cathead □	
Defini D = S MD = U = T MU = V = Ir MV =	itions: plit Spoon Unsuccess hin Wall Tu Unsuccess nsitu Vane <u>Unsuccess</u>	Sample sful Split Spo ibe Sample sful Thin Wal Shear Test, sful Insitu Vai	on Sample attem I Tube Sample att PP = Pocket Per ne Shear Test atte	R = Rock SSA = Sol pt HSA = Ho RC = Roll tempt WOH = w netrometer WOR/C = empt W01P = V	Core Sam id Stem A low Stem er Cone eight of 14 weight of 0 Veight of 0	nple Auger n Auger 40lb. ha rods or <u>one per</u>	mmer casing son			$S_{u} = Ins$ $T_{v} = Po$ $q_{p} = Un$ $N-uncor$ $Hamme$ $N_{60} = S$ $N_{60} = (I$	tu Field Vane Shear Strength (psf) Su(lab) = Lab Vane Shear Strength (psf) ket Torvane Shear Strength (psf) WC = water content, percer onfined Compressive Strength (ksf) LL = Liquid Limit ected = Raw field SPT N-value PL = Plastic Limit Efficiency Factor = Annual Calibration Value PI = Plasticity Index PT N-uncorrected corrected for hammer efficiency G = Grain Size Analysis ammer Efficiency Factor/60%)*N-uncorrected C = Consolidation Test	Strength (psf) t
			-	Sample Information	-					-		Laboratory
Depth (ft.)	Sample No.	Pen./Rec. (in.)	Sample Depth (ft.)	Blows (/6 in.) Shear Strength (pst) or RQD (%)	N-uncorrected	N ₆₀	Casing	Blows	Elevation (ft.)	Graphic Log	Visual Description and Remarks	Testing Results/ AASHTO and Unified Class.
0							SS	A	01.4		Pavement	
	1D	24/13	1.0 - 3.0	12/11/6/8	17	22			91.0		Brown, damp, medium dense, fine to coarse SAND, some gravel, trace silt, (Fill).	G#209986 A-1-b, SW-SM WC=5.1%
- 5	2D	24/12	5.0 - 7.0	13/6/6/9	12	15	30	/	88.5 87.8		Cobble from 3.8-4.5' bgs, (Fill). Brown, damp, medium dense, fine to coarse SAND, some gravel, little silt, (Fill).	G#209987 A-1-b, SM
							3(a5	0	84.8		^a 50 blows for 6".	WC=4.9%
											7.5 Bottom of Exploration at 7.50 feet below ground surface. NO REFUSAL, "See Remarks"	-
- 10 -												
- 15 -												
- 20 -												
								_				
25												
Rem	narks:				I		1			•		•

Abandoned hole at 7.5' bgs. Casing will not drive straight.

Stratification lines represent approximate boundaries between soil types; transitions may be gradual.	Page 1 of 1
* Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other than those present at the time measurements were made.	Boring No.: BB-SBGWR-102

]	Maine Department of Transport					tion		Project	: G1	reat W	/orks R	liver Bridge #5610	Boring No.:	BB-SBG	WR-102A
			Soil/Rock Expl	Ioration Log	Ľ			Locatio	on:	Route	236, S	outh Berwick, Maine	PIN:	1560)9.00
			MainaDOT				ration	(64)		013				5" Solid Stem	
	er:		E Ciquere			Dati	/ation	(11.)		92.5 NAVI	n 99		Auger 10/00.	5 Solid Stein	
Log	ator.		E. Olgueie	Lidstone		Dall	Type			CME	45C		Jamper.	140#/20" Auto	spoon
Data		nioh.	K. Maguile/G.				iype.			Cond	45C	Dorino		140#/30 Auto	
Date	Start/Fi	ion:	588, 67.7.10.0	/ 0.1.t		Casi							Water Level*	NQ-2	
Born			388+07.7, 10.0	J Ll.		Lan	ing iL	700. Tuno:		пwo	· •			None Observed	
Definit	ions:	ciency Fa	ictor: 0.77		R = Rock C	Core Sam	nple	rype.	Au	itomati S	1C 🖂	u Field Vane Shear Strength (psf)	Rope & Cathead \Box) = Lab Vane Shear S	trength (psf)
D = Sp MD = U = Th MU = V = In	olit Spoon S Unsuccessi hin Wall Tub Unsuccessi situ Vane S	Sample ful Split Spo pe Sample ful Thin Wal hear Test,	on Sample attemp I Tube Sample atte PP = Pocket Per	ot lempt netrometer	SSA = Solid HSA = Holle RC = Roller WOH = wei WOR/C = v	d Stem A ow Stem r Cone ight of 14 veight of	Auger h Auger 40lb. ha rods or	mmer casing		T q _l N H N	v = Pocl p = Unc l-uncorrect lammer l60 = SF	ket Torvane Shear Strength (psf) onfined Compressive Strength (ksf) acted = Raw field SPT N-value Efficiency Factor = Annual Calibrati PT N-uncorrected corrected for ham	WC = LL = L PL = F ion Value PI = P mer efficiency G = G	water content, percent quid Limit lastic Limit asticity Index ain Size Analysis	
<u> </u>	Jnsuccessi	ui insitu vai	he Shear Test atte	Sample Inforr	nation	eight of e	one per	son			60 = (H	ammer Eniciency Factor/60%) N-u		insolidation Test	
Depth (ft.)	Sample No.	Pen./Rec. (in.)	Sample Depth (ft.)	Blows (/6 in.) Shear Strength (psf)	ör RQD (%)	N-uncorrected	N ₆₀	Casing Blows	Elevation	(ft.)	Graphic Log	Visual De	scription and Remarks		Laboratory Testing Results/ AASHTO and Unified Class.
0								SSA				See Boring BB-SBGWR-10	2 for material description	for 0.0-6.7' bgs.	
- 5 -									-			Spun HW Casing from 5.0-1	0.5' bgs.		
			<u> </u>	<u> </u>				HW	1						
										85.6				6.7-	
			1 1					1			Combination of BOULDER	S, COBBLES and SOIL n	ixture from 6.7-		
				<u> </u>				4			25.0' bgs.				
	R1	60/47	98-14.8					NO	1						
10		00,	7.0 1					$\left \frac{1}{1} \right\rangle$	-			R1: Black and white, coarse	grained Granite.		
								NW				Core Times (min:sec) 9 8-10.8' (2:08)			
			T I									10.8-11.8' (2:58)			
			+						+			11.8-12.8' (2:40) 12.8-13.8' (2:35)			
				ļ					1			13.8-14.8' (3:05) 78% Recov	/ery		
											<u>*</u>	Spun NW Casing from 10.5-	-45.2' bgs.		
	52	<u> </u>	14.0 10.0						1						
- 15 -	K2	00/51	14.0 - 19.0						4			R2: Black and white, coarse	grained Granite.		
												Core Times (min:sec)			
									1			15.8-16.8' (2:58)			
			+						+			16.8-17.8' (2:40) 17 8-18 8' (2:35)			
				L								18.8-19.8' (3:05) 85% Recov	/ery		
	D2	60/17	10.2 24.8					+	1						
- 20 -	ĸJ	00/47	19.0 - 24.0		—			+	-			R3: Black and white, coarse	grained Granite and grey	Sandstone.	
												Core Times (min:sec) 19 8-20 8' (2:08)			
									1			20.8-21.8' (2:58)			
			+						+			21.8-22.8' (2:40)			
				L								23.8-24.8' (3:05) 78% Recov	/ery		
ſ												Pulled casing back, replaced	spent spin shoe. Spun Ca	sing to 29.5' bgs.	
Í	R 4	24/4	24.8 - 26.8												
25 Rem	arks	2 // 1	21.0 20.0	. <u> </u>				$ \rangle /$							<u> </u>
Item															
Stratifi	cation lines	represent a	approximate bound	daries between soil	l types; tran	sitions m	nay be g	radual.					Page 1 of 3		
* Wate	er level read	dings have b	een made at time	s and under condit	ions stated.	Ground	dwater f	luctuations	s may	occur	due to c	onditions other	Boring No.	DD CDCW	VD 102A

Water level readings have been made at times and under conditions stated.	Groundwater fluctuations may occur due	to conditions oth
than those present at the time measurements were made.		

	Main	tion	On Project: Great Works River Bridge #5610 Boring No.: <u>BB-SBG</u>											
		<u> </u>	Soil/Rock Exp JS CUSTOM/	loration Log ARY UNITS			Loca	tio	n: Rou	te 236, S	outh Berwick, Maine PIN: 15609	9.00		
Drill	er:		MaineDOT		Elev	vation	(ft.)		92.3		Auger ID/OD: 5" Solid Stem			
Ope	rator:		E. Giguere		Dati	um:			NA	VD 88	Sampler: Standard Split Sp	oon		
Log	ged By:		K. Maguire/G.	Lidstone	Rig	Type:			CM	E 45C	Hammer Wt./Fall: 140#/30" Auto			
Date	Start/Fi	nish:	11/20,26-28/0	7	Drill	ling M	Boring Core Barrel: NQ-2"							
Bori	ng Locat	ion:	588+67.7, 10.0) Lt.	Cas	ising ID/OD: HW & NW Water Level*: None Observed								
Ham	mer Effic	ciency Fa	octor: 0.77		Han	ammer Type: Automatic Hydraulic Rope & Cathead								
Defini D = S MD = U = TI MU = V = In MV =	tions: blit Spoon S Unsuccessf nin Wall Tub Unsuccessf situ Vane S <u>Unsuccessf</u>	Cample ful Split Spoo be Sample ful Thin Wall hear Test, ful Insitu Van	on Sample attemp Tube Sample att PP = Pocket Per le Shear Test atte	R = Rock 0 SSA = Soli bt HSA = Hol RC = Rolle empt WOR = we work WOR = WORC = u mpt WO1P = w Sample Information	Core Sam d Stem A low Stem r Cone ight of 14 weight of /eight of	nple Auger n Auger 40lb. hai f rods or one per	mmer casing son	1		$S_{u} = InsiT_{v} = Pocq_{p} = UncN-uncorrHammerN_{60} = SIN_{60} = (H$	u Field Vane Shear Strength (psf) Su(lab) = Lab Vane Shear Strength (psf) uet Torvane Shear Strength (psf) WC = water content, percent unfined Compressive Strength (ksf) LL = Liquid Limit cted = Raw field SPT N-value PL = Plastic Limit Efficiency Factor = Annual Calibration Value PI = Plasticity Index T N-uncorrected corrected for hammer efficiency G = Grain Size Analysis mmer Efficiency Factor/60%)*N-uncorrected C = Consolidation Test	ength (psf)		
Depth (ft.)	Sample No.	Pen./Rec. (in.)	Sample Depth (ft.)	Blows (/6 in.) Shear Strength (psf) or RQD (%)	N-uncorrected	N ₆₀	Casing	Blows	Elevation (ft.)	Graphic Log	Visual Description and Remarks	Laboratory Testing Results/ AASHTO and Jnified Class.		
25								/			R4: Sandstone. Core Times (min:sec) 24.8.25.8' (2-08)			
	1D/AB	24/14	26.8 - 28.8	3/2/2/2	4	5	\	/	65.5		25.8-26.8' (2:58) 17% Recovery	C#200026		
									64.8		(1D/A) 26.8-27.5' bgs. Grey, wet, loose, GRAVEL, some fine to coarse	G#209926 A-4, GC-GM		
										11	sand, some silt, some clay27.5-	WC=26.2% G#209927		
										XX	(1D/B) 27.5-28.8' bgs. Grev wet medium stiff Clavey SILT trace fine sand	A-7-5, CL		
20										\mathcal{U}	Washed ahead of casing from 29.5-30.0' bgs.	WC=36.4%		
- 30 -	2D/AC	24/20	30.0 - 32.0	WOH/2/5/7	7	9					(2D/A) 30.0-30.9' bgs. Grey, wet, stiff, SILT, some clay, trace sand. 55x110 mm vane raw torque readings:	G#209928 A-4 CL-ML		
	V1		30.2 - 30.5	Su=290/67 psf					61.0		V1: 6.5/1.5 ft lbs.	WC=27.2%		
											(2D/B) 30.9-31.3' bgs.	G#209929 A-4, CL-ML		
											Grey, wet, stiff, SILT, little clay, trace gravel and fine sand.	WC=22.1%		
											(2D/C) 31.3-32.0' bgs.			
											Grey, wet, loose, siny fille SAIND, trace graver.			
- 35 -									57.8		Brown, moist, very dense, fine to coarse SAND, some gravel, some silt.	G#209930		
	3D	24/14	35.0 - 37.0	17/25/20/21	45	58						A-2-4, SM		
										00000000000000000000000000000000000000		WC=11.0%		
									54.3					
											Similar to above, but with cobbles.			
	MD	24/0	39.2 - 41.2	13/16/15/15	31	40					Failed sample attempt.			
- 40 -														
								-1-						
							\square	Τ						
							$\left \right $	+	40.0					
									48.8		Grey, wet, GRAVEL, some medium to coarse sand, trace silt.			
15 -	4D	8.4/6	44.5 - 45.2	17/31(2.4")					47 4	Parrae	Roller Coned ahead from 44.5-45.4' bgs, spun NW Casing from 44.5-			
45	R5	52.8/47	45.7 - 50.1	RQD = 0%			N	Q	47.1		44.9-			
											Weathered ROCK. 45.2-			
											Top of Bedrock at Elev. 47.4'. Roller Coned ahead from 45.5-45.7' bas			
											NWC Casing to 45.5' bgs.			
								_			bedrock: Light grey, fine grained, sedimentary, SANDSTONE, no obvious bedding, highly fractured, vuggy. (Kittery Formation). Rock			
									1		Mass Quality = Verry Poor. B5:Core Times (min:sec)			
50	orke:									K M	As core rando (mail.see)			
<u>kem</u>	arks:													
Stratif	ication lines	represent a	pproximate bound	daries between soil types; trar	isitions m	nay be g	radual				Page 2 of 3			

Water loval readings have been made at times and under conditions stated	Croundwater fluctuations may acour due to conditions other
water level readings have been made at times and under conditions stated.	Groundwater nucluations may occur due to conditions other
than those present at the time measurements were made.	

]	Main	e Dep	artment	tion	Proje	ct: C	Great V	Works H	River Bridge #5610	Boring No.:	BB-SBG	WR-102A	
			Soil/Rock Exp US CUSTOM	loration Log ARY UNITS		Locat	tion:	Rout	e 236, S	South Berwick, Maine	PIN:	156	09.00
Drille	er:		MaineDOT		Elevatio	 on (ft.)		92.3			Auger ID/OD:	5" Solid Stem	
Oper	rator:		E. Giguere		Datum:			NAV	'D 88		Sampler:	Standard Split	Spoon
Logo	ged By:		K. Maguire/G	. Lidstone	Rig Typ	e:		CME	E 45C		Hammer Wt./Fa	II: 140#/30" Auto	
Date	Start/Fi	inish:	11/20,26-28/0	7	Drilling	Drilling Method: Cased Wash Boring						NQ-2"	
Bori	ng Loca	tion:	588+67.7, 10.	0 Lt.	Casing	ID/OD:		HW	& NW		Water Level*:	None Observed	1
Ham	mer Effi	iciency Fa	actor: 0.77		Hamme	r Type:	A	utoma	tic 🛛	Hydraulic 🗆	Rope & Cathead □		
Definit D = Sp MD = U = Tr MU = V = In: MV =	tions: blit Spoon S Unsuccess nin Wall Tu Unsuccess situ Vane S <u>Unsuccess</u>	Sample sful Split Spor ibe Sample sful Thin Wall Shear Test, sful Insitu Var	on Sample attem Tube Sample at PP = Pocket Per he Shear Test att	R = Rock (SSA = Soli pt pt HSA = Hol RC = Rolle WOH = wt WOH = wt empt tempt WOH = wt WO1P = W empt WO1P = W Sample Information	Core Sample id Stem Auger low Stem Aug rr Cone ight of 140lb. weight of rods /eight of one p	er hammer or casing erson			$S_u = Insi$ $T_v = Poc$ $q_p = Unc$ N-uncorr Hammer $N_{60} = SI$ $N_{60} = (H$	tu Field Vane Shear Strength (psf) ket Torvane Shear Strength (psf) onfined Compressive Strength (ksf ected = Raw field SPT N-value Efficiency Factor = Annual Calibrat 7T N-uncorrected corrected for han ammer Efficiency Factor/60%)*N-u) iton Value nmer efficiency incorrected	$\begin{split} S_{u(ab)} &= Lab Vane Shear S \\ WC &= water content, percen \\ L &= Liquid Limit \\ PL &= Plastic Limit \\ Pl &= Plastic Limit \\ Pl &= Plasticity Index \\ G &= Grain Size Analysis \\ C &= Consolidation Test \end{split}$	Strength (psf) t
Depth (ft.)	Sample No.	Pen./Rec. (in.)	Sample Depth (ft.)	Blows (/6 in.) Shear Strength (pst) or RQD (%)	N-uncorrected	Casing	BIOWS	Elevation (ft.)	Graphic Log	Visual De	escription and Rem	arks	Testing Results/ AASHTO and Unified Class
- 55 - - 60 - - 65 -	R6	46.8/46.8	50.1 - 54.0	RQD = 0%				33.8		45.7-46.7' (3:36) 46.7-47.7' (3:18) 47.7-48.7' (3:00) 48.7-49.7' (3:45) 49.7-50.1' (2:06) 90% Reco Core Blocked at 50.1' bgs. R6:Core Times (min:sec) 50.1-51.1' (4:01) 51.1-52.1' (3:25) 52.1-53.1' (2:58) 53.1-54.0' (3:50) 100% Recc R7:Core Times (min:sec) 54.0-55.0' (2:40) 55.0-56.0' (3:12) 56.0-57.0' (2:40) 57.0-58.0' (2:47) 58.0-58.5' (1:54) 100% Recc Core Blocked at 58.5' bgs. Bottom of Exploration	very overy n at 58.50 feet below	ground surface.	
75 <u>Rem</u>	arks:												
Stratifi	ication line	s represent a	pproximate boun	daries between soil types; trar	sitions may b	e gradual.	_				Page 3 of 3	3	

I	* Water level readings have been made at times and under conditions stated. Convolutions fluctuations may easily due to conditions after		
I	than those present at the time measurements were made.	Boring No.:	BB-SBGWR-102A

<u>Appendix B</u>

Laboratory Data

State of Maine - Department of Transportation Laboratory Testing Summary Sheet

Town(s):	South	uth Berwick Project Number: 15609.00									
Boring & Sample	Station	Offset	Depth	Reference	G.S.D.C.	W.C.	L.L.	P.I.	Clas	sification	1
Identification Number	(Feet)	(Feet)	(Feet)	Number	Sheet				Unified	AASHTO	Frost
BB-SBGWR-102A, 1D/A	588+67.7	10.0 Lt.	26.8-27.5	209926	2	26.2			GC-GM	A-4	
BB-SBGWR-102A, 1D/B	588+67.7	10.0 Lt.	27.5-28.8	209927	2	36.4			CL	A-7-5	IV
BB-SBGWR-102A, 2D/A	588+67.7	10.0 Lt.	30.0-30.9	209928	2	27.2			CL-ML	A-4	IV
BB-SBGWR-102A, 2D/B	588+67.7	10.0 Lt.	30.9-31.3	209929	2	22.1			CL-ML	A-4	IV
BB-SBGWR-102A, 3D	588+67.7	10.0 Lt.	35.0-37.0	209930	2	11.0			SM	A-2-4	
BB-SBGWR-102,1D	588+70.9	10.0 Lt.	1.0-3.0	209986	1	5.1			SW-SM	A-1-b	0
BB-SBGWR-102,2D	588+70.9	10.0 Lt.	5.0-7.0	209987	1	4.9			SM	A-1-b	II
BB-SBGWR-101,1D	589+97.9	9.4 Rt.	1.3-3.3	210000	3	3.3			GW-GM	A-1-a	0
Classification of th	ese soil samp	les is in a	ccordance with	h AASHTO C	lassificatio	on Syst	em M	-145-4	0. This cla	ssificatior	ו
is followed by the '	'Frost Suscep	tibility Rat	ing" from zero	o (non-frost s	usceptible	e) to Cl	ass IV	' (high	ly frost sus	ceptible)	
The "Frost Su	usceptibility R	ating" is b	ased upon the	MDOT and	Corps of E	inginee	ers Cla	ssific	ation Syste	ems.	
GSDC = Grain Size Distrib	ution Curve as	determine	d by AASHTO	Г 88-93 (1996) and/or AS	STM D 4	422-63	3 (Rea	pproved 19	98)	

WC = water content as determined by AASHTO T 265-93 and/or ASTM D 2216-98

LL = Liquid limit as determined by AASHTO T 89-96 and/or ASTM D 4318-98

PI = Plasticity Index as determined by AASHTO 90-96 and/or ASTM D4318-98

SHEET 1

_		и		oy/Date	3/24/2008	
PIN	015609.00	Tow	South Berwick	Reported t	WHITE, ТЕRRY A	

₫						
Ч						
Ξ						
W, %	5.1	4.9				
Description	SAND, some gravel, trace silt.	SAND, some gravel, little silt.				
Depth, ft	1.0-3.0	5.0-7.0				
Offset, ft	10.0 LT	10.0 LT				
Station	588+70.9	588+70.9				
Boring/Sample No.	BB-SBGWR-102/1D	BB-SBGWR-102/2D				
	÷	٠	•	•	×	

SHEET 2

		L		yy/Date	4/29/2008	
PIN	015609.00	Towi	South Berwick	Reported t	WHITE, ТЕRRY A	

↓ BB-SBGWR-102A1D(A) 588+67.7 10.0 LT 26.8-27.5 GRAVEL, some sand, some sit, some clay 26.2 ◆ BB-SBGWR-102A1D(B) 588+67.7 10.0 LT 27.5-28.8 Clayey SILT, trace sand. 36.4 ● BB-SBGWR-102A1D(B) 588+67.7 10.0 LT 27.5-28.8 Clayey SILT, trace sand. 36.4 ● BB-SBGWR-102A2D(A) 588+67.7 10.0 LT 30.9-30.9 SILT, some clay, trace sand. 27.2 ● BB-SBGWR-102A2D(B) 588+67.7 10.0 LT 30.9-31.3 SILT, little clay, trace sand. 27.2 ▲ BB-SBGWR-102A/3D 588+67.8 10.0 LT 35.0-37.0 SAND, some slit, some gravel. 22.1 ★ BB-SBGWR-102A/3D 588+67.8 10.0 LT 35.0-37.0 SAND, some slit, some gravel. 110		Boring/Sample No.	Station	Offset, ft	Depth, ft	Description	W, % LL	Ч	⊒
◆ BB-SBGWR-102A1D(B) 588+67.7 10.0 LT 27.5-28.8 Clayey SILT, trace sand. 36.4 ■ BB-SBGWR-102A/2D(A) 588+67.7 10.0 LT 30.0-30.9 SILT, some clay, trace sand. 27.2 ● BB-SBGWR-102A/2D(B) 588+67.7 10.0 LT 30.9-31.3 SILT, ittlet clay, trace sand. 27.2 ▲ BB-SBGWR-102A/2D(B) 588+67.7 10.0 LT 30.9-31.3 SILT, ittlet clay, trace sand. 22.1 ▲ BB-SBGWR-102A/3D 588+67.8 10.0 LT 35.0-37.0 SAND, some clay, trace sand. 22.1 ★ BB-SBGWR-102A/3D 588+67.8 10.0 LT 35.0-37.0 SAND, some slit, some gravel. 11.0	÷	BB-SBGWR-102A/1D(A)	588+67.7	10.0 LT	26.8-27.5	GRAVEL, some sand, some silt, some clay	26.2		
■ BB-SBGWR-102A/2D(A) 588+67.7 10.0 LT 30.0-30.9 SILT, some clay, trace sand. 27.2 ● BB-SBGWR-102A/2D(B) 588+67.7 10.0 LT 30.9-31.3 SILT, little clay, trace sand. 22.1 ▲ BB-SBGWR-102A/3D 588+67.8 10.0 LT 35.0-37.0 SAND, some slit, some gravel. 22.1 ★ BB-SBGWR-102A/3D 588+67.8 10.0 LT 35.0-37.0 SAND, some slit, some gravel. 11.0	٠	BB-SBGWR-102A/1D(B)	588+67.7	10.0 LT	27.5-28.8	Clayey SILT, trace sand.	36.4		
● BB-SBGWR-102A/2D(B) 588+67.7 10.0 LT 30.9-31.3 SILT, little clay, trace gravel, trace sand. 22.1 ▲ BB-SBGWR-102A/3D 588+67.8 10.0 LT 35.0-37.0 SAND, some silt, some gravel. 11.0 ★ 10.0 LT 35.0-37.0 SAND, some silt, some gravel. 11.0 11.0		BB-SBGWR-102A/2D(A)	588+67.7	10.0 LT	30.0-30.9	SILT, some clay, trace sand.	27.2		
▲ BB-SBGWR-102A/3D 588+67.8 10.0 LT 35.0-37.0 SAND, some silt, some gravel. 11.0 ★ 10.0 LT 10.0 LT </th <th>•</th> <th>BB-SBGWR-102A/2D(B)</th> <th>588+67.7</th> <th>10.0 LT</th> <th>30.9-31.3</th> <th>SILT, little clay, trace gravel, trace sand.</th> <th>22.1</th> <th></th> <th></th>	•	BB-SBGWR-102A/2D(B)	588+67.7	10.0 LT	30.9-31.3	SILT, little clay, trace gravel, trace sand.	22.1		
	•	BB-SBGWR-102A/3D	588+67.8	10.0 LT	35.0-37.0	SAND, some silt, some gravel.	11.0		
	×								

SHEET 3

_		u		oy/Date	4/29/2008	
PIN	015609.00	Tow	South Berwick	Reported t	WHITE, ТЕRRY A	

SBGWR-101/1D 589+97.9 9.4 RT 1.3-3.3 GRAVEL, some sand, little silt.	Borir	ng/Sample No.	Station	Offset, ft	Depth, ft	Description	W, %	LL	ΡL	Ы
	BB-SBGWR-	-101/1D	589+97.9	9.4 RT	1.3-3.3	GRAVEL, some sand, little silt.	3.3			

<u>Appendix C</u>

Calculations

Abutment Foundations: Integral driven H-piles

Axial Structural Re	esistance	e of H-piles	Ref: AASHTC Specifications	LRFD Bridge Design the Edition 2007 with 2008 Interims
Look at the followi	ng piles:		<u> </u>	
HP 12 x 53 HP 14 x 73 N HP 14 x 89 HP 14 x 117	lote: All n	natrices set up in thi	s order	
H-pile Steel area:	A _s :=	$ \begin{pmatrix} 15.5 \\ 21.4 \\ 26.1 \\ 34.4 \end{pmatrix} \cdot in^2 $	yield strength:	$F_y := 50 \cdot ksi$
Nominal Compress	sive Resis	stance Ρ _n =0.66 ^λ *F _y *	A _s : eq. 6.	9.4.1-1
Where λ =norr	malized co	olumn slenderness f	actor	
		λ=(Kl/r _s π)2*F	F _y /E eq. 6.	9.4.1-3
$\lambda := 0$	ä	as I unbraced length	is 0	
		(7	⁷⁵ HP 1	12 x 53

$$P_{n} := 0.66^{\lambda} \cdot F_{y} \cdot A_{s} \qquad P_{n} = \begin{pmatrix} 773 \\ 1070 \\ 1305 \\ 1720 \end{pmatrix} \cdot kip \qquad \begin{array}{c} \text{HP 12 x 53} \\ \text{HP 14 x 73} \\ \text{HP 14 x 89} \\ \text{HP 14 x 117} \\ \end{array}$$

STRENGTH LIMIT STATE:

Factored Resistance:

Strength Limit State Axial Resistance factor for H-piles in compression under severe driving conditions:

 $\label{eq:From Article 6.5.4.2} \text{From Article 6.5.4.2} \qquad \varphi_c := 0.5$

Factored Compressive Resistance:

eq. 6.9.2.1-1
$$P_f := \phi_c \cdot P_n$$

$$P_f = \begin{pmatrix} 388\\535\\653\\860 \end{pmatrix} \cdot kip \qquad HP 14 \times 73 \qquad Strength Limit State \\ HP 14 \times 117 \qquad HP 14 \times 117 \qquad HP 14 \times 117$$

SERVICE/EXTREME LIMIT STATES:

Service and Extreme Limit States Axial Resistance

Nominal Compressive Resistance $P_n=0.66^{\lambda*}F_y^*A_s$: eq. 6.9.4.1-1

Where λ =normalized column slenderness factor

$$\lambda = (KI/r_s \pi) 2^* F_v / E$$
 eq. 6.9.4.1-3

 $\lambda := 0$ as I unbraced length is 0

$$P_{n} := 0.66^{\lambda} \cdot F_{y} \cdot A_{s} \qquad P_{n} = \begin{pmatrix} 775\\1070\\1305\\1305\\1720 \end{pmatrix} \cdot kip \qquad \begin{array}{c} \text{HP 12 x 53}\\\text{HP 14 x 73}\\\text{HP 14 x 89}\\\text{HP 14 x 117} \end{array}$$

/

`

Resistance Factors for Service and Extreme Limit States $\phi = 1.0$

LRFD 10.5.5.1 and 10.5.8.3

φ := 1.0

Factored Compressive Resistance for Service and Extreme Limit States:

eq. 6.9.2.1-1
$$P_{f} := \phi \cdot P_{n}$$
 $P_{f} = \begin{pmatrix} 775\\1070\\1305\\1720 \end{pmatrix} \cdot kip HP 14 x 73 HP 14 x 73 States States States$

GEOTECHNICAL RESISTANCE OF H-PILES

Assume piles will be end bearing on bedrock driven through overlying fill, cobbles and boulders, silt and gravel.

<u>Bedrock Type:</u> Sandstone - sedimentary Kittery Formation RQD = 0%. Use RQD = 0% and ϕ = 27 to 34 deg (Tomlinson 4th Ed. pg 139)

Axial Geotechnical Resistance of H-piles

Ref: AASHTO LRFD Bridge Design Specifications 4th Edition 2007

Look at these piles:

HP 12 x 53 HP 14 x 73 HP 14 x 89 HP 14 x 117

Steel area:		(15.5)		Pile depth:	(11.78)	Pile width:	I	(12.045)	١
	$A_s =$	21.4	$\cdot in^2$		13.61			14.585	
		26.1	1	d :=	13.83	·1n	D :=	14.695	·m
		(34.4)			(14.21)		ł	(14.885))

Calculate pile box area: $A_{box} := (d \cdot b)$ $A_{box} = \begin{pmatrix} 141.8901 \\ 198.5018 \\ 203.2318 \\ 211.5159 \end{pmatrix}$ $a_{33\% box} := A_{box} \cdot 0.33$ $A_{33\% box} = \begin{pmatrix} 46.8237 \\ 65.5056 \\ 67.0665 \\ 69.8002 \end{pmatrix}$ $a_{a33\% box} = \begin{pmatrix} 46.8237 \\ 65.056 \\ 67.0665 \\ 69.8002 \end{pmatrix}$

End bearing resistance of piles on bedrock - LRFD code specifies Canadian Geotech Method 1985 (LRFD Table 10.5.5.2.3-1) Canadian Foundation Manual 4th Edition (2006) Section 18.6.3.3.

Average compressive strength of rock core from AASHTO Standard Spec for Highway Bridges 17 Ed. Table 4.4.8.1.2B pg 64

 q_u for sandstone compressive strength ranges for 9,700 to 25,000 psi

use $\sigma_c := 15000 \cdot psi$

Determine K_{sp}: From Canadian Foundation Manual 4th Edition (2006) Section 9.2

Spacing of discontinuities:		$c := 1 \cdot in$	Bedrock is vuggy
Aperture of discontinuities	$: \qquad \delta := \frac{1}{8} \cdot in$		Vug openings are ~ 1/8 inch
Footing width, b:	(12.045)		HP 12 x 53
1	14.585	in	HP 14 x 73
0 =	14.695	·m	HP 14 x 89
	14.885	J	

$$K_{sp} := \frac{3 + \frac{c}{b}}{10 \cdot \left(1 + 300 \cdot \frac{\delta}{c}\right)^{0.5}}$$

$$K_{sp} = \begin{pmatrix} 0.0497\\ 0.0495\\ 0.0494\\ 0.0494 \end{pmatrix}$$
Length of rock socket, L_s: L_s := 0·in Pile is end bearing on rock
Diameter of socket, B_s: B_s := 1·ft
depth factor, d_f: d_f := 1 + 0.4 $\left(\frac{L_s}{B_s}\right)$ d_f = 1 should be < or = 3 OK
 $q_a := \sigma_c \cdot K_{sp} \cdot d_f \cdot 3$

$$q_a = \begin{pmatrix} 322\\ 320\\ 320 \end{pmatrix} \cdot ksf$$

(multiply by 3 as K_{sp} includes a factor of safety of 3)

$$q_{a} = \begin{pmatrix} 322\\ 320\\ 320\\ 320 \end{pmatrix} \cdot ksf$$

Nominal Geotechnical Tip Resistance, Rp:

botechnical Tip Resistance,
$$R_p$$
:
 $R_p := \overline{(q_a \cdot A_{33\%box})}$
 $R_p = \begin{pmatrix} 105\\ 146\\ 149\\ 155 \end{pmatrix}$ kip
 $HP \ 12 \times 53$
 $HP \ 14 \times 73$
 $HP \ 14 \times 89$
 $HP \ 14 \times 117$

STRENGTH LIMIT STATE:

Factored Geotechnical Tip Resistance, Rf at Strength Limit State:

Resistance factor, end bearing on rock (CGS method):

 $\phi_{stat} \coloneqq 0.45$ LRFD Table 10.5.5.2.3-1

Factored resistance of Single Pile in Axial Compression -Static Analysis Methods, ϕ_{stat}

47 $R_{tipf} := \phi_{stat} \cdot R_p$ HP 12 x 53 66 HP 14 x 73 Strength Limit State ∙kip $R_{tipf} =$ 67 HP 14 x 89 HP 14 x 117 70

17

LRFD 10.5.5.1 and 10.5.8.3

SERVICE/EXTREME LIMIT STATES:

Nominal Geotechnical Tip Resistance, Rp:

$$R_{p} := \overrightarrow{(q_{a} \cdot A_{33\% box})} \qquad R_{p} = \begin{pmatrix} 103 \\ 146 \\ 149 \\ 155 \end{pmatrix} \cdot kip \qquad HP \ 14 \times 73 \\ HP \ 14 \times 89 \\ HP \ 14 \times 117 \\$$

(105)

Resistance Factors for Service and Extreme Limit States $\phi = 1.0$

 $\phi := 1.0$

Total Factored Geotechnical Resistance, Ra:

Use of the Canadian Geotechnical Society method as recommended by AASHTO results in very low and unrealistic resistance values. Look at Goodman's Method for comparison.

Geotechnical Resistance by Goodman's Method Based on Unconfined Compressive Strength of Bedrock Reference: Principles of Foundation Engineering, BM Das, Fourth Edition Section 9.14 Point Bearing Capacity of Piles on Rock

Bedrock Type: Sandstone - sedimentary Kittery Formation RQD = 0%. Use RQD = 0% and ϕ = 27 to 45 deg (Das Table 9.4 pg 599)

 σ_c for sandstone - compressive strength use $\sigma_c := 15000 \cdot psi$ ranges from 10,000 to 20,000 psi (Das,Table 9.3)

$$\phi := 30 \cdot \deg$$
 $N_{\phi} := \tan\left(45 \cdot \deg + \frac{\phi}{2}\right)^2$ $N_{\phi} = 3$

 $q_{nom_goodman} := \left(\frac{\sigma_c}{5}\right) \cdot \left(N_{\varphi} + 1\right)$

Divide by 5 to adjust for scale effect in rock (pg 599)

Nominal Geotechnical Tip Resistance:

At Abutment No. 1 a soil plug should form - use 33% of box area

$R_{nom_goodman_A1} \coloneqq q_{nom_goodman} \cdot A_{box} \cdot 0.33$	$R_{nom_goodman_A1} =$	(562 786 805 838)·kip	HP 12 x 53 HP 14 x 73 HP 14 x 89 HP 14 x 117
--	--------------------------	--------------------------------	---

At Abutment No. 2 no soil plug will form - use area of steel

$$R_{nom_goodman_A2} := q_{nom_goodman} \cdot A_{s} \qquad R_{nom_goodman_A2} = \begin{pmatrix} 186 \\ 257 \\ 313 \\ 413 \end{pmatrix} \cdot kip \qquad \begin{array}{l} \text{HP 12 x 53} \\ \text{HP 14 x 73} \\ \text{HP 14 x 89} \\ \text{HP 14 x 117} \end{array}$$

Evaluate additional skin friction using FHWA Program Driven 1.0 Driven software uses Nordlund/Thurman Method for side friction resistance in cohesionless soils.

From Driven: Skin friction for Abutment No. 1:

$$R_{skin_A1} := \begin{pmatrix} 209 \\ 279 \\ 303 \\ 339 \end{pmatrix} \cdot kip \qquad \begin{array}{c} \text{HP 12 x 53} \\ \text{HP 14 x 73} \\ \text{HP 14 x 89} \\ \text{HP 14 x 117} \end{array}$$

See Driven runs next pages.

`

Skin friction will no develop at Abutment No. 2 due to short pile.

DRIVEN 1.2 GENERAL PROJECT INFORMATION

Filename: C:\DRIVEN\SB112X53.DVN Project Name: Great Works River Bridge Project Client: South Berwick Computed By: km Project Manager: JWentworth

Project Date: 11/24/2008

PILE INFORMATION

Pile Type: H Pile - HP12X53 Top of Pile: 0.00 ft Perimeter Analysis: Pile Tip Analysis: Pile Area

ULTIMATE CONSIDERATIONS

Water Table Depth At Time Of: Ultimate Considerations:	- Drilling: - Driving/Restrike - Ultimate: - Local Scour:	8.00 ft 8.00 ft 8.00 ft 0.00 ft
	- Long Term Scour: - Soft Soil:	0.00 ft 0.00 ft

ULTIMATE PROFILE

Layer	Туре	Thickness	Driving Loss	Unit Weight	Strength	Ultimate Curve
1	Cohesionless	27.00 ft	10.00%	135.00 pcf	34.0/34.0	Nordlund
2	Cohesive	4.00 ft	10.00%	115.00 pcf	1000.00 psf	T-79 Steel
3	Cohesionless	14.00 ft	10.00%	125.00 pcf	32.0/32.0	Nordlund

Depth	Skin Friction	End Bearing	Total Capacity
0.01 ft 7.99 ft	0.00 Kips 10.78 Kips	0.01 Kips 4.28 Kips	0.01 Kips 15.05 Kips
8.01 ft	10.83 Kips 42.51 Kips	4.29 Kips	15.12 Kips
26.01 ft	42.51 Kips 88.89 Kips	7.91 Kips	96.80 Kips
26.99 ft	94.82 Kips	7.91 Kips	102.74 Kips
30.99 ft	116.20 Kips	0.97 Kips	117.17 Kips
31.01 ft	116.31 Kips	3.55 Kips	119.86 Kips
44.99 ft	(208.88 Kips)	3.55 Kips	212.43 Kips

Great Works River Bridge Over Great Works River South Berwick, Maine PIN 15609.00 By: Kate Maguire November-December 2008 Checked by: <u>LK 1-22-09</u>

DRIVEN 1.2 GENERAL PROJECT INFORMATION

Filename: C:\DRIVEN\SB114X73.DVN Project Name: Great Works River Bridge Project Client: South Berwick Computed By: km Project Manager: JWentworth

Project Date: 11/24/2008

PILE INFORMATION

Pile Type: H Pile - HP14X73 Top of Pile: 0.00 ft Perimeter Analysis: Pile Tip Analysis: Pile Area

ULTIMATE CONSIDERATIONS

Water Table Depth At Time Of:	- Drilling:	8.00 ft
-	 Driving/Restrike 	8.00 ft
	- Ultimate:	8.00 ft
Ultimate Considerations:	- Local Scour:	0.00 ft
	- Long Term Scour:	0.00 ft
	- Soft Soil:	0.00 ft

ULTIMATE PROFILE

Layer	Туре	Thickness	Driving Loss	Unit Weight	Strength	Ultimate Curve
1	Cohesionless	27.00 ft	10.00%	135.00 pcf	34.0/34.0	Nordlund
2	Cohesive	4.00 ft	10.00%	115.00 pcf	1000.00 psf	T-79 Steel
3	Cohesionless	14.00 ft	10.00%	125.00 pcf	32.0/32.0	Nordlund

Depth	Skin Friction	End Bearing	Total Capacity
0.01 ft	0.00 Kips	0.01 Kips	0.01 Kips
7.99 ft	14.69 Kips	5.91 Kips	20.59 Kips
8.01 ft	14.76 Kips	5.92 Kips	20.68 Kips
17.01 ft	57.93 Kips	9.50 Kips	67.43 Kips
26.01 ft	121.14 Kips	10.93 Kips	132.07 Kips
26.99 ft	129.23 Kips	10.93 Kips	140.16 Kips
27.01 ft	129.38 Kips	1.34 Kips	130.71 Kips
30.99 ft	153.98 Kips	1.34 Kips	155.32 Kips
31.01 ft	154.12 Kips	4.90 Kips	159.03 Kips
40.01 ft	230.45 Kips	4.90 Kips	235.35 Kips
44.99 ft	(278.94 Kips)	4.90 Kips	283.84 Kips

DRIVEN 1.2 GENERAL PROJECT INFORMATION

Filename: C:\DRIVEN\SB114X89.DVN Project Name: Great Works River Bridge Project Client: South Berwick Computed By: km Project Manager: JWentworth

Project Date: 11/24/2008

8.00 ft 8.00 ft

8.00 ft

0.00 ft

0.00 ft

0.00 ft

PILE INFORMATION

Pile Type: H Pile - HP14X89 Top of Pile: 0.00 ft Perimeter Analysis: Pile Tip Analysis: Pile Area

ULTIMATE CONSIDERATIONS

Water Table Depth At Time Of:	- Drilling: - Driving/Restrike
	- Ultimate:
Ultimate Considerations:	- Local Scour:

ULTIMATE PROFILE

- Long Term Scour:

- Soft Soil:

Layer	Туре	Thickness	Driving Loss	Unit Weight	Strength	Ultimate Curve
1	Cohesionless	27.00 ft	10.00%	135.00 pcf	34.0/34.0	Nordlund
2	Cohesive	4.00 ft	10.00%	115.00 pcf	1000.00 psf	T-79 Steel
3	Cohesionless	14.00 ft	10.00%	125.00 pcf	32.0/32.0	Nordlund

Depth	Skin Friction	End Bearing	Total Capacity
0.01 ft	0.00 Kips	0.01 Kips	0.01 Kips
7.99 ft	16.12 Kips	7.20 Kips	23.33 Kips
8.01 ft	16.20 Kips	7.22 Kips	23.42 Kips
17.01 ft	63.60 Kips	11.58 Kips	75.18 Kips
26.01 ft	132.99 Kips	13.33 Kips	146.32 Kips
26.99 ft	141.88 Kips	13.33 Kips	155.20 Kips
27.01 ft	142.03 Kips	1.63 Kips	143.66 Kips
30.99 ft	166.80 Kips	1.63 Kips	168.44 Kips
31.01 ft	166.95 Kips	5.98 Kips	172.93 Kips
40.01 ft	_250.23 Kips	5.98 Kips	256.21 Kips
44.99 ft	(303.14 Kips)	5.98 Kips	309.12 Kips

Great Works River Bridge Over Great Works River South Berwick, Maine PIN 15609.00

DRIVEN 1.2 GENERAL PROJECT INFORMATION

Filename: C:\DRIVEN\SB114X17.DVN Project Name: Great Works River Bridge Project Client: South Berwick Computed By: km Project Manager: JWentworth

Project Date: 11/24/2008

PILE INFORMATION

Pile Type: H Pile - HP14X117 Top of Pile: 0.00 ft Perimeter Analysis: Pile Tip Analysis: Pile Area

ULTIMATE CONSIDERATIONS

Water Table Depth At Time Of:

Ultimate Considerations:

- Drilling:	8.00 ft
- Driving/Restrike	8.00 ft
- Ultimate:	8.00 ft
- Local Scour:	0.00 ft
- Long Term Scour:	0.00 ft
- Soft Soil:	0.00 ft

ULTIMATE PROFILE

Layer	Туре	Thickness	Driving Loss	Unit Weight	Strength	Ultimate Curve
1	Cohesionless	27.00 ft	10.00%	135.00 pcf	34.0/34.0	Nordlund
2	Cohesive	4.00 ft	10.00%	115.00 pcf	1000.00 psf	T-79 Steel
3	Cohesionless	14.00 ft	10.00%	125.00 pcf	32.0/32.0	Nordlund

Depth	Skin Friction	End Bearing	Total Capacity
0.01 ft	0.00 Kips	0.01 Kips	0.01 Kips
8.01 ft	18.34 Kips	9.51 Kips	27.85 Kips
17.01 ft	71.97 Kips	15.27 Kips	87.24 Kips
26.01 ft	150.50 Kips	17.56 Kips	168.07 Kips
26.99 ft	160.56 Kips	17.56 Kips	178.12 Kips
27.01 ft	160.72 Kips	2.15 Kips	162.87 Kips
30.99 ft	185.78 Kips	2.15 Kips	187.93 Kips
31.01 ft	185.94 Kips	7.88 Kips	193.82 Kips
40.01 ft	279.48 Kips	7.88 Kips	287.37 Kips
44.99 ft	(338.92 Kips)	7.88 Kips	346.80 Kips

By: Kate Maguire November-December 2008 Checked by: <u>LK 1-22-09</u>

STRENGTH LIMIT STATE:

Factored Geotechnical Tip Resistance, R_f goodman at Strength Limit State:

Resistance factor, end bearing on rock (use same factor as CGS method):

 $\phi_{stat} := 0.45$ LRFD Table 10.5.5.2.3-1

Resistance factor, skin friction - sand (Norlund/Therman Method):

 $\phi_{stat2} := 0.45$ LRFD Table 10.5.5.2.3-1

Factored resistance of Single Pile in Axial Compression

For Abutment No. 1:

 $R_{f_goodman_A1} \coloneqq \varphi_{stat} \cdot R_{nom_goodman_A1} + \varphi_{stat2} \cdot R_{skin_A1}$

Strength Limit State

For Abutment No. 2 (no sdkin friction) :

 $R_{f_{goodman}A2} := \phi_{stat} (R_{nom_{goodman}A2})$

	(01)	、 、	
$R_{f_{goodman}A2} =$	(84) 116 141	∙kip	HP 12 x 53 HP 14 x 73 HP 14 x 89 HP 14 x 117
	186	/	

SERVICE/EXTREME LIMIT STATES:

Nominal Geotechnical Tip Resistance by Goodman Method:

At Abutment No. 1:

	(562		HP 12 x 53
D	786	1	HP 14 x 73
$\mathbf{K}_{nom_goodman_A1} =$	805	•кір	HP 14 x 89 HP 14 x 117
	838)	

(---->

At Abutment No. 2:

$$R_{nom_goodman_A2} = \begin{pmatrix} 186\\257\\313\\413 \end{pmatrix} \cdot kip$$
 HP 12 x 53
HP 14 x 73
HP 14 x 89
HP 14 x 117

Resistance Factors for Service and Extreme Limit States $\phi = 1.0$ LRFD 10.5.5.1 and 10.5.8.3

 $\phi \coloneqq 1.0$

Factored Geotechnical Tip Resistance, $R_{f_{goodman_{se}}}$ at Service and Extreme Limit States:

For Abutment No. 1:

 $\mathbf{R}_{f_goodman_se_A1} := (\mathbf{R}_{skin_A1} + \mathbf{R}_{nom_goodman_A1}) \cdot \boldsymbol{\phi}$

For Abutment No. 2: (no skin friction due to very short pile)

 $R_{f_goodman_se_A2} := \begin{pmatrix} R_{nom_goodman_A2} \end{pmatrix} \cdot \varphi$ $R_{f_goodman_se_A2} = \begin{pmatrix} 186\\257\\313\\413 \end{pmatrix} \cdot kip$ $HP 14 \times 73$ $HP 14 \times 89$ $HP 14 \times 117$ States

Goodman's Method results more realistic resistance values. Use these values for report.

DRIVABILITY ANALYSIS Ref: LRFD Article 10.7.8

For steel piles in compression or tension σ_{dr} = 0.9 x ϕ_{da} x f_y (eq. 10.7.8-1)

$f_y := 50 \cdot ksi$	yield stre	ngth of steel	
φ _{da} := 1.0	resistanc Pile Driva	e factor from LRF ability Analysis, St	D Table 10.5.5.2.3-1 teel piles
$\sigma_{dr} := 0.9 \cdot \phi_{dr}$	_{la} ·f _v	$\sigma_{dr} = 45 \cdot ksi$	driving stresses in pile can not exceed 45 ksi

Compute Resistance that can be achieved in a drivability analysis:

The resistance that must be achieved in a drivability analysis will be the maximum applied pile axial load (must be less than the the factored geotechnical resistance from above as this governs) divided by the appropriate resistance factor for wave equation analysis and dynamic test which will be required for construction.

Table 10.5.5.2.3-1 pg 10-38 gives resistance factor for dynamic test, ϕ_{dyn} :

 $\phi_{dyn} := 0.65$

There are 5 piles at each abutment. No reduction of Φ_{dvn} is necessary.

Look at Resistances for both abutments: Abutment No. 1 pile length = 35 feet Abutment No. 2 pile length = 10 feet

Abutment No. 1: Pile Size = 12 x 53

Assume Contractor will use a Delmag D19-42 hammer to install 12 x 53 piles

State of Main	State of Maine Dept. Of Transportation 24-Nov-2008					
South Berwid	South Berwick Great Works River Bridge GRLWEAP (TM) Version 2003					
		Ŭ		. ,		
	Maximum	Maximum				
Liltimato	Compression	Tension	Blow			
Conositu	Stragg	Stragg	Count	Stealya	Enorgy	
Сараску	Siress	Stress	Count	Stroke	Energy	
kips	KSI	KSI	blows/in	teet	kips-ft	
455.0	44.86	3.51	6.2	8.90	19.60	
456.0	44.78	3.48	6.2	8.91	19.55	
457.0	44.97	3.49	6.2	8.91	19.61	
458.0	44.97	3.48	6.3	8.93	19.62	
(459.0	45.08	3.49	6.3	8.94	19.67	
460.0	45.16	3.49	6.3	8.95	19.70	
461.0	45.15	3.48	6.3	8.95	19.68	
462.0	45.30	3.48	6.4	8.96	19.72	
463.0	45.38	3.49	6.4	8.97	19.75	
464.0	45 33	3 46	64	8 98	19.73	
101.0	10.00	0.10	0.1	0.00		

Limit to driving stress to 45 ksi

Strength Limit State:

 $R_{dr_{12x53}A1_{factored}} := 459 \cdot kip \cdot \phi_{dyn}$

 $R_{dr_{12x53}A1_{factored}} = 298 \cdot kip$

Service and Extreme Limit States: $\phi := 1.0$

 $R_{dr_{12x53}A1_{servext}} := 459 \cdot kip$

DELMAG D 19-42

Efficiency	0.800	
Helmet	3.20	kips
Hammer Cushion	109975	kips/in
Skin Quake	0.100	in
Toe Quake	0.040	in
Skin Damping	0.050	sec/ft
Toe Damping	0.150	sec/ft
Pile Length	35.00	ft
Pile Penetration	35.00	ft
Pile Top Area	15.50	in2

Abutment No. 1: Pile Size = 14 x 73

Assume Contractor will use a Delmag D36-32 hammer on third fuel setting to install 14 x 73 piles

State of Maine Dept. Of Transportation 24-Nov-2008					
South Berwick Great Works River Bridge GRLWEAP (TM) Version					ersion 2003
		Ŭ			
	Maximum	Maximum			
Ultimate	Compression	Tension	RIOM		
Capacity	Stress	Stress	Count	Stroke	Energy
kins	ksi	ksi	blows/in	feet	kins-ft
			2101101111		1460 12
540.0	44.50	0.04		7.00	00.00
510.0	44.59	0.94	2.9	7.39	33.96
511.0	44.64	0.95	2.9	7.39	33.97
512.0	44.69	0.95	2.9	7.40	33.96
513.0	44.75	0.95	2.9	7.40	33.96
514.0	44.81	0.95	3.0	7.41	33.96
515.0	44 97	0.96	3.0	7 4 2	34 11
(516.0	45.03	0.96	3.0	7.42	34 11
517.0	45.00	0.00	2.0	7.42	24.12
0.110	40.TZ	0.90	5.0	1.45	34.13
518.0	45.12	0.96	3.0	7.42	34.02
519.0	45.18	0.97	3.0	7.43	34.03

 $\phi := 1.0$

Limit to driving stress to 45 ksi

Strength Limit State:

 $R_{dr_{14x73}A1_{factored}} := 516 \cdot kip \cdot \phi_{dyn}$

 $R_{dr_{14x73}A1_{factored}} = 335 \cdot kip$

Service and Extreme Limit States:

 $R_{dr_{14x73}A1_{servext}} := 516 \cdot kip$

DELMAG D 36-32

Efficiency	0.800	
Helmet	3.20	kips
Hammer Cushion	109975	kips/in
Skin Quake	0.100	in
Toe Quake	0.040	in
Skin Damping	0.050	sec/ft
Toe Damping	0.150	sec/ft
Pile Length	35.00	ft
Pile Penetration	35.00	ft
Pile Top Area	21.40	in2

Abutment No. 1: Pile Size = 14 x 89

Assume Contractor will use a Delmag D36-32 hammer on third fuel setting to install 14 x 89 piles

State of Maine Dept. Of Transportation 24-Nov-2008					
South Berwic	South Berwick Great Works River Bridge				Version 2003
		0		. ,	
	Maximum	Maximum			
1.002					
Ultimate	Compression	Tension	RIOM		
Capacity	Stress	Stress	Count	Stroke	Energy
kins	ksi	ksi	blows/in	feet	kins-ft
					1. po 12
070.0	44.00	0.40	1.0	0.00	25.00
670.0	44.69	2.46	4.3	8.06	35.09
671.0	44.70	2.46	4.3	8.07	35.05
672.0	44.78	2.48	4.3	8.07	35.08
673.0	44.79	2.47	4.3	8.07	35.04
674.0	44.88	2.49	4.3	8.08	35.16
675.0	44 93	2 4 9	44	8 08	35 14
676.0	44.98	2.49	4.4	8.09	35.10
(677.0	45.02	2.50		9.10	25.22
(011.0	40.00	2.JT	4.4	0.10	
678.0	45.09	2.51	4.4	8.10	35.18
679.0	45.20	2.52	4.4	8.11	35.29

 $\phi := 1.0$

Limit to driving stress to 45 ksi

Strength Limit State:

 $R_{dr_{14x89}A1_{factored}} := 677 \cdot kip \cdot \varphi_{dyn}$

 $R_{dr_{14x89}A1_{factored}} = 440 \cdot kip$

Service and Extreme Limit States:

 $R_{dr_{14x89}A1_{servext}} := 677 \cdot kip$

DELMAG D 36-32

Efficiency	0.800	
Helmet	3.20	kips
Hammer Cushion	109975	kips/in
Skin Quake	0.100	in
Toe Quake	0.040	in
Skin Damping	0.050	sec/ft
Toe Damping	0.150	sec/ft
Pile Length	35.00	ft
Pile Penetration	35.00	ft
Pile Top Area	26.10	in2
	Skin Fi	iction

Abutment No. 1: Pile Size = 14 x 117

Assume Contractor will use a Delmag D36-32 hammer on third fuel setting to install 14 x 117 piles

State of Maine Dept. Of Transportation South Berwick Great Works River Bridge				GRLWEAP (TM)	24-Nov-2008 Version 2003
Ultimate Capacity kips	Maximum Compression Stress ksi	Maximum Tension Stress ksi	Blow Count blows/in	Stroke feet	Energy kips-ft
995.0 996.0	45.02 44.96	3.72	8.7	9.10	36.50
997.0	45.27	3.72	8.6	9.20	36.87
999.0 1000.0 1001.0 1002.0	45.10 45.03 45.05 45.15	3.74 3.71 3.72 3.73	8.8 8.9 8.9 8.9 8.9	9.12 9.12 9.13 9.13	36.55 36.40 36.45 36.53
1003.0 1004.0	45.42 45.19	3.75 3.75	8.8 9.0	9.22 9.14	36.97 36.57

 $\phi := 1.0$

Limit to driving stress to 45 ksi

Strength Limit State:

 $R_{dr_14x117_A1_factored} \coloneqq 996 \cdot kip \cdot \varphi_{dyn}$

 $R_{dr_{14x117}A1_{factored}} = 647 \cdot kip$

Service and Extreme Limit States:

 $\mathbf{R}_{dr_14x117_A1_servext} := 996 \cdot kip$

DELMAG D 36-32

Efficiency	0.800	
Helmet	3.20	kips
Hammer Cushion	109975	kips/in
Skin Quake	0.100	in
Toe Quake	0.040	in
Skin Damping	0.050	sec/ft
Toe Damping	0.150	sec/ft
Pile Length	35.00	ft
Pile Penetration	35.00	ft
Pile Top Area	34.40	in2

Abutment No. 2: Pile Size = 12×53

Assume Contractor will use a Delmag D19-42 hammer to install 12 x 53 piles

State of Main	ie Dept. Of Transp	ortation			24-Nov-2008	
South Benvic	South Berwick Great Works River Bridge GRI WEAP (TM) Version 2003					
0000112011110	At of our Promotion	or bridge			0101011 2000	
	Maximum	Maximum				
Liltimato	Comprossion	Toncion	Plow			
Ultimate	Compression	Tension	DIUM	- · ·	_	
Capacity	Stress	Stress	Count	Stroke	Energy	
kips	ksi	ksi	blows/in	feet	kips-ft	
340.0	44.76	0.00	3.8	8.05	15.28	
341.0	44.82	0.00	3.8	8.05	15.27	
040.0	44.02	0.00	0.0	0.00	10.27	
342.0	44.95	0.00	<u> </u>	8.Ub	15.31	
(343.0	45.02	0.01	3.8	8.06	15.29)	
344.0	45.06	0.04	3.9	8.06	15.25	
345.0	45.21	0.09	3.9	8.07	15.29	
346.0	45.27	0.09	3.9	8.07	15.26	
347.0	45.31	0.08	3.9	8.08	15.22	
348.0	45.48	0.06	3.9	8.09	15.26	
349.0	45 54	0.05	3.9	8.09	15.24	
040.0	+0.0+	0.00	0.0	0.00	10.24	

 $\phi := 1.0$

Limit to driving stress to 45 ksi

Strength Limit State:

 $R_{dr_{12x53}A2_{factored}} := 343 \cdot kip \cdot \phi_{dyn}$

 $R_{dr_{12x53}A2_{factored}} = 223 \cdot kip$

Service and Extreme Limit States:

 $R_{dr_{12x53}A2_{servext}} := 343 \cdot kip$

DELMAG D 19-42

Effi	ciency		0.800	
Hel	met	1	3.20	kips
Har	nmer Cushion		09975	kips/in
Skii	n Quake		0.100	in
Toe	e Quake		0.040	in
Skii	n Damping		0.050	sec/ft
Toe	e Damping		0.150	sec/ft
Pile	Length		10.00	ft
Pile	Penetration		10.00	ft
Pile	Top Area		15.50	in2
	Pile Model		Skin Fr Distrib	iction

Abutment No. 2 Pile Size = 14 x 73

Assume Contractor will use a Delmag D36-32 hammer on third fuel setting to install 14 x 73 piles

State of Mair	State of Maine Dept. Of Transportation 24-Nov-2008						
South Berwic	South Berwick Great Works River Bridge GRI WEAP (TM) Version 2003						
00001120	/// 0/000 / / 0///// / ///	or bridge		01.211.21.2 (, .	0101011 2000		
	h dan si mas una	h dan dina cura			l		
	Maximum	Maximum	-				
Ultimate	Compression	Tension	Blow				
Capacity	Stress	Stress	Count	Stroke	Energy		
kins	ksi	ksi	blows/in	feet	kins-ft		
1460	1101	1.01	DIOTTORIT	1006	nipo n		
105.0	44.05	0.00		7.07	00.00		
465.0	44.85	0.00	2.8	1.27	28.02		
466.0	44.93	0.00	2.8	7.27	28.02		
(467.0	45.01	0.00	2.8	7.27	28.03		
468.0	45.10	0.00	2.9	7.28	28.04		
469.0	45.20	0.00	2.9	7.28	28.04		
470.0	45.28	0.00	2.9	7.29	28.04		
474.0	45.20	0.00	2.0	7.20	20.04		
471.0	45.37	0.00	2.9	1.29	28.04		
472.0	45.31	0.00	2.9	7.29	27.90		
473.0	45.40	0.00	2.9	7.29	27.91		
474.0	45.47	0.00	2.9	7.30	27.91		

 $\phi := 1.0$

Limit to driving stress to 45 ksi

Strength Limit State:

 $R_{dr_{14x73}A2_{factored}} := 467 \cdot kip \cdot \phi_{dyn}$

 $R_{dr_{14x73}A2_{factored}} = 304 \cdot kip$

Service and Extreme Limit States:

 $R_{dr_{14x73}A2_{servext}} := 467 \cdot kip$

DELMAG D 36-32

Efficier	ю	(0.800	
Helmet Hamme	r Cushion	10	3.20 9975	kips kips/in
Skin Qı Toe Qu Skin Da Toe Da	uake Jake amping mping	(((0.100 0.040 0.050 0.150	in in sec/ft sec/ft
Pile Le Pile Pe Pile To	ngth netration p Area		10.00 10.00 21.40	ft ft in2
Pi	le Model	s I	Skin Fi Distrib	iction ution

Abutment No. 2 Pile Size = 14×89

Assume Contractor will use a Delmag D36-32 hammer on third fuel setting to install 14 x 89 piles

State of Main	State of Maine Dept Of Transportation 24-Nov-2008						
South Berwick Great Works River Bridge GRLWEAP (TM) Version					ersion 2003		
	Maximum	Maximum					
Elltimato	Compression	Tension	Blow				
Onintate	Compression	Charan		Charles	— ———————————————————————————————————		
Capacity	Stress	Stress	Count	Stroke	Energy		
kips	ksi	ksi	blows/in	feet	kips-ft		
595.0	44.85	0.00	3.8	7.68	27.14		
596.0	44.83	0.00	3.8	7.67	27.02		
597.0	44.84	0.00	3.8	7.67	26.96		
598.0	45.01	0.00	3.8	7.68	27.07		
_599.0	44.94	0.00	3.9	7.68	26.92		
(600.0	45.09	0.00	3.9	7.68	27.05)		
601.0	45.16	0.00	3.9	7.69	27.00		
602.0	45.20	0.00	3.9	7.69	26.96		
603.0	45.25	0.00	3.9	7.69	26.97		
604.0	45.32	0.00	3.9	7.69	26.93		

φ :=

Limit to driving stress to 45 ksi

Strength Limit State:

 $R_{dr_{14x89}A2_{factored}} := 600 \cdot kip \cdot \phi_{dyn}$

 $R_{dr_{14x89}A2_{factored}} = 390 \cdot kip$

Service and Extreme Limit States:

 $R_{dr_{14x89}A2_{servext}} := 600 \cdot kip$

DELMAG D 36-32

	Efficiency	0.800	
	Helmet	3.20	kips
	Hammer Cushion	109975	kips/in
	Skin Quake	0.100	in
	Toe Quake	0.040	in
	Skin Damping	0.050	sec/ft
	Toe Damping	0.150	sec/ft
1.0			
	Pile Length	10.00	ft
	Pile Penetration	10.00	ft
	Pile Top Area	26.10	in2
		Skin Fr	iction
	Pile Model	Distrib	ution
		K	

Abutment No. 2 Pile Size = 14 x 117

Assume Contractor will use a Delmag D36-32 hammer on third fuel setting to install 14 x 117 piles

State of Maine Dept. Of Transportation				24-Nov-2008		
South Berwick Great Works River Bridge				GRLWEAP (TM) Version 2003		
Ultimate Capacity kips	Maximum Compression Stress ksi	Maximum Tension Stress ksi	Blow Count blows/in	Stroke feet	Energy kips-ft	
840.0 841.0	44.92 44.91	0.00	5.8 5.8	8.29 8.30	27.09	
(<u>842.0</u>	45.01	0.00	5.8	8.30	<u>27.10</u>	
843.0	45.04		5.8	8.31	27.07	
844.0	45.07		5.8	8.31	27.16	
845.0	45.12	0.00	5.9	8.31	27.09	
846.0	45.17	0.00	5.9	8.31	27.06	
847.0	45.13	0.00	5.9	8.32	27.14	
848.0	45.24	0.01	5.9	8.32	27.07	
849.0	45.29	0.01	5.9	8.32	27.06	

 $\phi := 1.0$

Limit to driving stress to 45 ksi

Strength Limit State:

 $R_{dr_{14x117}A2_{factored}} := 842 \cdot kip \cdot \phi_{dyn}$

 $R_{dr_{14x117}A2_{factored}} = 547 \cdot kip$

Service and Extreme Limit States:

 $R_{dr_14x117}A2_{servext} := 842 \cdot kip$

DELMAG D 36-32

Efficiency	0.800	
Helmet	3.20	kips
Hammer Cushion	109975	kips/in
Skin Quake	0.100	in
Toe Quake	0.040	in
Skin Damping	0.050	sec/ft
Toe Damping	0.150	sec/ft
Pile Length	10.00	ft
Pile Penetration	10.00	ft
Pile Top Area	34.40	in2

H-piles Depth to Fixity

Abutment No. 1: Soil conditions at boring BB-SBGWR-102A 27 ft of fill (gravel, cobbles and boulders) over 4 ft of silt over 13 ft of sand over bedrock.

Consider Pile sizes: HP 12x53 HP 14x73 HP 14x 89 HP 14x117 H-pile Steel area: $A_s := \begin{pmatrix} 15.5\\ 21.4\\ 26.1\\ 34.4 \end{pmatrix} \cdot in^2$

LRFD Eq.10.7.3.13.4-2 for fixity in feet: $1.8*T_H = 1.8*(E_pI_w/n_h)^{0.2}$ (in sands) E_p Young's modulus of pile in ksi

- I_w moment of inertia of pile in ft⁴
- n_h= rate of increase of soil modulus with depth for sands as specified in Table C10.4.6.3-2 in ksi/ft

 E_p = Steel modulus: $E_{steel} := 29000 \cdot ksi$

Moment of Inertia:

 $I_{w} := \begin{pmatrix} 393\\729\\904\\904 \end{pmatrix} \cdot in^{4} \qquad \text{use X - X axis} \\ Y-Y \text{ axis will give even lower numbers}$

Rate of increase of soil modulus with depth: for submerged loose sand

 $n_h := 0.208 \cdot \frac{ksi}{ft}$

T_H parameter:

$$T_{H} := \left(\frac{E_{steel} \cdot I_{w}}{n_{h}}\right)^{0.2}$$

$$T_{H} = \begin{pmatrix} 4.84 \\ 5.47 \\ 5.71 \\ 6.06 \end{pmatrix} \cdot ft$$

HP 14 x 117

Depth of Fixity:

 $\mathbf{r} = \begin{pmatrix} 9\\10\\ \end{bmatrix}$.ft

	HP 12 x 53
	HP 14 x 73
Depth to fixity for H-piles	HP 14 x 89

 $D_{\text{fixH}} = \begin{pmatrix} 10\\10\\11 \end{pmatrix} \cdot \text{ft}$

seems low

 $D_{fixH} := 1.8 \cdot T_H$

Look at Fixity using MassHighway Bridge Manual

The length of pile from the base of the abutment to the point of fixity shall be the equvalent length, L_e, as defined as the theoretical equivalent length of free standing column with fixed/fixed support conditions translated though a distance δ_T .

The equivalent length of pile Le is determined from the regression equation:

 $\begin{array}{l} \mathsf{L}_{e} = \mathsf{A}(\mathsf{E}\mathsf{I}/\mathsf{d}) + \mathsf{B}(\delta_{T}) + \mathsf{C} \\ \text{where: } \mathsf{A}, \mathsf{B}, \& \mathsf{C} \text{ are equation coefficients from Table 1 Mass Highway Bridge Manual Section 3.9.6.3} \\ \mathsf{E} = \mathsf{M}\mathsf{odulus of elasticity of pile material} \\ \mathsf{I} = \mathsf{M}\mathsf{oment of inertia} \\ \mathsf{d} = \mathsf{pile section depth} \\ \delta_{T} = \mathsf{pile head horizontal displacement} \\ \end{array}$

HP 14 x 117

HP 14 x 89

E = Steel modulus: $E := 29000 \cdot ksi$

127 Moment of Inertia: 261 Use Y-Y axis for weak axis bending 4 $I_w :=$ ∙in ⊓ 326 443 299 11.77 17.56 13.82 446 Depth of pile ∙mm l∙in 351 361

 $\delta_{\rm T} := 10 \cdot {\rm mm}$

Assume pile head displacement:

 $\delta_T = 0.3937 \cdot in$

From Mass Highway Bridge Manual Section 3.9.6.3 Table 1 Assume soil condituions = Dry peastone over wet or dry sand

$$A := 7.4 \cdot 10^{-6} \cdot \frac{\text{mm}}{\text{N} \cdot \text{mm} \cdot 10^{3}}$$
$$B := 12 \cdot \frac{\text{mm}}{\text{mm}}$$
$$C := 2.3 \cdot \text{mm} \cdot 10^{3}$$

$$L_{e} := A \cdot \left(\overbrace{\frac{E \cdot I_{w}}{d_{p}}} \right) + B \cdot \delta_{T} + C \qquad \qquad L_{e} = \left(\begin{array}{c} 8.8\\9.12\\9.82\\10.42 \end{array} \right) \cdot ft$$

From Mass Highway Bridge Manual Section 3.9.6.3 Table 1 Fixity Ratio L_f/L_e = 2.2 Solve for L_f - length for fixity

$$L_{f} := L_{e} \cdot 2.2 \qquad \qquad L_{f} = \begin{pmatrix} 19\\ 20\\ 22\\ 23 \end{pmatrix} \cdot ft$$

Piles at Abutment No. 2 will not achieve fixity.

Abutment and Wingwall Passive and Active Earth Pressure:

For cases where interface friction is considered (for gravity structures) use Coulomb Theory

Coulomb Theory - Passive Earth Pressure from Maine DOT Bridge Design Guide Section 3.6.6 pg 3-8

Angle of back face of wall to the horizontal: $\alpha := 90 \cdot \text{deg}$

Angle of internal soil friction: $\phi := 32 \cdot \deg$

Friction angle between fill and wall: From LRFD Table 3.11.5.3-1 range from 17 to 22 $\delta := 20 \cdot deg$

Angle of backfill to the horizontal

 $\beta := 0 \cdot \deg$

$$K_{p} := \frac{\sin(\alpha - \phi)^{2}}{\sin(\alpha)^{2} \cdot \sin(\alpha + \delta) \cdot \left(1 - \sqrt{\frac{\sin(\phi + \delta) \cdot \sin(\phi + \beta)}{\sin(\alpha + \delta) \cdot \sin(\alpha + \beta)}}\right)^{2}}$$
$$K_{p} = 6.89$$

Rankine Theory - Passive Earth Pressure from Bowles 5th Edition Section 11-5 pg 602

 $\begin{array}{ll} \mbox{Angle of backfill to the horizontal} & \beta := 0 \cdot deg \\ \mbox{Angle of internal soil friction:} & \varphi := 32 \cdot deg \\ \end{array}$

 $K_{p_rank} := \frac{\cos(\beta) + \sqrt{\cos(\beta)^2 - \cos(\varphi)^2}}{\cos(\beta) - \sqrt{\cos(\beta)^2 - \cos(\varphi)^2}}$

 $K_{p_rank} = 3.25$

Bowles does not recommend the use of the Rankine Method for K_p when β >0.

Bedrock

Divide gravel layer up into 4 layers:

- $Layer 2: \qquad H_2 := 5 \cdot ft \qquad \qquad N_2 := 25$
- Layer 3: $H_3 := 5 \cdot ft$ $N_3 := 20$
- Layer 4: $H_4 := 6.7 \cdot ft$ $N_4 := 25$

LOADING ON AN INFIN	IITE STRIP - VERTICAL EMBA	NKMENT LOADING	3	
Embank. Embank. p load/un	slope a = 40.00(ft) width b = 57.00(ft) it area = 687.50(psf)			
INCREMEN X =	IT OF STRESSES FOR Z-DIRE 40.00(ft)	CTION		
7	Vert Az			
(ft)	(psf)			
0.00	687.50			
1.00	682.00			
2.00	676.33		at 2 5 faat	A =
3.00	670.35		al 2.0 leel	$\Delta \sigma_{z1} = 6/5.51 \text{·psi}$
4.00	663.91			
5.00	656.93			
6.00	649.35		at 7 5 feet	$\Delta \sigma_{-2} := 636.76$ msf
7.00	641.15			$\Delta 0_{22} = 0.00170$ psi
8.00	632.36			
9.00	623.01			
10.00	613.16			
11.00	602.90			
12.00	592.31		at 12.5 feet	$\Delta \sigma_{z3} \coloneqq 586.89 \cdot \text{psf}$
13.00	581.46			
14.00	570.45			
15.00	559.34			
16.00	548.20			
17.00	537.10		at 19 4 fact	A =
18.00	526.08		al 10.4 leel	$\Delta \sigma_{z4} \coloneqq 521.72 \cdot pst$
19.00	515.18			
20.00	504.45			
21.00	493.90			
22.00	483.56			

Layer 1: $H_1 := 5 \cdot ft$

Unit weight of sand and gravel: $\gamma_{gr} \coloneqq 130 \cdot pcf$

Determine corrected SPT value N': N'/N - Ratio of Corrected blow count to SPT Value

$$\sigma_{1o} := \frac{H_1}{2} \cdot \gamma_{gr} \qquad \sigma_{1o} = 325 \cdot psf \qquad \text{at mid-point}$$

SPT N-value (bpf) $N_1 = 20$ At P_o = 325 psf N'/N = r1 := 2.0

From Figure 13 using the "well graded fine to medium silty SAND" curve

Bearing Capacity Index: C1 := 97

Use STRESS to determine the change in stress at the mid point of the layer under consideration (above)

 $\Delta\sigma_{z1}=673.31{\cdot}psf$

Layer 2: $H_2 := 5 \cdot ft$

Unit weight of sand and gravel: $~~\gamma_{gr} \coloneqq 130 \cdot pcf$

Determine corrected SPT value N': N'/N - Ratio of Corrected blow count to SPT Value

$$\sigma_{2o} \coloneqq H_1 \cdot \gamma_{gr} + \frac{H_2}{2} \cdot \gamma_{gr} \qquad \qquad \sigma_{2o} = 975 \cdot psf \qquad \text{ at mid-point}$$

SPT N-value (bpf) $N_2 = 25$ At P_o = 975 psf N'/N = $r_2 := 1.3$

Corrected Blow Count $N'_2 := r2 \cdot N_2$ $N'_2 = 33$

From Figure 13 using the "well graded silty SAND & GRAVEL" curve

Bearing Capacity Index: C2 := 110

Use STRESS to determine the change in stress at the mid point of the layer under consideration (above)

 $\Delta \sigma_{z2} = 636.76 \cdot \text{psf}$

Layer 3: $H_3 := 5 \cdot ft$

Unit weight of sand and gravel: $~~\gamma_{gr} \coloneqq 130 \cdot pcf$

Determine corrected SPT value N': N'/N - Ratio of Corrected blow count to SPT Value

$$\sigma_{3o} := (H_1 + H_2) \cdot \gamma_{gr} + \frac{H_3}{2} \cdot \gamma_{gr} \qquad \sigma_{3o} = 1625 \cdot psf \qquad \text{at mid-point}$$

SPT N-value (bpf) $N_3 = 20$ At P_o = 1625 psf N'/N = $r_3 := 0.98$

 $\mbox{Corrected Blow Count} \qquad N'_3 := r3 \cdot N_3 \qquad \qquad N'_3 = 20$

From Figure 13 using the "well graded silty SAND & GRAVEL" curve

Bearing Capacity Index: C3 := 77

Use STRESS to determine the change in stress at the mid point of the layer under consideration (above)

$$\Delta \sigma_{z3} = 586.89 \cdot \text{psf}$$

Layer 4: $H_4 = 6.7 \cdot ft$

Unit weight of sand and gravel: $~~\gamma_{gr} \coloneqq 130 \cdot pcf$

Determine corrected SPT value N': N'/N - Ratio of Corrected blow count to SPT Value

$$\sigma_{4o} := \left(H_1 + H_2 + H_3\right) \cdot \gamma_{gr} + \frac{H_4}{2} \cdot \gamma_{gr} \qquad \qquad \sigma_{4o} = 2385.5 \cdot \text{psf} \qquad \text{at mid-point}$$

SPT N-value (bpf) $N_4 = 25$ At P₀ = 2386 psf N'/N = r4 := 0.88

 $\mbox{Corrected Blow Count} \qquad N'_4 := r4 \cdot N_4 \qquad \qquad N'_4 = 22$

From Figure 13 using the "well graded silty SAND & GRAVEL" curve

Bearing Capacity Index: C4 := 82

Use STRESS to determine the change in stress at the mid point of the layer under consideration (above)

 $\Delta \sigma_{z4} = 521.72 \cdot psf$

Settlement at each layer Interbedded sand and gravel:

$$\Delta H_1 := H_1 \cdot \frac{1}{C1} \cdot \log \left(\frac{\sigma_{10} + \Delta \sigma_{z1}}{\sigma_{10}} \right) \qquad \Delta H_1 = 0.3 \cdot \text{in}$$
$$\Delta H_2 := H_2 \cdot \frac{1}{C2} \cdot \log \left(\frac{\sigma_{20} + \Delta \sigma_{z2}}{\sigma_{20}} \right) \qquad \Delta H_2 = 0.12 \cdot \text{in}$$

$$\Delta H_3 := H_3 \cdot \frac{1}{C3} \cdot \log \left(\frac{\sigma_{30} + \Delta \sigma_{z3}}{\sigma_{30}} \right) \qquad \Delta H_3 = 0.1 \cdot \text{in}$$

$$\Delta H_4 := H_4 \cdot \frac{1}{C4} \cdot \log \left(\frac{\sigma_{40} + \Delta \sigma_{z4}}{\sigma_{40}} \right) \qquad \qquad \Delta H_4 = 0.08 \cdot \text{in}$$

Total settlement =

$\Delta H_{A2} := \Delta H_1 + \Delta H_2 + \Delta H_3 + \Delta H_4$	$\Delta H_{A2} = 0.6091 \cdot in$	At Abutment No. 2
--	-----------------------------------	-------------------

Frost Protection:

Method 1 - MaineDOT Design Freezing Index (DFI) Map and Depth of Frost Penetration Table are in BDG Section 5.2.1.

From the Design Freezing Index Map: South Berwick, Maine DFI = 1200 degree-days

From the lab testing: soils are coarse grained assume a water content = $\sim 5\%$

From Table 5-1 MaineDOT BDG for Design Freezing Index of 1900 frost penetration = 76.1 inches

Frost_depth := 73.1in Frost_depth = 6.0917.ft

Note: The final depth of footing embedment may be controlled by the scour susceptibility of the foundation material and may, in fact, be deeper than the depth required for frost protection.

Method 2 - Check Frost Depth using Modberg Software

Closest Station is Sanford

Project Lo	ModBerg Results Project Location: Sanford 2 NNW, Maine							
Air Design Freezing Index=N-Factor=Surface Design Freezing Index=Mean Annual Temperature=Design Length of Freezing Season=				= 112 = 0.8 = 89 = 46. = 110	23 F-days 0 18 F-days 8 deg F 6 days	i		
Layer #:Type	t	w%	d	Cf	Cu	Kf	Ku	L
1-Coarse	55.3	5.0	125.0	24	28	1.2	1.3	900
t w% d Cf Cu Kf Ku L	t = Layer thickness, in inches. w% = Moisture content, in percentage of dry density. d = Dry density, in lbs/cubic ft. Cf = Heat Capacity of frozen phase, in BTU/(cubic ft degree F). Cu = Heat Capacity of thawed phase, in BTU/(cubic ft degree F). Kf = Thermal conductivity in frozen phase, in BTU/(ft hr degree). Ku = Thermal conductivity in thawed phase, in BTU/(ft hr degree). L = Latent heat of fusion, in BTU / cubic ft.							
Total Dep	Total Depth of Frost Penetration = 4.61 ft = 55.3 in.							

Use Modberg Frost Depth = 4.5 feet for design

Seismic:

South Berwick Great Works Rive Bridge Date and Time: 5/5/2008 1:33:46 PM Conterminous 48 States 2007 AASHTO Bridge Design Guidelines AASHTO Spectrum for 7% PE in 75 years State - Maine Zip Code - 03908 Zip Code Latitude = 43.233800 Zip Code Longitude = -070.791400Site Class B Data are based on a 0.05 deg grid spacing. Period Sa (sec) (g) 0.0 0.101 PGA - Site Class B 0.2 Ss - Site Class B 0.192 1.0 0.045 S1 - Site Class B Conterminous 48 States 2007 AASHTO Bridge Design Guidelines Spectral Response Accelerations SDs and SD1 State - Maine Zip Code - 03908 Zip Code Latitude = 43.233800 Zip Code Longitude = -070.791400 As = FpgaPGA, SDs = FaSs, and SD1 = FvS1 Site Class D - Fpga = 1.60, Fa = 1.60, Fv = 2.40 Data are based on a 0.05 deg grid spacing. Period Sa (sec) (g) 0.161 0.0 As - Site Class D 0.2 0.308 SDs - Site Class D 1.0 0.109 SD1 - Site Class D

<u>Appendix D</u>

Special Provisions

SPECIAL PROVISION <u>SECTION 610</u> STONE FILL, RIPRAP, STONE BLANKET, AND STONE DITCH PROTECTION

Add the following paragraph to Section 610.02:

Materials shall meet the requirements of the following Sections of Special Provision 703:

Stone Fill	703.25
Plain and Hand Laid Riprap	703.26
Stone Blanket	703.27
Heavy Riprap	703.28
Definitions	703.32

Add the following paragraph to Section 610.032.a.

Stone fill and stone blanket shall be placed on the slope in a well-knit, compact and uniform layer. The surface stones shall be chinked with smaller stone from the same source.

Add the following paragraph to Section 610.032.b:

Riprap shall be placed on the slope in a well-knit, compact and uniform layer. The surface stones shall be chinked with smaller stone from the same source.

Add the following to Section 610.032:

Section 610.032.d. The grading of riprap, stone fill, stone blanket and stone ditch protection shall be determined by the Resident by visual inspection of the load before it is dumped into place, or, if ordered by the Resident, by dumping individual loads on a flat surface and sorting and measuring the individual rocks contained in the load. A separate, reference pile of stone with the required gradation will be placed by the Contractor at a convenient location where the Resident can see and judge by eye the suitability of the rock being placed during the duration of the project. The Resident reserves the right to reject stone at the job site or stockpile, and in place. Stone rejected at the job site or in place shall be removed from the site at no additional cost to the Department.

SPECIAL PROVISION SECTION 703 AGGREGATES

Replace subsections 703.25 through 703.28 with the following:

<u>703.25 Stone Fill</u> Stones for stone fill shall consist of hard, sound, durable rock that will not disintegrate by exposure to water or weather. Stone for stone fill shall be angular and rough. Rounded, subrounded, or long thin stones will not be allowed. Stone for stone fill may be obtained from quarries or by screening oversized rock from earth borrow pits. The maximum allowable length to thickness ratio will be 3:1. The minimum stone size (10 lbs) shall have an average dimension of 5 inches. The maximum dimension of approximately 36 inches. Larger stones may be used if approved by the Resident. Fifty percent of the stones by volume shall have an average dimension of 12 inches (200 lbs).

<u>703.26 Plain and Hand Laid Riprap</u> Stone for riprap shall consist of hard, sound durable rock that will not disintegrate by exposure to water or weather. Stone for riprap shall be angular and rough. Rounded, subrounded or long thin stones will not be allowed. The maximum allowable length to width ratio will be 3:1. Stone for riprap may be obtained from quarries or by screening oversized rock from earth borrow pits. The minimum stone size (10 lbs) shall have an average dimension of 5 inches. The maximum stone size (200 lbs) shall have an average dimension of approximately 12 inches. Larger stones may be used if approved by the Resident. Fifty percent of the stones by volume shall have an average dimension greater than 9 inches (50 lbs).

<u>703.27 Stone Blanket</u> Stones for stone blanket shall consist of sound durable rock that will not disintegrate by exposure to water or weather. Stone for stone blanket shall be angular and rough. Rounded or subrounded stones will not be allowed. Stones may be obtained from quarries or by screening oversized rock from earth borrow pits. The minimum stone size (300 lbs) shall have minimum dimension of 14 inches, and the maximum stone size (3000 lbs) shall have a maximum dimension of approximately 66 inches. Fifty percent of the stones by volume shall have average dimension greater than 24 inches (1000 lbs).

<u>703.28 Heavy Riprap</u> Stone for heavy riprap shall consist of hard, sound, durable rock that will not disintegrate by exposure to water or weather. Stone for heavy riprap shall be angular and rough. Rounded, subrounded, or thin, flat stones will not be allowed. The maximum allowable length to width ratio will be 3:1. Stone for heavy riprap may be obtained from quarries or by screening oversized rock from earth borrow pits. The minimum stone size (500 lbs) shall have minimum dimension of 15 inches, and at least fifty percent of the stones by volume shall have an average dimension greater than 24 inches (1000 lbs).

Add the following paragraph:

703.32 Definitions (ASTM D 2488, Table 1).

<u>Angular:</u> Particles have sharp edges and relatively plane sides with unpolished surfaces <u>Subrounded:</u> Particles have nearly plane sides but have well-rounded corners and edges <u>Rounded:</u> Particles have smoothly curved sides and no edges