MAINE DEPARTMENT OF TRANSPORTATION BRIDGE PROGRAM GEOTECHNICAL SECTION AUGUSTA, MAINE

GEOTECHNICAL DESIGN REPORT

For the Replacement of:

CNR Crossing Bridge US Route 202/State Routes 4 and 100 Over Canadian National Railway Auburn, Maine

Prepared by:

Kathleen Maguire, P.E. Geotechnical Engineer

Reviewed by:

Laura Krusinski, P.E. Senior Geotechnical Engineer

Androscoggin County PIN 15600.00

Soils Report No. 2008-14 Bridge No. 5952

Fed No. BR-A560(000)X October 14, 2008

Table of Contents

GEO'	FECHNICAL DESIGN SUMMARY	1
1.0	INTRODUCTION	3
2.0	GEOLOGIC SETTING	3
3.0	SUBSURFACE INVESTIGATION	4
4.0	LABORATORY TESTING	5
	SUBSURFACE CONDITIONS	
	FOUNDATION ALTERNATIVES	
7.0	FOUNDATION CONSIDERATIONS AND RECOMMENDATIONS	11
7.1	INTEGRAL ABUTMENT H-PILES	11
7.2	PIPE PILE PIER BENTS	14
7.3	STUB ABUTMENTS	18
7.4	Settlement	19
7.5	DOWNDRAG	
7.6	FROST PROTECTION	
7.7	SEISMIC DESIGN CONSIDERATIONS	
7.8	CONSTRUCTION CONSIDERATIONS	21
8.0	CLOSURE	21
Sheets	S	
Sheets Sheets	 1 - Location Map 2 - Boring Location Plan and Interpretive Subsurface Profile 3 and 4 - Boring Logs 5 - Rankine and Coulomb Active Earth Pressure Coefficients 	

Appendices

Appendix A - Boring Logs Appendix B - Laboratory Data Appendix C - Calculations

GEOTECHNICAL DESIGN SUMMARY

The purpose of this design report is to make geotechnical recommendations for the replacement of the CNR Crossing Bridge on US Route 202/State Routes 4 and 100 over the Canadian National Railways line in Auburn, Maine. The proposed replacement bridge will consist of a three-span precast concrete superstructure on H-pile supported integral abutments and pipe pile pier bents for intermediate structure support. The following design recommendations are discussed in detail in the attached report:

Integral Abutment H-piles - The use of stub abutments founded on a single row of driven integral H-piles is a viable foundation system for use at the site. The piles should be end bearing, driven to the required resistance on or within the bedrock. Piles may be HP 12x53, HP 14x73, HP 14x89, or HP 14x117 depending on the factored design axial loads. Piles should be 50 ksi, Grade A572 steel H-piles. Piles should be fitted with driving points to protect the tips and improve penetration. The designer shall design the H-piles at the strength limit state considering the structural resistance of the piles and the geotechnical resistance of the pile. The structural resistance check should include checking axial, lateral, and flexural The design of the H-piles at the service limit state shall consider tolerable horizontal movement of the piles and overall stability of the pile group. Since the abutment piles will be subjected to lateral loading, piles should be analyzed for axial loading and combined axial and lateral loading. The Contractor is required to perform a wave equation analysis of the proposed pile-hammer system and a dynamic pile test at each abutment. The first pile driven at each abutment should be dynamically tested to confirm capacity and verify the stopping criteria developed by the Contractor in the wave equation analysis. The ultimate pile resistance that must be achieved in the wave equation analysis and dynamic testing will be the factored axial pile load divided by a resistance factor of 0.52. The maximum factored pile load should be shown on the plans.

Pile Bent Piers – Pipe pile pier bents were selected for intermediate structure support. Piles for pile bent piers shall consist of concrete filled pipe piles driven to bedrock. Pipe pile diameters ranging from 24 to 30 inches and wall thicknesses of 1/2 and 5/8 inch are recommended. Pipe pile should be fabricated in accordance with ATM A252, Grade 3, with minimum yield strength of 45 ksi. Pipe piles can be driven open-ended or closed-ended and shall be fitted with a cutting shoe constructed from Grade ASTM A148/60 steel. Pipe pile should be end bearing, driven to the required resistance on or within the bedrock. The designer shall design the pipe piles at the strength limit state considering the structural resistance of the piles and the geotechnical resistance of the pile. The structural resistance check should include checking axial, lateral, and flexural resistance. The design of the pipe piles at the service limit state shall consider tolerable horizontal movement of the piles and overall stability of the pile group. Since the pier piles will be subjected to lateral loading and have a substantial unbraced length, piles should be analyzed for axial loading and combined axial and lateral loading. The Contractor is required to perform a wave equation analysis of the proposed pile-hammer system and a dynamic pile test at each pier. The first pile driven at each pier should be dynamically tested to confirm capacity and verify the stopping criteria developed by the Contractor in the wave equation analysis. The ultimate pile resistance that must be achieved in the wave equation analysis and dynamic testing will be the factored axial

CNR Crossing Bridge Over Canadian National Railway Auburn, Maine PIN 15600.00

pile load divided by a resistance factor of 0.52. The maximum factored pile load should be shown on the plans per LRFD Article 3.6.5.2. Piers located within a distance of 50 feet to the centerline of a railway track shall be designed for an equivalent static force of 400 kips which is assumed to act in any direction in a horizontal plane at a set distance of 4.0 feet above ground. Per MaineDOT Bridge Design Guide Section 5.5.1.5B piers located within 25 feet of the centerline of railroad tracks will require collision walls extending 6 feet above the top of rail elevation.

Stub Abutments - Integral stub abutments and wingwalls shall be designed for all relevant strength, service and extreme limit states and load combinations specified in LRFD Articles 3.4.1 and 11.5.5. Since the abutments will be pile supported, design for resistance against sliding and overturning is not required. In designing for passive earth pressure associated with integral abutments, the Rankine state is recommended. All abutment designs shall include a drainage system to intercept any water. To avoid water intrusion behind the abutment, the approach slab should connect directly to the abutment.

Settlement - Evaluation of the potential settlement due to the widening of the roadway resulted in approximately ½ to 1.0 inch of consolidation settlement. Additionally, approximately ½ inch of elastic settlement will occur in the coarse-grained soils during construction. Studies indicate that settlements in excess of 0.4 inches in soils where driven piles are present will result in downdrag forces on piles. This settlement is anticipated to occur over a long period of time (on the order of 5 to 20 years).

Downdrag – The magnitude of downdrag has been estimated to range between 70 and 85 kips depending upon pile size. It is recommended that a load factor, $\gamma_p=1.0$, be applied to the downdrag load applied to abutment piles for the strength limit state.

Frost Protection - Any foundation placed on granular subgrade soils should be founded a minimum of 5.3 feet below finished exterior grade for frost protection. Integral abutments shall be embedded a minimum of 4.0 feet for frost protection.

Seismic Design Considerations -The CNR Crossing Bridge on US Route 202/State Routes 4 and 100 is on the National Highway System (NHS) and is therefore considered to be functionally important. Consequently, a detailed seismic analysis is required. The minimum seismic analysis requirements are defined in LFRD Article 4.7.4.3. The designer shall determine the specific analysis method using LRFD Tables 4.7.4.3.1-1 and 4.7.4.3.1-2. Seismic design requirements for Seismic Zone 2 are found in LRFD Article 3.10.9.3.

1.0 Introduction

A subsurface investigation for the replacement of the Canadian National Railway (CNR) Crossing Bridge on US Route 202/State Routes 4 and 100 over the Canadian National Railway line in Auburn, Androscoggin County, Maine has been completed. The purpose of the investigation was to explore subsurface conditions at the site in order to develop geotechnical recommendations for the bridge replacement. This report presents the soils information obtained at the site, geotechnical design recommendations, and foundation recommendations.

The existing bridge was constructed in 1961 and consists of a three span, 138 foot long, steel girder superstructure with a concrete deck supported on steel H-pile supported abutments and two steel H-pile supported piers. The existing superstructure has a deck width of 35 feet. Maine Department of Transportation (MaineDOT) maintenance inspection reports indicate that the bridge deck is in "poor" (rating of 4) condition and superstructure is in "satisfactory" (rating of 6) condition. Inspection notes state that the deck has extensive cracking with excessive delamination and large spalling areas. Year 2006 MaineDOT Bridge Maintenance inspection reports indicate a Bridge Sufficiency Rating of 57.7. Bridge Inspection records assign the substructures a rating of 6, or "satisfactory". Maintenance reports indicate the substructure piers and abutments have moderate cracking, staining and delamination.

The project Preliminary Design Report (PDR) was prepared by CLD Consulting Engineers of York, Maine. The PDR investigated replacement of the bridge with both a three span structure and a single span structure. The single span structure proposes moving the abutment locations in toward the railway and will use lightweight fill to minimize settlements and any effects on the existing railway. The three-span structure proposes slight changes to the existing span arrangement in order to avoid the existing piles. The proposed replacement structure will have a new centerline approximately 2.5 feet north of the existing bridge centerline.

The selected PDR alternative is the three-span, precast/prestressed concrete voided slab superstructure founded on integral H-pile supported abutments and two pipe pile pier bents with crash walls. The new structure will have a span arrangement of 31.8 ft - 51 ft - 44.9 ft and will be skewed 8.92 degrees ahead on the right. The bridge will have two 12 foot lanes with 8 foot shoulders. The existing roadway profile will be lowered by approximately 1 to 1.5 feet in the replacement. In order to minimize impacts due to slopes 1H to 1V slopes reinforced with geocell will be utilized.

2.0 GEOLOGIC SETTING

The CNR Crossing Bridge in Auburn crosses the Canadian National Railway line approximately 1 mile north of the Auburn town line on US Route 202/State Routes 4 and 100 as shown on *Sheet 1 - Location Map* found at the end of this report.

According to the Surficial Geologic Map of Maine published by the Maine Geological Survey (1985) the surficial soils in the vicinity of the site consist of glaciomarine deposits.

CNR Crossing Bridge Over Canadian National Railway Auburn, Maine PIN 15600.00

Soils in the site area are generally comprised of silt, clay, sand and minor amounts of gravel. Sand is dominant in some areas, but may be underlain by finer-grained sediments. The unit contains small areas of till that are not completely covered by marine sediments. The unit generally is deposited in areas where the topography is gently sloping except where dissected by modern streams and commonly has a branching network of steep-walled stream gullies. These soils were generally deposited as glacial sediments that accumulated on the ocean floor during the late-glacial marine submergence of lowland areas in southern Maine. Additional geologic units mapped nearby the site are till deposits (sand, silt, clay and stones).

According to the Surficial Bedrock Map of Maine, published by the Maine Geological Survey (1985), the bedrock at the site is identified as Carboniferous muscovite-biotite granite with abundant metasedimentary inclusions. This intrusive plutonic rock is identified as the Sebago Pluton.

3.0 Subsurface Investigation

Subsurface conditions were explored by drilling five (5) test borings at the site. Test boring BB-ACNR-101 was drilled behind the location of Abutment No. 1. Test boring BB-ACNR-102 and BB-ACNR-102A were drilled at the location of Pier No. 1. Test boring BB-ACNR-103 was drilled at the location of Pier No. 2. Test boring BB-ACNR-104 was drilled behind the location of Abutment No. 2. The exploration locations and an interpretive subsurface profile depicting the site stratigraphy are shown on *Sheet 2 - Boring Location Plan and Interpretive Subsurface Profile* found at the end of this report.

Borings BB-ACNR-101, BB-ACNR-102 and BB-ACNR-102A were drilled between May 19 and 29, 2008 by Northern Test Boring of Gorham, Maine. Borings BB-ACNR-103 and BB-ACNR-104 were drilled between May 19 and May 28, 2008 by the Maine Department of Transportation (MaineDOT) drill crew. Details and sampling methods used, field data obtained, and soil and groundwater conditions encountered are presented in the boring logs provided in Appendix A - Boring Logs and on *Sheets 3 and 4 - Boring Logs* found end of this report.

The borings were drilled using driven cased wash boring and solid stem auger techniques. Soil samples were obtained where possible at 5-foot intervals using Standard Penetration Test (SPT) methods. During SPT sampling, the sampler is driven 24 inches and the hammer blows for each 6 inch interval of penetration are recorded. The standard penetration resistance, N-value, is the sum of the blows for the second and third intervals. Both the MaineDOT drill rig and the Northern Test Boring drill rigs are equipped with automatic hammers to drive the split spoon. Both hammers were calibrated in 2007. The MaineDOT hammer was found to deliver approximately 30 percent more energy during driving than the standard rope and cathead system. The Northern Test Boring hammer was found to deliver approximately 6 percent more energy during driving than the standard rope and cathead system. All N-values discussed in this report are corrected values computed by applying an average energy transfer factor of 0.633 to the raw MaineDOT field N-values and an average energy transfer factors (0.77 and 0.633) and both the raw field N-values and the corrected N-values are shown on the boring logs.

Undisturbed tube samples were obtained in the soft soil deposits where possible. In-situ vane shear tests were made at regular intervals in the soft soil deposits to measure the shear strength of the strata. The bedrock was cored in the borings using an NQ core barrel and the Rock Quality Designation (RQD) of the core was calculated. The MaineDOT Geotechnical Team member selected the boring locations and drilling methods, designated type and depth of sampling techniques, identified field and laboratory testing requirements and logged the subsurface conditions encountered. The borings were located in the field by use of a tape after completion of the drilling program.

4.0 LABORATORY TESTING

Laboratory testing of samples obtained in the borings consisted of thirteen (13) standard grain size analyses, forty (40) grain size analysis with hydrometer, thirty-one (31) Atterberg Limits tests, fifteen (15) consolidation tests, and eighteen (18) standard tube openings with laboratory vanes. Laboratory test results are provided in Appendix B - Laboratory Data found at the end of this report. Moisture content information and other soil test results are included on the Boring Logs in Appendix A and on *Sheets 3 and 4 - Boring Logs* found at the end of this report.

5.0 Subsurface Conditions

The general soil stratigraphy encountered at the abutments and piers consisted of granular fill, sand, interbedded silt, clayey silt, and silty clay, and sand all underlain by pegmatite granite. An interpretive subsurface profile depicting the site stratigraphy is show on *Sheet 2 – Boring Location Plan and Interpretive Subsurface Profile* found at the end of this report. The following paragraphs discuss the subsurface conditions encountered in detail:

Fill. A layer of fill was encountered in all of the borings. The layer was found to range from approximately 12 feet thick in boring BB-ACNR-102 and approximately 18 feet thick in boring BB-ACNR-104. The fill generally consisted of brown, light brown, or yellow, dry to damp, fine to coarse sand with trace silt, trace gravel and trace clay. Corrected SPT N-values in the fill ranged from 1 to 38 blows per foot (bpf) indicating that the fill is very loose to dense in consistency. One corrected N-value of >50 bpf was recorded in the fill but it is believed that this value was influenced by the presence of cobbles. Water contents from eight (8) samples obtained within this layer range from approximately 4 to 29%. Eight (8) grain size analyses conducted on samples from this layer indicate that the soil is classified as an A-3, A-4, A-2-4, or A-1-b by the AASHTO Classification System and a SP-SM, SC-SM, ML or SM by the Unified Soil Classification System.

Native Sand. A layer of native sand was encountered beneath the fill in boring BB-ACNR-101. This sand layer was found to be light brown to dark brown, wet, fine sand, with trace silt, trace medium sand with iron staining. The thickness of the layer was approximately 5.8 feet. One corrected SPT N-value obtained in the layer was 14 bpf indicating that the soil is medium dense in consistency. One (1) water content from a sample obtained within this layer was approximately 20%. One (1) grain size analysis conducted on a sample from this layer indicates that the soil is classified as an A-2-4 by the AASHTO Classification System and a SM by the Unified Soil Classification System.

Upper Silt. Underlying the fill and native sand soils, a layer of stiff silt was encountered in three of the five borings. The layer was not observed in boring BB-ACNR-103 and boring BB-ACNR-102A did not go deep enough to encounter the layer. This upper silt layer was determined to be what is commonly known as the desiccated "upper crust" of the Presumpscot Formation typically found in this area. This silt layer was found to be olive brown to brown, wet, silt with trace fine sand in layers. The thickness of the layer ranges from approximately 3 feet in boring BB-ACNR-102 to approximately 16.7 feet in boring BB-ACNR-101. Corrected SPT N-values obtained in the layer ranged from weight of hammer (WOH) to 12 bpf indicating that the soil is very soft to stiff in consistency. Vane shear testing conducted within the silt showed measured undrained shear strengths ranging from approximately 1045 to 1317 psf while the remolded shear strength ranged from approximately 134 to 943 psf. Based on the ratio of peak to remolded shear strengths from the vane shear tests, the clayey silt was determined to have sensitivity ranging from approximately 1.1 to 8.3 and is classified as insensitive to very sensitive. Water contents from eight (8) samples obtained within this layer range from approximately 21% to 33%. Eight (8) grain size analyses conducted on samples from this layer indicate that the soil is classified as an A-4 by the AASHTO Classification System and a ML and CL-ML by the Unified Soil Classification System.

The following table summarizes the results of the Atterberg Limits test made from two (2) samples of the silt:

Sample No.	Soil Type	Water	Liquid	Plastic	Plasticity	Liquidity
		Content (%)	Limit	Limit	Index	Index
BB-ACNR-102 3D A	Silt	32.9	27	22	5	2.18
BB-ACNR-104 7D	Silt	30.7	25	22	3	2.90

Interpretation of these results indicates that the silt is on the verge of being a viscous liquid as the natural water content exceeds the liquid limit. This indicates that the soils have a high liquefaction potential. It can be inferred that overburden pressure and interparticle cementation are providing stability for these soils. Under these conditions the slightest disturbance causing remolding has the potential to convert this type of deposit into a viscous liquid. Liquidity index values greater than or equal to 1 are indicative of soils that are unconsolidated and have a high liquefaction potentially commonly referred to as "quick".

Interbedded Silt, Clayey Silt and Silty Clay. A layer of interbedded silt, clayey silt and silty clay was encountered beneath the upper silt and fill in all of the borings. This layer was found to be grey, wet, silt, clayey silt and silty clay, with trace gravel, trace sand in layers. The thickness of the layer ranges from approximately 20.6 feet in boring BB-ACNR-104 to approximately 50.5 feet in boring BB-ACNR-101.

<u>Silt.</u> Vane shear testing conducted on silt samples showed measured undrained shear strengths ranging from approximately 156 to 1099 psf while the remolded shear strength ranged from approximately 54 to 247 psf. Based on the ratio of peak to remolded shear strengths from the vane shear tests, the silt was determined to have sensitivity ranging from approximately 1.8 to 11.4 and is classified as insensitive to very sensitive. Water contents from twelve (12) samples of the silt range from approximately 26% to 41%. Twelve (12)

grain size analyses conducted on silt samples indicate that the silt is classified as an A-4 or A-6 by the AASHTO Classification System and a ML, CL-ML or CL by the Unified Soil Classification System.

The following table summarizes the results of Atterberg Limits testing on the silt samples:

Sample No.	Soil Type	Water Content	Liquid Limit	Plastic Limit	Plasticity Index	Liquidity Index
		(%)				
BB-ACNR-101 2U	Silt	30.6	22	19	3	3.87
BB-ACNR-101 5U	Silt	26.4	22	20	2	3.20
BB-ACNR-102 3D B	Silt	33.5	25	20	5	2.70
BB-ACNR-102 1U	Silt	30.2	Non Plastic			
BB-ACNR-102 4D	Silt	31.5	27	20	7	1.64
BB-ACNR-102 2U	Silt	29.8	34	23	11	0.62
BB-ACNR-103 1U	Silt	34.3	28	21	7	1.90
BB-ACNR-103 4D	Silt	33.2	36	22	14	0.80
BB-ACNR-103 2U	Silt	29.0	27	23	4	1.50
BB-ACNR-103 3U	Silt	34.3	35	21	14	0.95
BB-ACNR-103 4U	Silt	40.8	37	27	10	1.38
BB-ACNR-104 3U	Silt	29.5	25	20	5	1.90

Interpretation of these results indicates the silt is generally on the verge of becoming a viscous liquid if disturbed. For eight (8) of the samples the natural water content exceeds the liquid limit. This indicates that the silt has a high liquefaction potential. It can be inferred that overburden pressure and interparticle cementation are providing stability for these soils. Under these conditions the slightest disturbance causing remolding has the potential to convert this type of deposit into a viscous liquid. Liquidity index values greater than or equal to 1 are indicative of soils that are unconsolidated and have a high liquefaction potentially commonly referred to as "quick". Two (2) of the samples have liquidity index values less than 1 indicating soils which are over consolidated. One (1) of the samples has a liquidity index of approximately 1 indicating a soil which is normally consolidated.

One-dimensional (1-D) consolidation testing was conducted on seven (7) tube samples taken from the silt. The results of these tests were used to calculate the anticipated settlements at the site and are included in Appendix B - Laboratory Data.

Clayey Silt. Vane shear testing conducted on clayey silt samples showed measured undrained shear strengths ranging from approximately 491 to 1473 psf while the remolded shear strength ranged from approximately 22 to 223 psf. Based on the ratio of peak to remolded shear strengths from the vane shear tests, the clayey silt was determined to have sensitivity ranging from approximately 4.0 to 30.6 and is classified as moderately sensitive to slightly quick. Water contents from fourteen (14) samples of the clayey silt range from approximately 31% to 40%. Fourteen (14) grain size analyses conducted on clayey silt samples indicate that the clayey silt is classified as an A-4 or A-6 by the AASHTO Classification System and a ML, CL-ML or CL by the Unified Soil Classification System.

The following table summarizes the results of Atterberg Limits testing on the clayey silt samples:

Sample No.	Soil Type	Water Content	Liquid Limit	Plastic Limit	Plasticity Index	Liquidity Index
		(%)				
BB-ACNR-101 9D	Clayey Silt	32.4	28	22	6	1.73
BB-ACNR-101 3U	Clayey Silt	32.8	30	19	11	1.25
BB-ACNR-101 10D	Clayey Silt	30.9	30	22	8	1.11
BB-ACNR-101 4U	Clayey Silt	38.0	35	24	11	1.27
BB-ACNR-101 11D	Clayey Silt	34.4	31	12	19	1.18
BB-ACNR-101 6U	Clayey Silt	35.2	31	22	9	1.47
BB-ACNR-102 6D	Clayey Silt	35.4	35	27	8	1.05
BB-ACNR-102 4U	Clayey Silt	30.7	26	19	7	1.67
BB-ACNR-102 8D	Clayey Silt	30.6	29	20	9	1.18
BB-ACNR-102 5U	Clayey Silt	36.8	33	22	11	1.35
BB-ACNR-103 6D	Clayey Silt	36.8	36	22	14	1.06
BB-ACNR-103 5U	Clayey Silt	40.2	35	23	12	1.43
BB-ACNR-104 1U	Clayey Silt	36.7	30	22	8	1.84
BB-ACNR-104 8D	Clayey Silt	31.9	31	19	12	1.08

Interpretation of these results indicates that the clayey silt is generally on the verge of becoming a viscous liquid if disturbed. For all of the clayey silt samples the natural water content exceeds the liquid limit. This indicates that the clayey silt has a high liquefaction potential. It can be inferred that overburden pressure and interparticle cementation are providing stability for these soils. Under these conditions the slightest disturbance causing remolding has the potential to convert this type of deposit into a viscous liquid. Liquidity index values greater than or equal to 1 are indicative of soils that are unconsolidated and have a high liquefaction potentially commonly referred to as "quick". Three (3) of the samples have a liquidity index of approximately 1 indicating a soils which are normally consolidated.

One-dimensional (1-D) consolidation testing was conducted on six (6) tube samples taken from the clayey silt. The results of these tests were used to calculate the anticipated settlements at the site and are included in Appendix B - Laboratory Data.

Silty Clay. Vane shear testing conducted on silty clay samples showed measured undrained shear strengths ranging from approximately 670 to 1161 psf while the remolded shear strength ranged from approximately 67 to 268 psf. Based on the ratio of peak to remolded shear strengths from the vane shear tests, the silty clay was determined to have sensitivity ranging from approximately 4.3 to 10.0 and is classified as moderately sensitive to very sensitive. Water contents from three (3) samples of the silty clay range from approximately 37% to 41%. Three (3) grain size analyses conducted on silty clay samples indicate that the silty clay is classified as an A-4 or A-6 by the AASHTO Classification System and a CL by the Unified Soil Classification System.

The following table summarizes the results of Atterberg Limits testing on the silty clay samples:

Sample No.	Soil Type	Water	Liquid	Plastic	Plasticity	Liquidity
		Content	Limit	Limit	Index	Index
		(%)				
BB-ACNR-102 3U	Silty Clay	38.4	27	19	8	2.43
BB-ACNR-104 2U	Silty Clay	36.9	36	24	12	1.08
BB-ACNR-104 9D	Silty Clay	40.9	39	25	14	1.14

Interpretation of these results indicates that silty clays is generally on the verge of becoming a viscous liquid if disturbed. For all of the silty clay samples the natural water content exceeds the liquid limit. This indicates that the silty clay has a high liquefaction potential. It can be inferred that overburden pressure and interparticle cementation are providing stability for these soils. Under these conditions the slightest disturbance causing remolding has the potential to convert this type of deposit into a viscous liquid. Liquidity index values greater than or equal to 1 are indicative of soils that are unconsolidated and have a high liquefaction potentially commonly referred to as "quick".

One-dimensional (1-D) consolidation testing was conducted on two (2) tube samples taken from the silty clay layer. The results of these tests were used to calculate the anticipated settlements at the site and are included in Appendix B - Laboratory Data.

Sand. A layer of sand was encountered beneath the interbedded silt, clayey silt and silty clay in all of the borings with the exception of boring BB-ACNR-104. This layer was found to be grey and brown, wet, fine to coarse sand, with trace to some gravel, trace to little silt, and trace clay. Boulders were encountered within the sand layer in borings BB-ACNR-101 and BB-ACNR-102. The thickness of the sand layer ranged from approximately 10.5 feet in boring BB-ACNR-101 to approximately 30.0 feet in boring BB-ACNR-102. Corrected SPT N-values in the sand layer ranged from 13 to 105 bpf indicating that the soil is medium dense to very dense in consistency. Water contents from seven (7) samples obtained within the sand layer range from approximately 10% to 23%. Seven (7) grain size analyses conducted on samples from this layer indicate that the soil is classified as an A-2-4 or A-1-b by the AASHTO Classification System and a SC-SM, SW-SM, SP-SM or SM by the Unified Soil Classification System.

Bedrock. Bedrock was encountered and cored in all of the borings. The following table presents the bedrock findings:

Boring Number/Location	Depth to Bedrock	Bedrock Elevation	RQD	
BB-ACNR-101	100.5 feet	137.7 feet	77%	
Abutment No. 1	100.5 1001	137.7 1000	7770	
BB-ACNR-102	94.0 feet	123.8 feet	65%	
Pier No. 1	71.0 leet	123.0 1000	0370	
BB-ACNR-103	73.3 feet	151.1 feet	45 - 65%	
Pier No. 2	75.5 ICCt	131.1 1001	43 - 03/0	
BB-ACNR-104	56.1 feet	185.0 feet	28 - 53%	
Abutment No. 2	30.1 1001	165.0 1661	20 - 33/0	

The bedrock at the site can be identified as white, green and grey, coarse-grained, pegmatite GRANITE, with garnet and mica, hard, slightly weathered. Black, white and grey GNEISS interbedded with pegmatite granite intrusions was encountered in boring BB-ACNR-102. The bedrock is a part of the Sebago Pluton. The RQD of the bedrock was determined to range from 28 to 77% indicating a rock mass quality of poor to good.

6.0 FOUNDATION ALTERNATIVES

The subsurface investigation indicates the presence of a significant compressible clay layer underlying the bridge site. Due to the soft nature and depth of the soils, deep foundations are recommended. The following alternatives, with varying levels of risk, may be considered for the bridge replacement:

- A three-span structure utilizing cast-in-place concrete or precast concrete integral abutments supported on driven H-piles and concrete column piers on driven H-pile supported distribution slabs
- A three-span structure utilizing cast-in-place concrete or precast concrete integral abutments supported on driven H-piles and pipe pile pier bents with crash walls
- A single span structure utilizing full height concrete abutments supported on traditional driven H-pile groups with crash walls and lightweight fill behind the location of the existing piers to minimize settlements and negative impact to the existing railway line
- A single span structure utilizing pile supported integral abutments which are supported laterally by Mechanically Stabilized Earth (MSE) wrapped embankments with crash walls and lightweight fill behind the location of the existing piers to minimize bridge and approach settlements and railway line settlement/damage

It is preferred that the new bridge alignment closely match the existing bridge alignment. A three span structure with an alignment closely matching the existing bridge alignment is the geotechnically preferred option. Additionally, if accelerated construction is desired this alternative will have the shortest construction schedule due to no need to preload, wick drain or construct costly lightweight fill approaches.

A single span structure with an alignment closely matching the existing bridge alignment is also a viable alternative. This alternative would require the use of lightweight fill behind the location of the existing piers to minimize settlements and damage to the existing railway line

The selected PDR alternative is the three-span, precast/prestressed concrete voided slab superstructure founded on integral H-pile supported abutments and two pipe pile pier bents with crash walls. The new structure will have a span arrangement of 31.8 ft - 51 ft - 44.9 ft and will be skewed 8.92 degrees ahead on the right. The bridge will have two 12 foot lanes with 8 foot shoulders. In order to minimize impacts due to slopes 1H to 1V slopes reinforced with geocell will be utilized.

7.0 FOUNDATION CONSIDERATIONS AND RECOMMENDATIONS

The following sections will discuss geotechnical design recommendations for the stub abutments founded on a single row of integral H-piles driven to bedrock and pipe pile pier bents driven to bedrock with crash walls which are identified as the optimal substructure types at the site.

7.1 Integral Abutment H-piles

The use of stub abutments founded on a single row of driven integral H-piles is a viable foundation system for use at the site. The piles should be end bearing, driven to the required resistance on or within the bedrock. Piles may be HP 12x53, HP 14x73, HP 14x89, or HP 14x117 depending on the factored design axial loads. Piles should be 50 ksi, Grade A572 steel H-piles. Piles should be fitted with driving points to protect the tips and improve penetration.

Pile lengths at the proposed abutments may be estimated based on the table below:

Location	Estimated Pile Cap Bottom Elevation	Depth to Bedrock From Ground Surface	Top of Rock Elevation	Rock Quality Designation	Estimated Pile Length
Abutment #1					
BB-ACNR-101	229.2 feet	100.5 feet	137.7 feet	77%	95 feet
Abutment #2					
BB-ACNR-104	231.8 feet	56.1 feet	185.0 feet	28 - 53%	50 feet

These pile lengths do not take into account the additional five (5) feet of pile required for dynamic testing instrumentation or any additional pile length needed to accommodate the Contractor's leads and driving equipment.

The designer shall design the H-piles at the strength limit state considering the structural resistance of the piles and the geotechnical resistance of the pile. The structural resistance check should include checking axial, lateral, and flexural resistance. Resistance factors for use in the design of piles at the strength limit state are discussed below.

The design of the H-piles at the service limit state shall consider tolerable horizontal movement of the piles and overall stability of the pile group. Since the abutment piles will be subjected to lateral loading, piles should be analyzed for axial loading and combined axial and flexure as defined in LRFD Article 6.15.2 and specified in LRFD Article 6.9.2.2.

7.1.1 Strength Limit State Design

The nominal compressive structural resistance (P_n) in the strength limit state for piles loaded in compression shall be as specified in LRFD Article 6.9.4.1. For preliminary analysis, the H-piles can be assumed fully embedded and λ can be taken as 0. It is the responsibility of

the structural engineer to recalculate the column slenderness factor (λ) for the upper and lower portions of the H-pile based on unbraced lengths and K-values from project specific L-Pile[®] analyses and determine structural pile resistances. The factored structural axial compressive resistances of the four proposed H-pile sections presented in this report were calculated using a resistance factor, ϕ_c , of 0.60 and a λ of 0.

The nominal geotechnical compressive resistance in the strength limit state was calculated using Canadian Foundation Engineering Manual methods. The factored geotechnical compressive resistances of the four proposed H-pile sections were calculated using a resistance factor, ϕ_{stat} , of 0.45.

The drivability of the four proposed H-pile sections was considered. The maximum driving stresses in the pile, assuming the use of 50 ksi steel, shall be less than 45 ksi. As the piles will be driven to refusal on bedrock a drivability analysis to determine the resistance that must be achieved was conducted. The resistance factor for a single pile in axial compression when a dynamic test is done, given in LRFD Table 10.5.5.2.3-1, is ϕ_{dyn} = 0.65. Table 10.5.5.2.3-3 requires that no less than three to four dynamic tests be conducted for sites with low to medium variability. Per LRFD 10.5.5.2.3, the resistance factor of 0.65 is reduced by 20% since it is applied to a nonredundant pile group. This results in a resistance factor, ϕ_{dyn} , of 0.52.

The calculated factored axial compressive structural, geotechnical and drivability resistances of the four proposed H-pile sections for abutments are summarized in the table below. Supporting calculations are included in Appendix C- Calculations found at the end of this report.

Factored Axial Resistances for Abutment Piles at the Strength Limit State

1 detoiled i mail i tesistanees for i i satiment i nes at the strength i imme state								
		Factored Resistance (kips)						
Pile Section	Structural	Geotechnical	Drivability	Governing				
	Resistance*	Resistance		Resistance				
HP 12 x 53	465	354	217	354				
HP 14 x 73	642	446	358	446				
HP 14 x 89	783	542	424	542				
HP 14 x 117	1032	710	533	710				

*based on preliminary assumption of λ =0 for the lower portion of the pile in only axial compression (no flexure)

Although the factored axial drivability resistance is less than both the factored axial structural and geotechnical resistances, LRFD Article 10.7.8 states that for routine pile installation applications where significant local experience can be applied to keep the risk of pile installation problems low, a project specific drivability analysis using the wave equation may be waived. In light of this, it is recommended that the governing resistance used in design be the factored geotechnical resistance in the table above.

Per LRFD Article 6.5.4.2, at the strength limit state, for H-piles in compression and bending, the axial resistance factor ϕ_c =0.7 and the flexural resistance factor ϕ_f =1.0 shall be applied to the combined nominal axial and flexural resistance of the pile in the interaction equation

(LFRD Eq. 6.9.2.2-1 or -2). The combined axial compression and flexure should be evaluated in accordance with the applicable sections of LRFD Articles 6.9.2.2 and 6.12.2.

7.1.2 Service and Extreme Limit State Design

For the service and extreme limit states resistance factors, ϕ , of 1.0 are recommended for structural, geotechnical and drivability pile resistances. For preliminary analysis, the H-piles can be assumed fully embedded and λ can be taken as 0. It is the responsibility of the structural engineer to recalculate the column slenderness factor (λ) for the upper and lower portions of the H-pile based on unbraced lengths and K-values from project specific L-Pile® analyses and determine structural pile resistances.

The calculated factored axial structural, geotechnical and drivability resistances of the four proposed H-pile sections for each abutment are summarized in the table below. Supporting calculations are included in Appendix C- Calculations found at the end of this report.

Factored Axial Resistances for Abutment Piles at the Service and Extreme Limit States

	Factored Resistance (kips)					
Pile Section	Structural	Geotechnical	Drivability	Governing		
	Resistance*	Resistance		Resistance		
HP 12 x 53	775	786	418	775		
HP 14 x 73	1070	991	688	991		
HP 14 x 89	1305	1204	815	1204		
HP 14 x 117	1720	1578	1025	1578		

^{*}based on preliminary assumption of λ =0 for the lower portion of the pile in only axial compression (no flexure)

Although the factored axial drivability resistance is less than both the factored axial structural and geotechnical resistances, LRFD Article 10.7.8 states that for routine pile installation applications where significant local experience can be applied to keep the risk of pile installation problems low, a project specific drivability analysis using the wave equation may be waived. In light of this, it is recommended that the governing resistance used in design be the resistances shown in the last column of the table above. It should be noted that the structural resistance governs for the HP 12x53 pile section while the remaining pile sections are governed by the geotechnical resistance.

7.1.3 Pile Resistance and Pile Quality Control

Based on the anticipated depth to bedrock at the site, pile splices will be required. The location and number of pile splices shall be in conformance with MaineDOT Standard Specification 501 and be subject to the approval of the Resident. The splices shall be the Champion HP-30000, or approved equivalent, mechanical splicer. Evaluation of equivalent products will be based on the submission of data demonstrating the capability of transferring the full pile strength in compression and tension and developing the bending moment capacity of the pile in both the x-x and y-y axes. The splicers shall be installed and welded as recommended by the manufacturer. Welding shall not be done when the temperature in

the immediate vicinity of the weld is below 0°F; when the surfaces are damp or exposed to rain, snow, or high wind; or when the welders or welding operators are exposed to inclement conditions. The pile shall be preheated to and maintained at 150°F minimum within 6 inches from the weld during welding. Formal welding procedures are not required. Welders shall be prequalified in accordance with Section 504 - Structural Steel.

The Contractor is required to perform a wave equation analysis of the proposed pile-hammer system and a dynamic pile test at each abutment. The first pile driven at each abutment should be dynamically tested to confirm capacity and verify the stopping criteria developed by the Contractor in the wave equation analysis. The ultimate pile resistance that must be achieved in the wave equation analysis and dynamic testing will be the factored axial pile load divided by a resistance factor of 0.52. The maximum factored pile load should be shown on the plans. If three to four piles are dynamically tested, and if there is a minimum of five (5) piles per group, the resistance factor may be increased by 20 percent to 0.65. Calculations for the pile resistance required by a drivability wave equation analysis are included the Appendix C- Calculations.

Piles should be driven to an acceptable penetration resistance as determined by the Contractor based on the results of a wave equation analysis and as approved by the Resident. Driving stresses in the pile determined in the drivability analysis shall be less than 45 ksi in accordance with LRFD Article 10.7.8. A hammer should be selected which provides the required resistance when the penetration resistance for the final 3 to 6 inches is 8 to 15 blows per inch. If an abrupt increase in driving resistance is encountered, the driving could be terminated when the penetration is less than 0.5-inch in 10 consecutive blows.

7.2 Pipe Pile Pier Bents

Pipe pile pier bents were selected for intermediate structure support. Piles for pile bent piers shall consist of concrete filled pipe piles driven to bedrock. Pipe pile diameters ranging from 24 to 30 inches and wall thicknesses of 1/2 and 5/8 inch are recommended. Pipe pile should be fabricated in accordance with ATM A252, Grade 3, with minimum yield strength of 45 ksi. Pipe piles can be driven open-ended or closed ended and shall be fitted with a cutting shoe constructed from Grade ASTM A148/60 steel. Pipe pile should be end bearing, driven to the required resistance on or within the bedrock.

Pile lengths at the proposed pier locations may be estimated based on the table below:

Location	Estimated Pile Cap Bottom Elevation	Depth to Bedrock From Ground Surface	Top of Rock Elevation	Rock Quality Designation	Estimated Pile Length
Pier #1 BB-ACNR-102	232.0 feet	94.0 feet	123.8 feet	65%	110 feet
Pier #2	232.0 1661	94.0 1661	123.6 1661	0370	110 1661
BB-ACNR-103	233.0 feet	73.3 feet	151.1 feet	45 - 65%	85 feet

CNR Crossing Bridge Over Canadian National Railway Auburn, Maine PIN 15600.00

These pile lengths do not take into account the additional eight (8) feet of pile required for dynamic testing instrumentation or any additional pile length needed to accommodate the Contractor's leads and driving equipment.

The designer shall design the pipe piles at the strength limit state considering the structural resistance of the piles and the geotechnical resistance of the pile. The structural resistance check should include checking axial, lateral, and flexural resistance. Resistance factors for use in the design of piles at the strength limit state are discussed below.

The design of the pipe piles at the service limit state shall consider tolerable horizontal movement of the piles and overall stability of the pile group. Since the pier piles will be subjected to lateral loading and have a substantial unbraced length, piles should be analyzed for axial loading and combined axial and lateral loading as defined in LRFD Article 6.15.2.

Per LRFD Article 3.6.5.2 piers located within a distance of 50 feet to the centerline of a railway track shall be designed for an equivalent static force of 400 kips which is assumed to act in any direction in a horizontal plane at a set distance of 4.0 feet above ground. Per MaineDOT Bridge Design Guide (BDG) Section 5.5.1.5B piers located within 25 feet of the centerline of railroad tracks will require collision walls extending 6 feet above the top of rail elevation.

7.2.1 Strength Limit State Design

The nominal compressive structural resistance (P_n) in the strength limit state for piles loaded in compression shall be as specified in LRFD Article 6.9.5.1. The pipe piles have an unbraced length and require calculation of the λ factor as specified in LRFD Article 6.9.5.1.

For the strength limit state the factored axial compressive structural resistance of the pile (P_r) shall be calculated using the resistance factor (ϕ_c) of 0.70 as specified in LRFD Article 6.5.4.2. The proposed piles at Pier No. 1 will potentially have the longest unsupported pile length, approximately 20 feet, and will therefore govern the structural resistance of piles at the piers.

Per LRFD Article 6.5.4.2, at the strength limit state, for pipe piles in compression and bending, the axial resistance factor ϕ_c =0.8 and the flexural resistance factor ϕ_f =1.0 shall be applied to the combined nominal axial and flexural resistance of the pile in the interaction equation, (LRFD Eq. 6.9.2.2-1 or-2) with flexural resistance determined as specified in LRFD Article 6.12. The factored structural resistance for pipe pile sections in combined axial compression and flexure are not provided in this report as these analyses are considered part of the structural design and the responsibility of the structural designer.

The nominal geotechnical compressive resistance in the strength limit state was calculated using Canadian Foundation Engineering Manual methods. The factored geotechnical compressive resistances of the eight proposed pipe pile sections were calculated using a resistance factor, ϕ_{stat} , of 0.45 for end bearing pile on bedrock.

The drivability of the eight proposed pipe pile sections was considered. The maximum driving stresses in the pile, assuming the use of 45 ksi steel, shall be less than 40 ksi. As the piles will be driven to refusal on bedrock a drivability analysis to determine the resistance that must be achieved was conduced. The resistance factor for a single pile in axial compression when a dynamic test is done given in LRFD Table 10.5.5.2.3-1 is ϕ_{dyn} = 0.65. LRFD Table 10.5.5.2.3-3 requires that no less than three to four dynamic tests be conducted for sites with low to medium variability. Per LFRD Article 10.5.5.2.3 the resistance factor 0.65 is reduced by 20% since it is applied to a nonredundant pile group, i.e., there are less than five (5) piles in a group. This results in a resistance factor, ϕ_{dyn} , of 0.52.

Factored axial compressive structural resistances, factored geotechnical resistances and drivability resistances in the lower portion of the eight piles sections analyzed are summarized in the table below. Supporting calculations are included in Appendix C-Calculations found at the end of this report.

Factored Axial Resistances for Pipe Piles at the Strength Limit State

	Pile	Factored Resistance (kips)					
Diameter	Wall	Structural	Geotechnical	Drivability	Governing		
	thickness	Resistance	Resistance	Resistance	Resistance		
24-in	1/2-in	957	507	476	507		
26-in	1/2-in	1057	540	497	540		
28-in	1/2-in	1157	572	530	572		
30-in	1/2-in	1256	605	557	605		
24-in	5/8-in	1181	631	575	631		
26-in	5/8-in	1306	671	598	671		
28-in	5/8-in	1431	712	619	712		
30-in	5/8-in	1555	753	640	753		

Although the factored axial drivability resistance is less than both the factored axial structural and geotechnical resistances, LRFD Article 10.7.8 states that for routine pile installation applications where significant local experience can be applied to keep the risk of pile installation problems low, a project specific drivability analysis using the wave equation may be waived. In light of this, it is recommended that the governing resistance used in design be the geotechnical resistance shown in the table above.

7.2.2 Service and Extreme Limit State Design

Per LRFD Article 10.5.5.1 the ability of the pier bents to meet defection criteria at the service limit state shall be investigated using a resistance factor of 1.0. Per LRFD Article 10.5.5.3.3 the design of pier bents at the extreme limit state shall be investigated using a resistance factor of 1.0.

The axial structural resistance of eight pipe pile sections was investigated using a resistance factor of 1.0. The pipe piles have an unbraced length and require calculation of the λ factor as specified in LRFD Article 6.9.5.1. The axial geotechnical compressive resistance of eight pipe pile sections was calculated using Canadian Foundation Engineering Manual methods

and a resistance factor of 1.0. The drivability of the eight proposed pipe pile sections was considered. The maximum driving stresses in the pile, assuming the use of 45 ksi steel, shall be less than 40 ksi. The resistance factor for a single pile in axial compression for the service and extreme limit states of 1.0 was used.

Factored axial structural, geotechnical and drivability resistances of eight pipe pile sections were calculated for the service and extreme limit states and are summarized below. Supporting calculations are included in Appendix C- Calculations found at the end of this report.

Factored Axial Resistances for Pipe Piles at the Service and Extreme Limit States

Pipe	e Pile	Factored Resistance (kips)					
Diameter	Wall	Structural	Geotechnical	Drivability	Governing		
	thickness	Resistance	Resistance	Resistance	Resistance		
24-in	1/2-in	1367	1127	916	1127		
26-in	1/2-in	1510	1199	955	1199		
28-in	1/2-in	1652	1272	1020	1272		
30-in	1/2-in	1794	1344	1110	1344		
24-in	5/8-in	1688	1401	1106	1401		
26-in	5/8-in	1866	1492	1150	1492		
28-in	5/8-in	2044	1582	1191	1582		
30-in	5/8-in	2221	1673	1230	1673		

Although the factored axial drivability resistance is less than both the factored axial structural and geotechnical resistances, LRFD Article 10.7.8 states that for routine pile installation applications where significant local experience can be applied to keep the risk of pile installation problems low, a project specific drivability analysis using the wave equation may be waived. In light of this, it is recommended that the governing resistance used in design be the geotechnical resistances shown in the table above.

7.2.3 Pile Resistance and Pile Quality Control

The Contractor is required to perform a wave equation analysis of the proposed pile-hammer system and a dynamic pile test at each pier. The first pile driven at each pier should be dynamically tested to confirm capacity and verify the stopping criteria developed by the Contractor in the wave equation analysis. The ultimate pile resistance that must be achieved in the wave equation analysis and dynamic testing will be the factored axial pile load divided by a resistance factor of 0.52. The maximum factored pile load should be shown on the plans per LRFD Article 3.6.5.2. If three to four piles are dynamically tested, and if there is a minimum of five (5) piles per group, the resistance factor may be increased by 20 percent to 0.65. Calculations for the pile resistance required by a drivability wave equation analysis are included the Appendix C- Calculations.

Piles should be driven to an acceptable penetration resistance as determined by the Contractor based on the results of a wave equation analysis and as approved by the Resident. Driving stresses in the pile determined in the drivability analysis shall be less than 40 ksi in

accordance with LRFD Article 10.7.8. A hammer should be selected which provides the required resistance when the penetration resistance for the final 3 to 6 inches is 8 to 15 blows per inch. If an abrupt increase in driving resistance is encountered, the driving could be terminated when the penetration is less than 0.5-inch in 10 consecutive blows.

7.3 Stub Abutments

Integral stub abutments and wingwalls shall be designed for all relevant strength, service and extreme limit states and load combinations specified in LRFD Articles 3.4.1 and 11.5.5. Since the abutments will be pile supported, design for resistance against sliding and overturning is not required.

A resistance factor of ϕ = 1.0 shall be used to assess abutment design at the service limit state including: settlement, horizontal movement and overall stability. Extreme limit state design checks for abutment shall include pile structural resistance, pile geotechnical resistance, pile resistance in combined axial and flexure and overall stability. A resistance factor of ϕ =1.0 shall be used for the extreme limit state.

Conventional wingwalls shall be designed as unrestrained meaning that they are free to rotate at the top in an active state of earth pressure. Earth loads shall be calculated using as active earth pressure coefficient, K_a, calculated using Rankine Theory for cantilever wingwalls and Coulomb Theory for gravity shaped structures. See *Sheet 5 - Rankine and Coulomb Active Earth Pressure Coefficients* at the end of this report for guidance in calculating these values. Additional lateral earth pressure due to construction surcharge or live load surcharge is required per section 3.6.8 of the MaineDOT BDG for the wingwalls and abutments if an approach slab is not specified. In the situation a structural approach slab is specified, reduction of the surcharge loads is permitted per LRFD Article 3.11.6.2. Use of an approach slab may be required per the MaineDOT BDG Sections 5.4.2.10 and 5.4.4. The live load surcharge may be estimated as a uniform horizontal earth pressure due to an equivalent height of soil (h_{eq}) taken form the table below:

Equivalent Height of Soil for Vehicular Loading

1		- · · · · · · · · · · · · · · · · · · ·
Wall Height	h _{eq} (feet)
(feet)	Distance from wall backface	Distance from wall backface
	to edge of traffic = 0 feet	to edge of traffic ≥ 1 foot
5	5.0	2.0
10	3.5	2.0
≥20	2.0	2.0

The Designer may assume Soil Type 4 (MaineDOT BDG Section 3.6.1) for backfill material soil properties. The backfill properties are as follows: $\phi = 32$ degrees, $\gamma = 125$ pcf. Sliding computations for resistance to lateral loads shall assume a maximum allowable frictional coefficient of 0.45 at the soil-concrete interface.

Integral abutments and wingwall sections that are integral with the abutment should be designed to withstand a passive earth pressure state. In designing for passive earth pressure

CNR Crossing Bridge Over Canadian National Railway Auburn, Maine PIN 15600.00

associated with integral abutments, the Coulomb state is recommended. Experience in designing wingwalls for integral abutments has shown that the use of the Coulomb passive earth pressure K_p =6.89 may result in uneconomical wall sections. For this reason, consideration may be given to using a Rankine passive earth pressure, K_p =3.25 when designing integral abutments and integral wingwall extensions.

All abutment designs shall include a drainage system behind the abutments to intercept any water. Drainage behind the structure shall be in accordance with Section 5.4.1.4 Drainage, of the MaineDOT BDG. Geocomposite drainage board applied to the backsides of the abutments and wingwalls with weep holes will provide adequate drainage. To avoid water intrusion behind the abutment, the approach slab should connect directly to the abutment.

Backfill within 10 feet of the abutments and wingwalls and side slope fill shall conform to Granular Borrow for Underwater Backfill - MaineDOT Specification 709.19. This gradation specifies 10 percent or less of the material passing the No. 200 sieve. This material is specified in order to reduce the amount of fines and to minimize frost action behind the structure.

7.4 Settlement

In order to accommodate the proposed widened bridge superstructure, the roadway will be widened behind each abutment on the western side by approximately 8 feet. Due to the presence of soft compressible soils underlying the site, traditional fill (soil) placed in the widened area will result in differential settlement between the existing roadway and the widened area.

One dimensional consolidation tests performed on undisturbed tube samples indicate that the soft compressible silt, silty clay and clayey silt deposits at the site are generally over consolidated. This indicates that the soils are compressible and that they are susceptible to consolidation if the in-situ stresses are increased above the maximum past pressures (i.e., consolidation will occur if fill is placed, or if structures are supported on clay). Evaluation of the potential settlement due to the widening of the roadway resulted in approximately ½ to 1.0 inch of consolidation settlement. Additionally, approximately ½ inch of elastic settlement will occur in the coarse-grained soils during construction. Studies indicate that settlements in excess of 0.4 inches in soils where driven piles are present will result in downdrag forces on piles. This settlement is anticipated to occur over a long period of time (on the order of 5 to 20 years).

7.5 Downdrag

Settlement analyses indicate that approximately $\frac{1}{2}$ to 1.0 inch of settlement will occur in the widened embankment areas due to the placement of a maximum of 4.3 feet of fill along the western side of the roadway. Studies indicate that settlements in excess of 0.4 inches in soils where driven piles are present will result in downdrag (negative skin friction) forces on piles. The magnitude of downdrag has been estimated based on the effective vertical stress and empirical β factors obtained from full scale tests.

The calculated downdrag values are:

Pile Section	Strength Limit State Unfactored Downdrag Load (DD) (Kips)
HP 12 x 53	70
HP 14 x 73	82
HP 14 x 89	83
HP 14 x 117	85

Calculations for the pile downdrag loads are included the Appendix C- Calculations. Based on past practice, it is recommended that a load factor, $\gamma_p=1.0$, is applied to the downdrag load applied to abutment piles for the strength limit state.

The effects of downdrag can be reduced by coating the pile with soft bitumen. Bitumen coating should only be applied to the portion of the pile which will be embedded in the negative shaft resistance zone. Care should be taken during pile installation to protect the coating. The use of an oversized collar around the pile below the bitumen coating can open an oversized hole in the soil during driving which is adequate to permit passage of the coated pile through the site soils. If the design team chooses to use the bitumen coating a Special Provision will be provided for the Contract Documents.

7.6 Frost Protection

Any foundation placed on granular subgrade soils should be designed with an appropriate embedment for frost protection. According to the Modberg Software by the US Army Cold Regions Research and Engineering Laboratory the site has an air design-freezing index of approximately 1224 F-degree days. In a granular soil with a water content of approximately 10%, this air design-freezing index correlates to a frost depth of approximately 5.3 feet. Therefore, any foundations placed on granular soils should be founded a minimum of 5.3 feet below finished exterior grade for frost protection.

Integral abutments shall be embedded a minimum of 4.0 feet for frost protection per Figure 5-2 of the MaineDOT BDG. See Appendix C- Calculations at the end of this report for supporting documentation.

7.7 Seismic Design Considerations

The following parameters were determined for the site from the USGS Seismic Parameters CD provided with the LRFD manual:

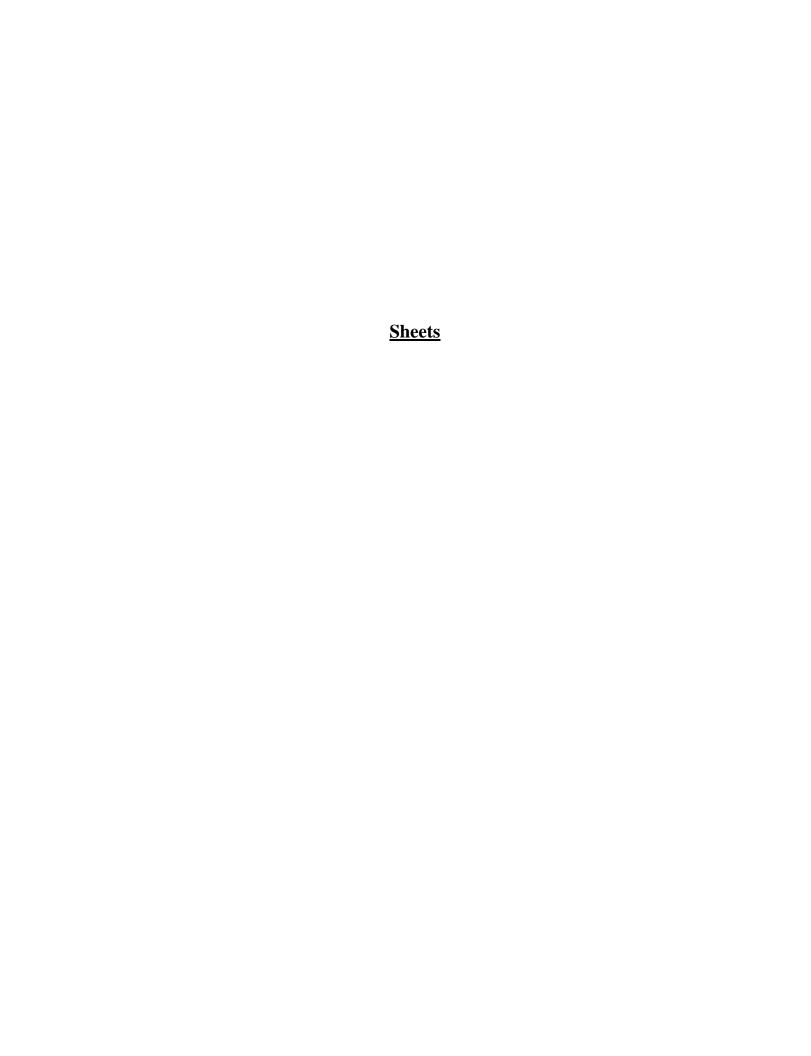
- Peak Ground Acceleration coefficient (PGA) = 0.088g
- Short-term (0.2-second period) spectral acceleration coefficient = 0.177g
- Long-term (1.0-second period) spectral acceleration coefficient = 0.047g

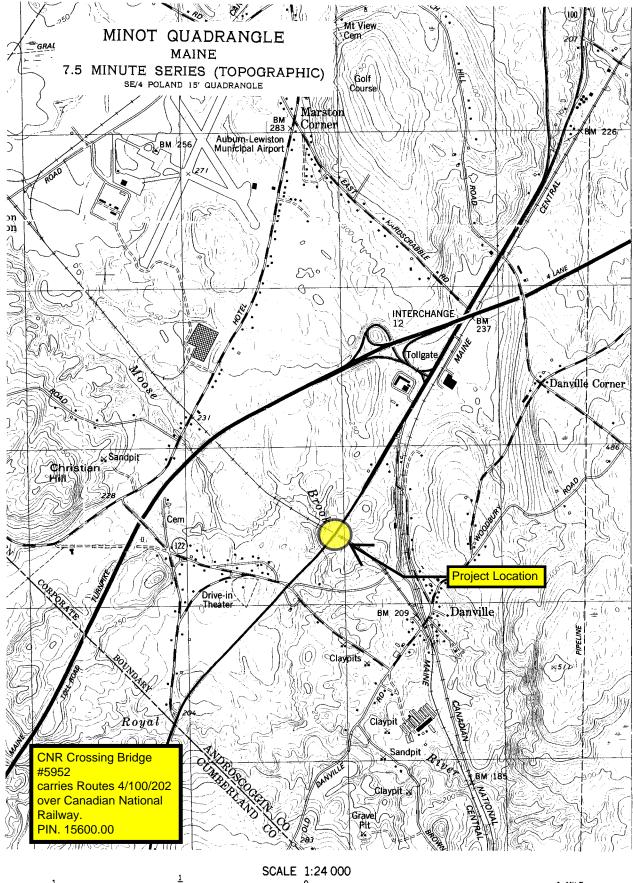
CNR Crossing Bridge Over Canadian National Railway Auburn, Maine PIN 15600.00

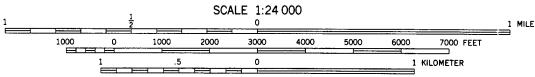
Per LRFD Article 3.10.3.1 the site is assigned to Site Class E due to the presence of more than 10 feet of soft clay at the site. Per LRFD Article 3.10.6 the site is assigned to Seismic Zone 2 based on a calculated S_{D1} of 0.163 (LRFD Eq. 3.10.4.2-6).

According to Figure 2-2 of the MaineDOT BDG, the CNR Crossing Bridge on US Route 202/State Routes 4 and 100 is on the National Highway System (NHS) and is therefore considered to be functionally important. Consequently, a detailed seismic analysis is required. The minimum seismic analysis requirements are defined in LFRD Article 4.7.4.3. The designer shall determine the specific analysis method using LRFD Tables 4.7.4.3.1-1 and 4.7.4.3.1-2. Seismic design requirements for Seismic Zone 2 are found in LRFD Article 3.10.9.3.

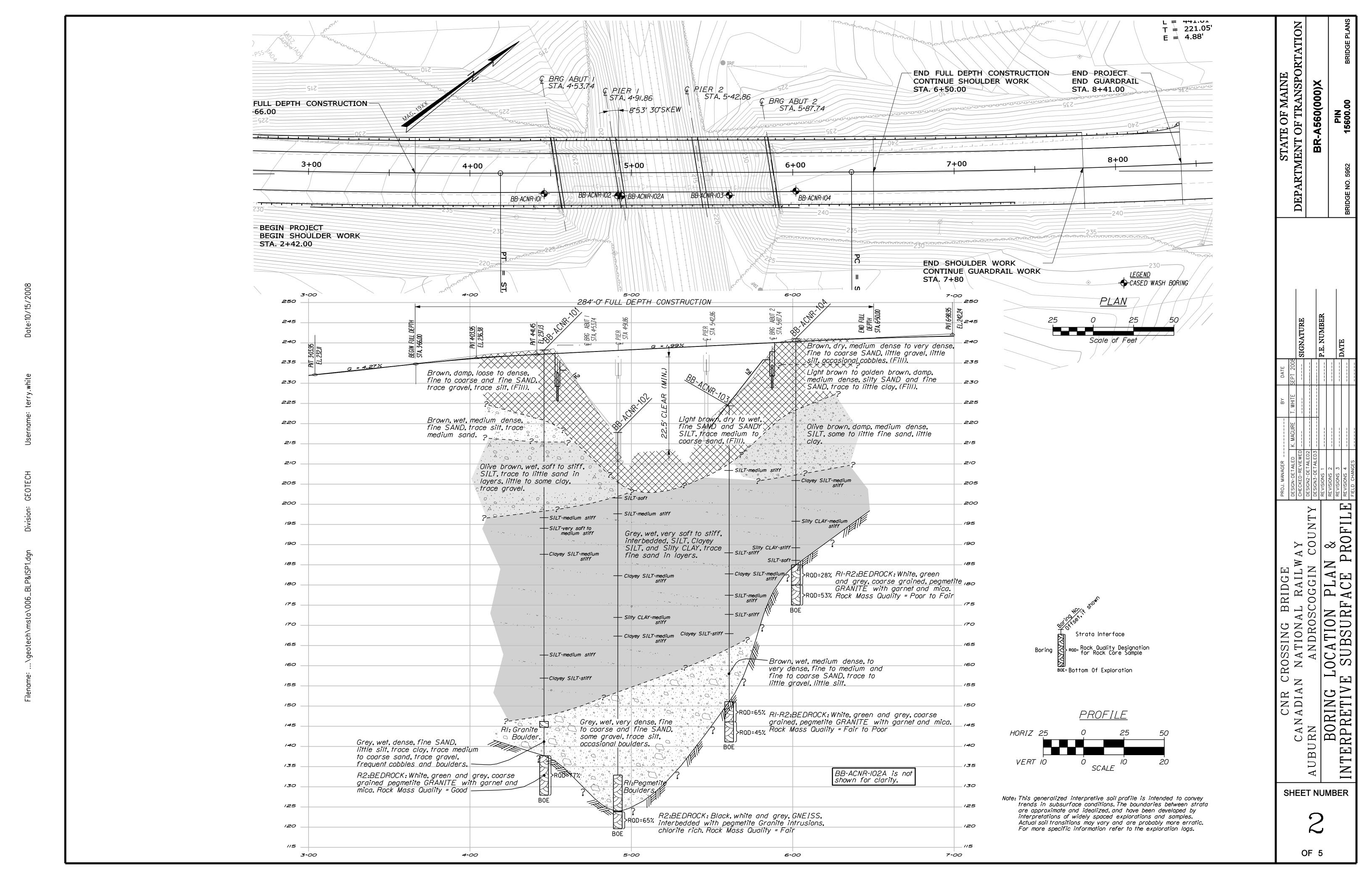
7.8 Construction Considerations


There is a potential for the existing abutment and pier piles to interfere with the installation of the proposed piles. If the piles are encountered during pile installation they shall be removed by the Contractor to the Resident's satisfaction. This condition should be noted on the plans and the work should be considered incidental to pile installation.


Boulders and cobbles were encountered within the sand layer above the bedrock in borings BB-ACNR-101 and BB-ACNR-102. There is potential for these obstructions to impact the pile installation operations. These impacts include, but are not limited to, driving the piles and cleaning out pipe piles. Obstruction may be cleared by conventional excavation methods, pre-augering, pre-drilling, or down-hole hammers. Care should be taken to drive piles within allowable tolerances. Alternative methods to clear obstructions may be used as approved by the Resident.


8.0 CLOSURE

This report has been prepared for the use of the MaineDOT Bridge Program and CLD Consulting Engineers for specific application to the proposed replacement of the CNR Crossing Bridge in Auburn, Maine in accordance with generally accepted geotechnical and foundation engineering practices. No other intended use is implied. In the event that any changes in the nature, design, or location of the proposed project are planned, this report should be reviewed by a geotechnical engineer to assess the appropriateness of the conclusions and recommendations and to modify the recommendations as appropriate to reflect the changes in design. Further, the analyses and recommendations are based in part upon limited soil explorations at discrete locations completed at the site. If variations from the conditions encountered during the investigation appear evident during construction, it may also become necessary to re-evaluate the recommendations made in this report.


We also recommend that we be provided the opportunity for a general review of the final design and specifications in order that the earthwork and foundation recommendations may be properly interpreted and implemented in the design.

CONTOUR INTERVAL 10 FEET NATIONAL GEODETIC VERTICAL DATUM OF 1929

Ma	ine (loration Log	tati	- 1	Project Locatio	100/2	02	a di dedinigi nidarea n	Boring No.: PIN:		R-102A 0.00
Oril	10.00				Te i		(44)	216	6			•	
	tor:		Northern Te Mike/Nick	est Boring	_	tum:	(ft.)	216	. 6 D 88		•	N/A 24" Standard	Split
_	ed By:		K. Maguire		_	Type:			drick	050		140#/30"	
			5/22/08: 13	3:00-14:00			Method:			h Boring		N/A	
	ng Loca		4+93.9. 14		_	sing ID		HW				None Observe	ed
Hamm	er Effic	ciency Fo	octor: 0.633	3	+	nmer Ty		Automo	ıtic ⊠	Hydraulic □	Rope & Cathead \square		
Defin D = Si MD = I J = Ti MU = I	tions: Diit Spoor Insuccess Din Wall	n Sample ful Split S Tube Sample ful Thin Wa	poon Sample a :	R = Rock SSA = Sc ttempt HSA = Hc RC = Rol	olid Ste ollow St ler Con right of	m Auger em Auger e 1401b.	hammer		T _v = Po q _p = Un N-uncor Hammer	situ Field Vane Shear Strength cket Torvane Shear Strength (p confined Compressive Strength rected = Raw field SPT N-value Efficiency Factor = Annual Cal PT N-uncorrected corrected for	sf) WC = wate (ksf) LL = Liqu PL = Plant PI = Plant	stic Limit sticity Index	
MV = I	Insuccess	ful Insitu	Vane Shear Te	stattempt WO1P = V Sample Information	leight o	f one pe	rson		N ₆₀ = (Hammer Efficiency Factor/60%)*	N-uncorrected C = Cons	olidation Test	
Depth (ft.)	Sample No.	Pen./Rec. (in.)	Sample Depth (ft.)	Blows (/6 in. Shear Strength (psf) or ROD (%)	N-uncorrected	N60	Casing Blows	Elevation (ft.)	Graphic Log	Visual Des	cription and Remarks	U	Laboratory Testing Results/ AASHTO and nified Class
0	1D	24/6	0.00 -	1/0/1/1	1	1	OHP			Grass and brush at sur		114414	G#210275
			2.00	., 0, ., 1	•	L		ł		Light brown/yellow, do silt, trace gravel, tr			A-2-4. SP-SI WC=9.6%
							13			(Fill). ^Q Hydraulic Push			
							13			1			
							17	1					
							28	1		1			
5 -							20			Casing refusal on top	of Pier Pile Cap, aba	ndon hole	
							45	210.60	$\otimes \otimes$	and moved 2.3' South t	to BB-ACNR-102.	6.00-	
										Bottom of Exploration a	t 6.00 feet below grou	und surface.	
10 -													
								ł					
15 -													
						1	<u> </u>	ł					
20		L				L	L						
20 -													
								1					
								1					
25 Rema	rks:		I					<u> </u>	1	l .			
0.7		ete Deck	thickness. Bridge Deck	to Ground Surface.									
Strat	fication	lines repr	esent approxi	mate boundaries between	soil typ	es: tran	nsitions n	nay be g	radual.		Page 1 of 1		
* Wate	r level i	readings ha	ve been made o	at times and under condi	tions st	rated. (Groundwate	er fluct	uations	may occur due to conditions o	Boring No.:	BB-ACNR-	102A
	223 pi	· · · · ·											

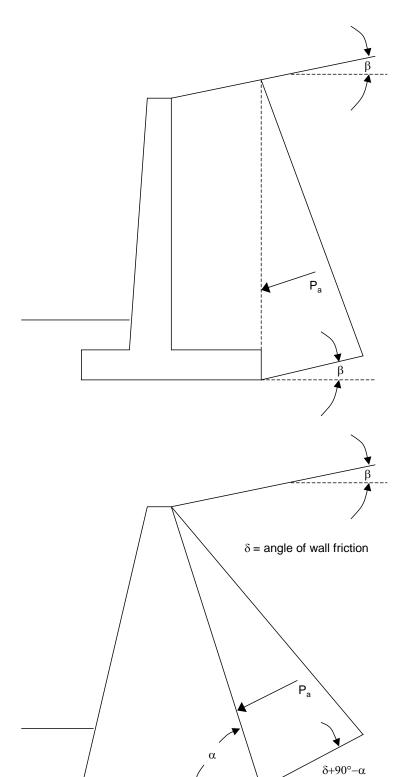
rill	ler:		US CUSTOMA MaineDOT		Ele	vation	(ft.)	224	. 4		Auger ID/OD: N/A	
	otor:		E. Giguere	C. Giles	Dat				D 88		Sampler: 24" Stando	ard Split
	ed By: Start/P		B. Wilder 5/19/08, 5/	721/08	+-	Type:	Method:		45C ed Was	n Boring	Hammer Wt./Fall: 140#/30" Core Barrel: NO-2"	
	ng Loca		5+60-6- 14		+	ing ID		HW			Water Level*: None Obser	ved
	er Effic	ciency Fo	octor: 0.77	R = Rock		mer Ty mple	pe:			situ Field Vane Shear Strength		ear Strength (psf)
(D = L		ful Split S	poon Sample a		llow Ste	m Auger			q _p = Un	cket Torvane Shear Strength (p confined Compressive Strength	osf) WC = water content. p (ksf) LL = Liquid Limit	
(U = L	Insuccess:		III Tube Sample	RC = RoI e attempt WOH = we ket PenetrometerWOR/C =	ight of	140Ib.			Hammer	rected = Raw field SPT N-value Efficiency Factor = Annual Cal PT N-uncorrected corrected for		
IV = L	Insuccess	ful Insitu		stattempt WO1P = W Sample Information	eight of	one pe	rson		N ₆₀ = (Hammer Efficiency Factor/60%)∗	*N-uncorrected C = Consolidation Tes	<u>† </u>
~		(in	Dep†h	ë .	cted				Log			Laboratory Testing
Depth (ft.)	le No.	Rec.	e De	6 (/6 19th 10 (%	N-uncorrected		ور «	ntion (aphic L	Visual Des	scription and Remarks	Results/ AASHTO and
Dept	Samp	Pen./Rec.	Sample (ft.)	Blows (/6 i Shear Strength (psf) or ROD (%)	N-U	N60	Casing Blows	Elevation (ft.)	Graph			Unified Class
0	1 D	24/4	0.00 - 2.00	1/1/1/1	2	3	6			Light brown, dry, very wood, (Fill).	y loose, fine SAND with roots an	d
							7					
							5					
							3					
							5					
5 -		24.42	5.00 -	4 (2 (2 (4							se, fine Sandy SILT, some silt.	G#210603
	20	24/12	7.00	1/2/2/1	4	5	8			(Fill).	e sand, trace gravel, trace clay	WC=25.8%
							2					
							2					
							3					
10 -							2			61		
10	3D	24/14	10.00 - 12.00	WOR/WOH/WOH/WOR			3			Similar to above.		
							7					
							10					
							6					
							3	210.40	W		14.0	00-
15 -	10	24/24	15.00 -	WOR/WOR			woc			Grey, wet, medium sti- sand,	ff. SILT. some clay. trace fine	G.C#210627 A-4. CL-ML
		21/21	17.00	WORD WOR			woc			Sala		WC=34.3% LL=28
			17.52 -									PL =21 P I =7
	V1		17.95 18.52 -	Su=632/110 psf			WOH			65x130 mm vane raw to V1: 23.0/4.0 ft-lbs	rque readings:	
	V2		18.95	Su=632/82 psf			WOH			V2: 23.0/3.0 ft-lbs		
20 -							WOH					
	4D	24/24	20.50 - 22.50	push thru vane			WOC			Grey, wet, medium sti- sand.	ff. SILT. some clay. trace fine	G#210604 A-6. CL WC=33.2% LL=36 PL=22 PI=14
	٧3		21.07 - 21.50	Su=659/110 psf			WOC			65×130 mm vane raw to V3: 24.0/4.0 ft-lbs	rque readings:	
	V4		22.07 - 22.50	Su=522/82 psf			WOH			V4: 19.0/3.0 ft-lbs		
							WOH					
							WOH					
25 -	2U	24/24	25.00 - 27.00	WOR/WOR			WOH			Grey, wet, medium sti- sand.	ff. SILT. some clay, trace fine	G.C#210628 A-4. ML
			27.00				WOH			33.13.		WC=29.0% LL=27
							14					PL=23 PI=4
	V5		28.57 -	Su=522/110 psf			22					
			29.00 29.57 -							65x130 mm vane raw to V5: 19.0/4.0 ft-lbs	rque readings:	
30 -	V6		30.00 30.50 -	Su=577/137 psf			19			V6: 21.0/5.0 ft-lbs		
	50	24/18	32.50 31.07 -	push thru vane			14			Similar to above. 65x130 mm vane raw tom	rque readings:	
	٧7		31.50	Su=838/165 psf			19			V7: 30.5/6.0 ft-lbs V8: 32.0/7.0 ft-lbs		
	V8		32.50	Su=879/192 psf			21					
							21					
35 -							22			Grev. wet. stiff sur	T, some clay, trace fine sand.	G.C#210629
	3U	24/24	35.00 - 37.00	WOR/HydralicPush			14			J. J. work Gillife SIL	Jame 5.5). It does title Suite.	A-6. CL WC=34.3%
							21					LL =35 PL =21
	٧9		37.57 - 38.00	Su=1044/220 psf			27			65×130 mm vane raw to	rque readings:	P I =14
	V10		38.57 - 39.00	Su=1099/247 psf			29			V9: 38.0/8.0 ft-lbs V10: 40.0/9.0 ft-lbs		
							30					
40 -	6D	24/24	40.50 - 42.50	push thru vane			12			Grey, wet, medium s+:	ff, Clayey SILT, trace fine sand	. G#210605
	V11		41.13 -	Su=893/156 psf			22			55x110 mm vane raw to		A-6. CL WC=36.8%
	V12		41.50	Su=893/156 psf			26			V11: 20.0/3.5 ft-lbs V12: 20.0/3.5 ft-lbs		LL=36 PL=22
			42.50				26					P I =14
15 -			45.00 -				24			Grey, wet, medium sti	ff. SILT. some clay, trace fine	G.C#210630
	4U	24/24	47.00	WOR/WOR			13			sand.		A-6. ML WC=40.8%
							18					LL=37 PL=27 PI=10
	V13		47.63 - 48.00	Su=871/134 psf			20			55x110 mm vane raw to	rque readings:	L1=10
	V14		48.63 - 49.00	Su=982/223 psf			19			V13: 19.5/3.0 ft-lbs V14: 22.0/5.0 ft-lbs		
50			L		_		21	L				
Remar												
			thickness. Bridge Deck	to Ground Surface.								
	fication	lines renr	esent approxi	nate boundaries between s	soil typ	es: tran	sitions m	av be a	radual.		Page 1 of 2	

Dril Oper	ler: ator:		MaineDOT E. Giguere	/C. Giles	E I e		(ft.)	224 NAV	.4 D 88		Sampler:	N/A 24" Standari	d Split
	ed By:		B. Wilder		+	Type:			45C		Hammer Wt./Fall:	140#/30"	
	Start/ ng Loca		5/19/08. 5/ 5+60.6. 14		_	ing [[Method: 0/0D:	Cas HW	ed Was	h Boring		NO-2" None Observ	ed
		ciency Fo	octor: 0.77	R = Rock		mer Ty	/pe:		otic⊠	Hydraulic 🗌 situ Field Vane Shear Strength	Rope & Cathead	= Lab Vane Shea	r Strength (n
D = S MD =		ful Split S	poon Sample a	SSA = Sc	olid Ster	n Auger			T _v = Po	cket Torvane Shear Strength (p confined Compressive Strength	osf) WC = wate (ksf) LL = Liqu	er content. per uid Limit	
MU =	Insuccess	Tube Sample ful Thin Wa e Shear Tes	II Tube Sample	RC = Roi e attempt WOH = we cket PenetrometerWOR/C =	eight of	14016.	hammer or casino	ı	Hammer	rected = Raw field SPT N-value Efficiency Factor = Annual Cal PT N-uncorrected corrected for	libration Value PI = Plas	stic Limit sticity Index	
			Vane Shear Te	stattempt WOIP = W Sample Information					N ₆₀ = (Hammer Efficiency Factor/60%)	N-uncorrected C = Consc	olidation Test	1
,		i.	1	ċ	ted				, p				Laborator Testing
(++.)	e No.	Rec.	e Depth	(/6 gth D (%)	orrec		6	ro:+	ic Log	Visual Des	scription and Remarks		Results, AASHTO and
Depth	Sample	Pen./Rec.	Samp ((f f .)	Blows (/6 Shear Strength (psf) or ROD (%	N-uncorrected	09 _N	Casing Blows	Elevation (ft.)	Graphi			ι	hified Clo
50	7D	24/24	50.50 - 52.50	push thru vane			18			Grey, wet, stiff, SIL	T. trace fine sand.		
	V15		51.13 - 51.50	Su=1161/112 psf			21			55x110 mm vane raw to V15: 26.0/2.5 ft-lbs	rque readings:		
	V16		52.13 - 52.50	Su=1250/201 psf			24			V16: 28.0/4.5 ft-lbs			
							24		W				
							23						
- 55 -	5U	24/24	55.00 - 57.00	WOR/WOR			21			Gret, wet, stiff, Cla	yey SILT, trace fine so	and.	G • C#21063 A-6 • CL
							26						WC=40.2' LL=35 PL=23
	V17		57.63 - 58.00	Su=1473/179 psf			26			55x110 mm vane raw to	raue readinas:		PI=12
	V18		58.63 - 59.00	Su=1384/223 psf			26	1		V17: 33.0/4.0 ft-lbs V18: 31.0/5.0 ft-lbs	, , , , , , , , , , , , , , , , , , ,		
							48	164.90	1//			59.50	-
- 60 -	8D	24/16	60.00 - 62.00	7/6/7/14	13	17	48			Brown. wet. medium der silt. trace coarse san	nse, fine to medium SAI nd, trace gravel.	ND. little	G#210606 A-2-4 S
							62	1					WC=22.5
							77						
							77	1					
							82						
- 65 -	9D	24/17	65.00 - 67.00	4/5/5/10	10	13	64			Brown, wet, medium de silt, trace coarse sa	nse, fine to medium SAI nd, trace gravel.	ND. little	
							93						
							120						
							174						
							246						
70 •	10D	24/16	70.00 - 72.00	26/42/40/55	82	105	74			Brown, wet, very dense gravel, little silt.	e, fine to coarse SAND	. little	G#21060 A-2-4 S
			12100				127						WC=13.0
							175						
	R1	60/59	73.30 - 78.30	ROD = 65%			0125	151.10		125 blows for 0.3'. Top of Bedrock at Ele	v 151 1'	73.30	
			10130				CURE			Bedrock: White, green	and grey, coarse grain th garnet and mica, no		
• 75 •										Rock Mass Quality = Fo R1:Core Times (min:sec			
									1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 /	73.3-74.3' (7:41) 74.3-75.3' (7:06) 75.3-76.3' (6:35)			
										76.3-77.3' (6:41) 77.3-78.3' (6:52) 98%	Recovery		
	R2	60/58	78.30 - 83.30	ROD = 45%					(1000) (1000)	R2: Rock Quality = Po Core Times (min:sec)	or		
										78.3-79.3' (5:14) 79.3-80.3' (5:08)			
- 80 -										80.3-81.3' (5:24) 81.3-82.3' (5:29) 82.3-83.3' (5:00) 96%	Recovery		
									PER	02.3-03.3 (3:00) 96%	Recover y		
							٧	141.10	10 m	Bottom of Explorati	ion at 83.30 feet below	83.30	1
											surface.		
- 85 -													
- 00													
- 90 -													
									1				
. 0.5													
95									1				
]					
]					
100													
Rema		04- 2	46.1-11					_	_				
			thickness. Bridge Deck	to Ground Surface.									
											1 -		
				mate boundaries between at times and under condi-						may occur due to conditions o	Page 2 of 2	0.5	
				ements were made.	01	'				,	Boring No::	BB-ACNR-	-103

Dril Opera Logga	ler: ator: ed By:	<u>\$0</u>		Ploration Log ARY UNITS /C. Giles	E I e Dat	evation tum: g Type:	Locatio	100/ n: Aut 241 NAV	202 burn, M .1 /D 88	ains			RTATION		BRIDGE PLANS
Hamm Defin D = Sp	itions: plit Spoor	ciency Fo	6+01.9, 11	R = Roc SSA = S	Cas	sing 10 mmer Ty ample m Auger)/OD: /pe:	НW	atic 🗵 S _u = In T _v = Po	Water Level*: None Obser	ar Strength (psf)	IN IN	\SPC	X(c	
U = TI MU = U V = Ir MV = U	hin Wall Unsuccess nsitu Vand	Tube Sample ful Thin Wo e Shear Tes ful Insitu	III Tube Sampl †• PP = Po <u>Vane Shear Te</u>	RC = Ro e attempt WOH = w cket PenetrometerWOR/C = st attempt WO1P = Sample Information	ller Con eight of weight Weight o	e 1401b. of rods	hammer or casing	ı —	N-uncor Hammer N ₆₀ = S	contined Compressive Strength (KSt) LL = Liquid Limit rected = Raw field SPT N-value PL = Plastic Limit Efficiency factor = Annual Calibration Value Pl = Plasticity Index PT N-uncorrected corrected for hammer efficiency G = Grain Size Analysi Hammer Efficiency Factor/60%/#N-uncorrected C = Consolidation Test	Laboratory	OF MAINE	F TRANSPORT	A560(000)X	PIN 5600.00
Obpth (ft.)	Sample No.	Pen./Rec. (in	Sample Depth (ft.)	Blows (/6 in. Shear Strength (psf) or ROD (%)	N-uncorrecte	N ₆₀	Casing Blows	Elevation (ft.)	Graphic Log	Visual Description and Remarks	Testing Results/ AASHTO and Unified Class		0	?-A56	P. 1560
y	10	13.2/	1.00 - 2.10	10/25/20(1.2")			SSA	240.6	0	Pavement 0.5(Brown, dry, very dense, fine to coarse SAND, little gravel, little silt, occasional cobbles, (Fill). Boulder from 2.1–3.2′ bgs.	0-	STATE	TMENT	BR-	2
- 5 -	2D/A	24/18	5.00 - 7.00	4/6/5/4	11	14				(2D/A) 5.0-6.5'. Similar to above, medium dense.	G#210608 A-1-b- SM		ARTI		E NO. 5952
								234.6			A-4. ML WC=20.9%		DEF		BRIDGE
- 10 -	30	24/19	10.00 -	15/9/9/16	18	23		232.1		Golden brown, damp, medium dense, fine SAND, trace silt, trace medium to coarse sand, (Fill).	0-				
								-							
- 15 -	4D	24/20	15.00 - 17.00	4/7/9/9	16	21	143 157	 		Golden brown, damp, medium dense, fine SAND, trace silt, trace medium to coarse sand, (Fill).	G#210610 A-3. SP-SM WC=8.6%		I	I	I
· 20 •							123 79 87	223.1	0	18.00)-			 	
	50	24/20	20.50 - 22.50	2/4/8/7	12	15	64 81 88			Olive-brown, moist, medium dense, SILT, some fine sand little clay, trace roots,	G#210611 A-4. ML WC=21.0%		SIGNATURE	P.E. NIJMBER	h
• 25 •	6D	24/22	24.00 - 26.00	7/6/7/6	13	17	87 57 67			Olive-brown, wet, medium dense, SILT, little sand, little clay,	C#210612 A-4• ML WC=25•5%	щ	2008 SIGN		
							68 67 66	1				DATE	SEPT		
- 30 -	7D/MV	24/24	29.50 - 31.50	3/WOH/WOH/1			53 59	 		Failed 55x110 mm vane attempt, could not push. Olive, wet, very soft, SILT, little clay, trace fine sand.	G#210613 A-4, ML WC=30.7% LL=25 PL=22	B	T. WHITE		
							55 54	207.7		-33.40 Grev. wet. soft to medium stiff. Clayev SUIT. trace	P1=3		(. MAGUIRE		
- 35 -	1U V1	24/24	34.00 - 36.00 36.63 - 37.00	WOR/Hyd Push Su=513/89 psf			46 55 59			Grey. wet. soft to medium stiff. Clayey SILT. trace fine sand. 55x110 mm vane raw torque readings:	G.C#210632 A-4. CL WC=36.7% LL=30 PL=22 Pl=8	3ER	AILED K. EVIEWED	TAILED2	. 2 8 4 5
	V2		37.63 - 38.00	Su=491/89 psf			54 59			V1: 11.5/2.0 ft-lbs V2: 11.0/2.0 ft-lbs		PROJ. MANAGER	DESIGN-DETAILED CHECKED-REVIEWED	DESIGNZ-DET DESIGN3-DET REVISIONS 1	1 1 1 14
- 40 -	8D V3	24/24	40.50 - 42.50 41.13 - 41.50 42.13 -	push thru vane Su=625/89 psf Su=737/134 psf			70 91 79			Similar to above, medium stiff, 55x110 mm vane raw torque readings; V3: 14.0/2.0 ft-lbs V4: 16.5/3.0 ft-lbs	G#210614 A-6. CL WC=31.9% LL=31 PL=19			J L	. 14 14 14 15
- 45 -	2U	24/24	42.50 44.00 - 46.00	WOR/HydraulicPus			73 62	<u> </u>		Grey, wet, stiff, Silty CLAY, trace fine sand.	P1=12 G.C#210633 A-6. CL WC=36.9% LL=36		<i>\</i>	NNC	
	V5 V6		46.63 - 47.00 47.63 - 48.00	Su=1049/223 psf Su=1071/223 psf			73 79 77			55x110 mm vane raw torque readings: V5: 23.5/5.0 ft-lbs V6: 24.0/5.0 ft-lbs	PL =24 P I =12	[E	M A	N C	
- 50 -	9D V7	24/24	49.50 - 51.50 50.13 - 50.50	push thru vane Su=1027/201 psf			73 66 67	•		Similar to above, stiff, 55x110 mm vane raw torque readings: VT: 23.0/4.5 ft-lbs	G#210615 A-6, CL WC=40.9% LL=39	RIDGE		GGI	70
	V8		51.13 - 51.50	Su=1161/268 psf			67 73 72			V8: 26.0/6.0 ft-lbs	PL=25 PI=14	RR	AL	SCO	SDOT
- 55 -	3U R1	12/12	54.00 - 55.00 56.10 - 61.10	Hydraulic Push ROD = 28%			53 200 ND CORE	187.1	0	Grey, wet, soft, SILT, some clay, trace sand, trace gravel. Roller Coned ahead to 56.1' bgs. Top of Bedrock at Elev. 185.0'	A-4. CL-ML WC=29.5% LL=25 PL=20 P1=5	Z N	Ţ	IDRO	
			2.110				CORE	1	されている。	Bedrock: White, green and grey, coarse grained, pegmetite GRANITE, with garnet and mica. Rock Mass Ouality = Poor R1: Core Times (min:sec) 56.1-57.1' (7:28) 57.1-58.1' (5:42)		20 CB	N A	AN	BORING
- 60 -	R2	60/60	61.10 - 66.10	ROD = 53%				1	では、	58.1-59.1' (4:43) 59.1-60.1' (3:19) 60.1-61.1' (10:32) 100% Recovery Rock Mass Quality = Fair R2: Core Times (minisec) 61.1-62.1' (7:08)		1 J			B0
- 65 -									一年 アスコンショ	62.1-63.1' (4:28) 63.1-64.1' (7:48) 64.1-65.1' (8:00) 65.1-66.1' (8:51) 100% Recovery					
								175.0	0	——————————————————————————————————————) -		CANA	JRN	
- 70 -														UBC	
								1					SHEE	≺ T NU	IMBER
75 Remai	rks:							1						1	
* Wate	er level m	readings ho	ive been made	mate boundaries between at times and under condi						may occur due to conditions other Boring No.: BB-ACNR	-104			4	
										<u> </u>			C)F 5	

er.	ler:		Northern Te Mike/Nick	est Boring	Dat	tum:	n (ft.)	NA	/D 88		Auger ID/OD: Sampler:	5" Solid Ste	
ate		inish:	K. Maguire 5/19/08, 5/		Dri		Method	ı: Ca	edrick sed Wa	D50 sh Boring	Hammer Wt./Fall: Core Barrel:	140#/30" NO-2"x10'	
amm	ng Loca er Effic tions:		4+45.9. 12. actor: 0.63		Ham	ing 10		Auton	natic [∃ Hydraulic □ nsitu Field Vane Shear Streng	Water Level*: Rope & Cathead □	None Observe	
= S _I D = U = TI	olit Spoor Insuccessi nin Wall	ful Split S Tube Sample		SSA = So ttempt HSA = Ho RC = Rol	olid Ster ollow Ste ller Con	m Auger em Auger e			T _v = P q _p = U N-unco	ocket Torvane Shear Strength (nconfined Compressive Strength rected = Raw field SPT N-valu	psf) WC = (ksf) LL = PL =	water content, pero Liquid Limit Plastic Limit	
= 1	nsitu Vane	e Shear Tes ful Insitu	Vane Shear Te	cket PenetrometerWOR/C = st attempt WD1P = W	weight (of rods	or casin	ng	N ₆₀ =	Efficiency Factor = Annual Co SPI N-uncorrected corrected for Hammer Efficiency Factor/60%	r hammer efficiency G = 0	Plasticity Index Grain Size Analysis Consolidation Test	
Depth (ft.)	Sample No.	en./Rec. (in.)	Sample Depth (ff.)	Sample Information 10 ows (/e in. brength bref) 17 ROD (%) 18 ROD (%)	N-uncorrected		Casing Blows	Elevation (ft,)	aphic Log	Visual De	scription and Remark		Laboratory Testing Results/ AASHTO and hified Class
o Dei	Sar	P.		Shr Str Str O	ž	09 _N	SSA	237.3		Pavement Brown, damp, dense,	CAND.	0.90-	
	10	15.6/14	1.00 - 2.30	34/27/50(3.6")				$\frac{1}{1}$		trace silt. (Fill).	The to course sanu.	Trace graver.	
5 -	2D	24/19	5.00 - 7.00	3/3/5/4	8	8		233.2		Brown, damp, loose, sand, (Fill).	ine SAND, trace sil	5.00- t. trace medium	G#209920 A-3. SP-SM WC=4.4%
													110-414 /4
								$\frac{1}{1}$					
10 -	70	24 (20	10.00 -	5 (5 (6 (0		12				Similar to 2D, mediur	n dense.		
	30	24/20	12.00	5/5/6/8	11	12	102	\dagger					
							149						
							177	$\frac{1}{1}$					
15 -	4D	24/15	15.00 - 17.00	14/17/19/21	36	38	65			Brown, damp, dense,	ine SAND, trace sil	t. (Fill).	G#209921 A-3, SP-SM WC=11.3%
							118	221.2	0			17.00-	
							149						
20 -	5D	24/15	20.00 - 22.00	6/6/7/7	13	14	62	\dagger		Light brown to dark t with iron staining.			G#209922 A-2-4. SM WC=19.7%
							68 74						WC-13117
							82	215.4	0			22.80-	
25 -	6D	24/24	25.00 -	4/5/6/6	11	12	105			Olive brown, wet, st	ff, SILT, trace san	d in layers.	G#209923
	60	24724	27.00	4/3/6/6		12	048			trace gravel. awashed ahead of Cas	ng.		A-4. ML WC=30.1%
	V1 MV		27.33 - 27.50	Su=\$21045/943 psf			62 67	-		24.5x50.8 mm vane rav V1:624/24 in-1bs Failed 24.5x50.8 mm v			
	му			Coura not pash			61						
30 -	7D V2 MV	24/24	30.00 - 32.00 30.63 - 31.00	-/-/5/6 Su=1317/357 psf			51 58			(7D/A) 30.0-31.5' bgs Brown/olive, wet, st layers. 55x110 mm vane raw to	ff. SILT. some clay	, trace sand in	WC=33.1%
	MV		3.100	Court fior posit			70			V2: 29.5/8.0 ft-lbs (70/B) 31.5-32.0' bg: Brown, wet, SILT, sor clay,	ne sand with iron st	aining, trace	G#209925 A-4. ML WC=25.3%
							68			Failed 55x110 mm vand	attempt.		
35 -	8D/MU	24/22	35.00 - 37.00	3/2/2/2	4	4	73 56	\dagger		Failed Tube sample w Brown, wet, soft, Sll layers.			G#210269 A-4. ML WC=26.9%
							65 68			Toyers.			WC-20.3%
							78						
40 -	91 U	24/24	40.00 -	Piston Sampler			70 58	198.7		Grey, wet, medium st	ff. SILT. some clay	39.50-	
	-10	21721	42.00	T TOTAL SUID TO			60			Piston sampler had s release, tube droppe			
	V3		42.63 - 43.00 43.63 -	Su=536/107 psf Su=634/156 psf			55 65			55x110 mm vane raw to V3: 12.0/2.4 ft-lbs	orque readings:		
15 -			44.00				53			V4: 14.2/3.5 ft-lbs Grey, wet, very soft	to modium ctiff SI	II sama alay	G.C#210617
	2U	24/24	45.00 - 47.00	Piston Sampler			69 62	-		trace fine sand in Id		LIA Some Cluya	A-4. ML WC=30.6% LL=22
	V5		47.63 - 48.00	Su=156/89 psf			69			55x110 mm vane raw to V5: 3.5/2.0 ft-lbs	orque readings:		PL=19 PI=3
	V6		48.63 - 49.00	Su=723/134 psf			65 56	$\frac{1}{2}$		V6: 16.2/3.0 ft-lbs			
50 -	9D V7	24/24	50.00 - 52.00 50.63	sample thru vane Su=625/134 psf			58	1		Grey. wet. medium st 55x110 mm vane raw to V7: 14.0/3.0 ft-lbs		ace fine sand.	G#210270 A-4. CL-ML WC=32.4%
	V8		51.00 51.63 - 52.00	Su=625/156 psf			57 56	+		V8: 14.0/3.5 ft-lbs			LL=28 PL=22 PI=6
							57	1					
55 -	3U	24/24	55.00 - 57.00	Piston Sampler			57 68	+		Grey, wet, medium st	ff, Clayey SILT, tr	ace fine sand.	G.C#210618 A-6. CL WC-32 87
	,		57.63 -	6 65			62]					WC=32.8% LL=30 PL=19 Pl=11
	V9 V10		58.63 - 59.00	Su=625/147 psf Su=737/170 psf			70 69	-		55x110 mm vane raw to V9: 14.0/3.3 ft-lbs V10: 16.5/3.8 ft-lbs	orque readings:		
50 -	-		60.00 -				86]		Grey, wet, medium st	ff. Clayey SILT. tr	ace fine sand.	G#210271
	10D V11 V12	24/24	62.00 60.63 61.00 61.63	sample thru vane Su=737/170 psf Su=848/192 psf			83 91	+		55x110 mm vane raw to V11: 16.5/3.8 ft-lbs V12: 19.0/4.3 ft-lbs			A-4. CL WC=30.9% LL=30 PL=22
			62.00				105]					PI=8
							108	}					
65 -	4U	24/24	65.00 - 67.00	Piston Sampler			101]		Grey, wet, medium st	tf. Clayey SILT. tr	ace fine sand.	G.C#210619 A-6. CL WC=38.0% LL=35
	V13		67.63 - 68.00	Su=603/45 psf			95 97	}		55x110 mm vane raw to	orque readings:		PL =24 PI =11
	V14		68.63 - 69.00	Su=589/45 psf	-		94]		V13: 13.5/1.0 ft-lbs V14: 13.2/1.0 ft-lbs			
70 -	11D V15	24/24	70.00 - 72.00	sample thru vane Su=674/22 psf			120	}		Grey, wet, medium st		ace fine sand.	G#210272 A-6. CL WC=34.4%
	V16		70.63 71.00 71.63 - 72.00	Su=562/40 psf			100 95	-		V15: 15.1/0.5 ft-lbs V16: 12.6/0.9 ft-lbs			WC=34.4% LL=31 PL=12 Pl=19
							95	1					
75 -	rks:						80						

• Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other Boring No.: BB-ACNR-101


		Soi	I/Rock Exp	Ioration Log		I.	Project	100/202 n: Auburn, M	nine					Depar <u>s</u>
D-a * 1 1			US CUSTOMA		l cua				une		5600.00			
Drill Opera			Northern Te Mike/Nick	est Boring		um:	(ft.)	238.2 NAVD 88		Auger ID/OD: 5" Solid Sampler: Spoon	dard Split	_	ller: rator:	
	d By:		K. Maguire	100 100		Type:		Diedrick		Hammer Wt./Fall: 140#/30"			ged By:	
	Start/		5/19/08 · 5/ 4+45 · 9 · 12/		-	Iling ing [D	Method: /OD:	Cased Was	h Boring	Core Barrel: NO-2"x10 Water Level*: None Obs		_	Start	/Finish: ation:
			ictor: 0.633	3	Ham	mer Ty		Automatic 🗵		Rope & Cathead \square				iciency
	lit Spoo	n Sample	poon Sample a	R = Rock SSA = So ttempt HSA = Ho	olid Ster	m Auger		T _v = Po	situ Field Vane Shear Strength cket Torvane Shear Strength (p confined Compressive Strength	sf) WC = water content.	Shear Strength (psf) percent	D = 1		oon Sample ssful Split
U = Thi	in Wall	Tube Sample		RC = Rol	ller Cone	8	hammer	N-uncor Hammer	rected = Raw field SPT N-value Efficiency Factor = Annual Cal	PL = Plastic Limit ibration Value Pl = Plasticity Inc		u = 1	Thin Wall	Tube Samp
			Vane Shear Te						PT N-uncorrected corrected for Hammer Efficiency Factor/60%)*	hommer efficiency C = Grain Size Anal N-uncorrected C = Consolidation 1		v =	Insitu Va	ne Shear T ssful Insit
ŀ		Ē		Sample Information	P						Laboratory			C in
£ .	Š.	/Rec. (Dep†h		rect			ion C Log	Visual Des	cription and Remarks	Testing Results/ AASHTO	(++.)	Š.	
Depth (ft.	Sample	en./R	Sample (ft.)	Blows (/6 Shear Strength (psf) or ROD (%	uncorrect	09 _N	Casing Blows	Elevation (ft.) Graphic Lo			and Unified Class	Depth (Sample	Pen./Rec.
<u>8</u> 75			75.00 -		<u>z</u>	9 N		<u> </u>	Grey, wet, medium sti	ff. SILT, some clay, trace fin	G • C#210620	0 0	S	Pe
-	50	24/24	77.00	Piston Sampler			89	12/2	sand.		A-4. ML WC=26.4%		-	+
-			77.63 -				102				LL =22 PL =20 P I =2			+
ŀ	V17		78.00 78.63 -	Su=625/67 psf			85		55x110 mm vane raw to V17: 14.0/1.5 ft-lbs	rque readings:				+
┝	V18		79.00	Su=616/54 psf			73		V18: 13.8/1.2 ft-lbs					
80			80.00 -				74	1/2	Grey, wet, stiff, Cla	yey SILT. trace fine sand.		- 5	10	24/4
-	12D V19	24/24	82.00 80.63 -	sample thru vane Su=1286/138 psf			88		55x110 mm vane raw to V19: 28.8/3.1 ft-lbs	rque readings:				
ŀ	V20		81.00 81.63 - 82.00	Su=\$1339/192 psf			73		V20: ¢ 30.0/4.3 ft-lbs					
ļ							68							₩
							74							₩
85			05 00				72		Grey, wet, stiff, Cla	yey SILT, trace fine sand, Los	G.C#210621	- 10	20	₩
ļ	6U	24/18	85.00 - 87.00	Piston Sampler			83		bottom 6" of tube, fil	ne sand seam.	A-4. CL WC=35.2%			
							66				LL=31 PL=22 PI=9			
ļ	MV			Could not push			99		Failed 55x110 mm vane	attempt.	3			↓
ļ							138							↓
90							168	148.20		90	.00- G#210273	- 15	3D/AB V1	1
Ļ	13D	4.2/3	90.00 - 90.35	50(4.2")			123		Grey, wet, dense, fine trace medium to coarse Refusal at 90,35' bas	e SAND, little silt, trace cla e sand, trace gravel. Roller Coned ahead to 92.0' l	/• • • • • • • • • • •		V2	
ļ							282	146.20						
L	R1	18/10	92.00 - 93.50	ROD = N/A%			320 NO	7	R1:White, grey with go R1:Core Times (min:sec 92.0-93.0' (1:45)	grnets, Granite pegmetite BOUL (c)	DER.			
L							CORE 323	144.70	\93.0-93.5' (0:36) 53%		.50-			
95							269		Roller Coned ahead fro	-	04040074	- 20	10	24/22
	14D	14.4/ 14.4	95.00 - 96.20	19/32/50(2.4")			192		gravel, broken rock in Roller Coned ahead fro		G#210274 A-2-4. SP-SM WC=18.6%	[20		
L							845			-			٧3	
							905 RC			obles and boulders. Casing shoushoe. 60 blows/in movement of			V4	
									casing.					
													4D V5	24/24
100	R2	117.6/ 117.6	100.50 - 110.30	RQD = 77%			NO	137.70	Top of Bedrock at Ele	100	.50-	- 25	V6	
							CORE		Bedrock: White, green	and grey, coarse grained n garnet and mica. Rock Mass				†
								75 00 P	Quality = Good R2:Core Times (min:sec	2)				1
									100.5-101.5' (5:01) 101.5-102.5' (5:01) 102.5-103.5' (4:39)					
									103.5-104.5' (5:40) 104.5-105.5' (5:06)				2U	24/15
105 +								\$16.55 40.55 40.55	105.5-106.5' (6:09) 106.5-107.5' (6:20) 107.5-108.5' (4:58)			- 30	†	†
Ī									108.5-109.5' (5:07) 109.5-110.3' (4:52) 10	00% Recovery			V7	
Ī								1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					V8	+
ŀ								13.45 13.46 13.46					V9	\top
_							\ /						5D V10	24/24
110							\mathbb{V}	127.90	Bottom of Explorati	on at 110.30 feet below ground	. 30-	- 35	V 10	†
ŀ								1		surface.				\top
ļ														†
ļ								1						†
ŀ								1					6D/MU	24/24
115												- 40	T	
f								1					3U	24/24
-														†
ŀ													7D	24/24
								1					V11 V12	+
120								1				- 45	\vdash	+
f														+
ŀ														+
f														+
}								1					4U	24/24
125 Remari	ks:	<u> </u>		I			<u> </u>	<u> </u>	1			_ <u>50</u> <u>Rem</u>	orks:	
Hamm	ner #28	3											mmer #2 7' Conc	83 rete Deci
														m top of
Stratii	fication	lines repr	esent approxi	mate boundaries between	soil typ	es: tran	sitions r	may be gradual.		Page 2 of 2		Stra	tificatio	on lines re
				at times and under condi ements were made.	tions st	ated. (roundwate	er fluctuations	may occur due to conditions o	Boring No.: BB-AC	NR-101	* Wa	ter level n those p	readings l present at
										•				

rille Operat			Northern T Mike/Nick	est Boring	E I e	vation um:	(ft.)	217. NAV(Auger ID/OD: Sampler:	N/A 24" Standard	d Split
ogge	d By:		K. Maguire	/20 /09	Rig	Type:	40±5	Die	drick		Hammer Wt./Fall:	Spoon 140#/30"	
	Start/F g Locat		5/22/08 · 5 4+91.6 · 14		+	IIing I ing ID		Case	ed Was	h Boring	Core Barrel: Water Level*:	NO-2"x10' None Observe	ed
efinit = Spl D = Un = Thi U = Un = Ins	ions: it Spoor nsuccesst n Wall 1 nsuccesst situ Vane	n Sample ful Split S fube Sample ful Thin Wa s Shear Tes	ill Tube Sampl	R = Rock SSA = Sol ttempt HSA = Hol RC = Roll e attempt WOH = wei cket PenetrometerWOR/C = w	Core So id Ster low Ste er Cone ght of eight o	n Auger em Auger e 1401b. h of rods c	ammer or casing	ı	S _u = In T _v = Po q _p = Un N-uncor Hammer N ₆₀ = S	Hydraulic situ Field Vane Shear Strength cket Torvone Shear Strength (confined Compressive Strength rected = Raw field SPT N-valu Efficiency Factor = Annual Ca PT N-uncorrected forected for Hammer Efficiency Factor/60%)	osf) WC = v (ksf) LL = L p PL = F ibration Value PI = F hammer efficiency G = Gr	n) = Lab Vane Shear water content, pero iquid Limit Plastic Limit Plasticity Index ain Size Analysis wasolidation Test	· Strength (psf) ent
Depth (ft.)	Sample No.	Pen./Rec. (in.)	Sample Depth (ft.)	Blows (/6 in. Strength (psf) or ROD (%)	N-uncorrected	N60	Casing Blows	Elevation (ft.)	Graphic Log	Visual Des	scription and Remarks	Laborat Testin Result AASHTI and Unified C	
°							4	217.50		Grass at Ground Surfa	ce.	0.30	
╁							11						
Į							14			Brown dama looso f	ing to course SAND	trace gravel	
5	1D	24/4	4.00 - 6.00	10/5/3/2	8	8	10			Brown, damp, loose, f broken rock, 0.2' dec spoon, (Fill).			
╁							14	ł					
t							16	1					
			9.00 -				13			Brown, damp, very loo			G#210294
10 +	20		11.00	1/0/1/0	1	1	1 OHP	1		clay in layers, trace gravel, (Fill), aHydraulic Push	medium to coarse sa	nd∙ trace	A-4. SC-SM WC=28.6%
ŀ								205.80				12.00-	
F										Brown, wet, stiff, SI	.T∙ some clay∙ trace	fine sand.	
	3D/AB		14.00 - 16.00	1/1/0/0 Su=1116/134 psf	1	1		1		(3D/A) 14.0-15.0' 55x110 mm vane raw to	rque readings.		G#210296 A-4. CL-ML
15	V1 V2		14.63 - 15.00 15.63 -	Su=362/67 psf				202.80	1	V1: 25.0/3.0 ft-lbs			PL =22
-			16.00							Grey, wet, soft, SILT layers, 55x110 mm vane raw to V2: 8.1/1.5 ft-lbs		ine sand in	P!=5 G#210297 A-4. CL-ML WC=33.5%
+													LL =25 PL =20 PI =5
20	1U	24/22	19.00 - 21.00	Piston Sampler						Grey, wet, medium sti sand.	ff, SILT, some clay,	trace fine	G.C#210622 A-4. CL-ML WC=30.2%
			21.63 -	0.074.070				-					Non-Plastic
╁	V3 V4		22.00 22.63 - 23.00	Su=674/232 psf Su=629/89 psf						55x110 mm vane raw to V3: 15.1/5.2 ft-lbs V4: 14.1/2.0 ft-lbs	rque readings:		
İ			23.00								ff CILT come clay	trace fine	G#210295
25	4D V5	24/24	24.00 - 26.00 24.63 -	sample thru vane Su=545/98 psf						Grey, wet, medium sti sand. 55x110 mm_vane raw to	-	Trace Tine	A-4. CL-ML WC=31.5%
╁	V6		25.00 25.63 - 26.00	Su=643/161 psf						V5: 12.2/2.2 ft-lbs V6: 14.4/3.6 ft-lbs			LL=27 PL=20 PI=7
ļ													
╟	2U	24/15	29.00 -	Piston Sampler						Grey, wet, medium sti sand in layers.	ff. SILT. some clay.	trace fine	G.C#210623 A-6. CL
30 +			31.00										WC=29.8% LL=34 PL=23
F	V7		31.63 - 32.00 32.63 -	Su=384/103 psf						55x110 mm vane raw to V7: 8.6/2.3 ft-lbs	rque readings:		P]=11
-	V8 V9		33.00 33.63 - 34.00	Su=527/94 psf Su=616/134 psf				1		V8: 11.8/2.1 ft-lbs	rque roodina		
35	5D V10	24/24	34.00 - 36.00 - 34.63	sample thru vane Su=750/156 psf				1		55x110 mm vane raw to V9: 13.8/3.0 ft-lbs Grey, wet, medium sti V10: 16.8/3.5 ft-lbs	-	ce fine sand.	
			35.00					-					
-								1					
			70.00							Failed Tube attempt,	tube empty, took soo	on sample.	G#210298
40	6D/MU	24/24	39.00 - 41.00	0-24"(W01P)				-		Grey, wet, medium sti staining, trace fine Washed ahead 2.0' to	ff. Clayey SILT. wit sand.	h black	A-4. ML WC=35.4% LL=35
-	3U	24/24	41.00 - 43.00	Piston Sampler				•		Grey, wet, medium sti staining, trace fine		black	PL=27 PI=8 G•C#210624 A-4• CL
F			43.00 -							Grey. wet. medium sti		black	WC=38.4% LL=27 PL=19
-	7D V11 V12	24/24	45.00 43.63 44.00	sample thru vane Su=670/67 psf Su=714/76 psf				1		staining, trace fine 55x110 mm vane raw to V11: 15.0/1.5 ft-lbs			P1=8
45			44.63 - 45.00					1		V12: 16.0/1.7 ft-lbs			
-								-					
50	4U	24/24	49.00 - 51.00	Piston Sampler						Grey, wet, medium sti	ff, Clayey SILT, tra	ce fine sand.	G•#210625 A-4• CL-ML
Remark Hamm	er #28:												
			thickness. Bridge Deck	to Ground Surface.									
tratif	ication	lines repr	esent approxi	mate boundaries between so	oil typ	es: tran	sitions	may be g	radual.		Page 1 of 2		

Logg Date Bori Hamm Defin D = S MD = U = T MU = V = I	er Effi itions: plit Spoo Unsuccess hin Wall Unsuccess nsitu Van	Finish: tion: ciency Fa n Sample ful Split		7/29/08 .3 Rt. R = Root SSA = Si attempt	Rice Dr Cas Har Core S	sing [[mmer Ty ample m Auger em Auger le 1401b. of rods	Method: 0/0D: /pe: hammer or casing	Die : Cas HW Automa	AVD 88 Sampler: 24 Stand Shoon Riedrick D50 Hammer Wt./Fall: 140#/30" Cased Wash Boring Core Barrel: N0-2"x10' Water Level*: None Obse Omatic □ Hydraulic □ Rope & Cathead □ Su = Insitu Field Vane Shear Strength (psf) Ty = Pocket Torvane Shear Strength (psf) Ag = Unconfined Compressive Strength (psf) N-uncorrected = Raw field SPT N-value Hammer Efficiency Factor = Annual Calibration Value N60 = SPT N-uncorrected corrected for hammer efficiency N60 = Consolidation Test				
Depth (ft.)	Sample No.	Pen./Rec. (in.)	Sample Depth (ft.)	Sample Information Blows (/6 in. Strength (pst) or R00 (%)	N-uncorrected	N60	Casing Blows	Elevation (ft.)	Graphic Log	Visual Description and Remarks	Laborator Testing Results/ AASHTO and Unified Cla		
50	V13	ш.	51.63 - 52.00 52.63 - 53.00	Su=670/85 psf Su=629/54 psf						55x110 mm vane raw torque readings: V13: 15.0/1.9 ft-lbs V14: 14.1/1.2 ft-lbs	WC=50.7% LL=26 PL=19 Pl=7		
55 •	8D V15 V16	24/24	54.00 - 56.00 54.63 - 55.00 55.63 - 56.00	sample thru vane Su=580/80 psf Su=848/89 psf						Crey, wet, medium stiff, Clayey SILT, trace fine 55x110 mm vane raw torque readings: V15: 13.0/1.8 ft-lbs V16: 19.0/2.0 ft-lbs	sand. G#210299 A-4. CL WC=30.6% LL=29 PL=20 Pl=9		
60 •	5U	24/20	59.00 - 61.00	Piston Sampler						Grey, wet, medium stiff to stiff, Clayey SILT, to fine sand.	A-6. CL WC=36.8% LL=33 PL=22		
	V17 V18		61.63 - 62.00 62.63 - 63.00	Su=723/152 psf Su=1045/179 psf						55x110 mm vane raw torque readings: V17: 16.2/3.4 ft-lbs V18: 23.4/4.0 ft-lbs	PI=11		
65 •	90	24/14	64.00 - 66.00	12/24/23/29	47	50	90 b109	-153.80 -		Grey, wet, dense, fine SAND, little silt, trace of to coarse sand, uniform, b109 blows for 0.7'.	-64.00- nedium		
							79 154						
70 •	100	24/12	71.00 - 73.00	33/25/25/33	50	53	137 182 ¢257			Grey, wet, very dense, fine to coarse SAND, some gravel, trace silt, with broken rock. C257 blows for 0.8'.	G#210601 A-1-b• SW- WC=10•4%		
75 •	11D	9.6/8	74.00 - 74.80	36/50(3.6")			81 115			Grey, wet, very dense, fine to coarse SAND, some gravel, trace silt, occasional cobbles.			
			79.00 -				129 176 559	 		d765 blows for 0.8'.			
30 •	120	9.6/2	79.80	48/50(3.6")			d765 еwд			Grey, wet. very dense, fine to coarse SAND, some gravel, trace silt, occasional cobbles, (Till), ewashed ahead to 84.9' bgs.			
85 •	13D R1	7.2/2 111.6/55	84.00 - 84.60 84.90 94.20	79/50(1.2") ROD = N/A%			ND/ CORE	132.90		Grey, wet, very dense, fine to coarse SAND, litt gravel, little silt, (Till). R1: Pegmetite boulders with iron staining over Go boulders with fine to coarse silty sand layers. R1:Core Times: (min:sec)	A-2-4. SP- -84.90- WC=12.2%		
								129.90		84.9-85.9' (2:08) 85.9-86.9' (2:00) 86.9-87.9' (4:03) 87.9-88.9' (3:46) 88.9-89.9' (3:40) 89.9-90.9' (3:15) 90.9-91.9' (4:31) 191.9-92.9' (5:04)			
90 •										91.9-93.9' (5:45) 93.9-94.2' (3:11) 46% Recovery Core Blocked Grey. wet very dense. fine to coarse SAND. little gravel. little silt.	-87.9 0- ∍		
95 •	R2	48/48	94.20 - 98.20	ROD = 65%				-123.80	1	Top of Bedrock at Elev. 123.8'. Bedrock: Black. white and grey. GNEISS interbedding pegmetite intrusions. chlorite rich. Rock Mass On a Fair			
								119.60	2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	R2:(Core Times (min:sec) 94.2-95.2' (3:32) 95.2-96.2' (3:35) 96.2-97.2' (3:15) 97.2-98.2' (2:16) 100% recovery Core Blocked Bottom of Exploration at 98.20 feet below grounds	_98.20- ind		
	rks: mer #28	3						1		surface.			

STATE OF MAINE
DEPARTMENT OF TRANSPORTATION
BR-A560(000)X PIN 15600.00 CANADIAN NATIONAL RAILWAY AUBURN ANDROSCOGGIN COUNTY TOGS BORING SHEET NUMBER

OF 5

For cases where interface friction between the backfill and wall are 0 or not considered, use Rankine.

For a horizontal backfill surface, $\beta = 0^{\circ}$:

$$K_a = \tan^2 \left(45^{\circ} - \frac{\phi}{2} \right)$$

For a sloped backfill surface, $\beta > 0^{\circ}$:

$$K_a = \cos \beta * \frac{\cos \beta - \sqrt{\cos^2 \beta - \cos^2 \phi}}{\cos \beta + \sqrt{\cos^2 \beta - \cos^2 \phi}}$$

 P_a is oriented at β

For cases where interface friction is considered, use Coulomb.

For horizontal or sloped backfill surfaces:

$$K_{a} = \frac{\sin^{2}(\alpha + \phi)}{\sin^{2}\alpha * \sin(\alpha - \delta) * \left(1 + \sqrt{\frac{\sin(\phi + \delta) * \sin(\phi - \beta)}{\sin(\alpha - \delta) * \sin(\beta + \alpha)}}\right)^{2}}$$

 P_a is oriented at $\delta + 90^\circ$ - α

Rankine and Coulomb Active Earth Pressure Coefficients

Appendix A

Boring Logs

	UNIFIE	SOIL CLA		TION SYSTEM			DESCRIBING CONSISTENC	
MA	OR DIVISION	SNC	GROUP SYMBOLS	TYPICAL NAMES				
COARSE- GRAINED SOILS	GRAVELS	CLEAN GRAVELS	GW	Well-graded gravels, gravelsand mixtures, little or no fines	sieve): Includes (1	soils (more than half of the color of the co	Ity or clayey gravel	s; and (3) silty,
	of coarse than No. ze)	(little or no fines)	GP	Poorly-graded gravels, gravel sand mixtures, little or no fines	tı	otive Term race		ion of Total)% - 10%
s (e:	(more than half of coarse fraction is larger than No. 4 sieve size)	GRAVEL WITH FINES	GM	Silty gravels, gravel-sand-sill mixtures.	S	ittle ome . sandy, clayey)	2	1% - 20% 1% - 35% 6% - 50%
of material i	(moi fracti	(Appreciable amount of fines)	GC	Clayey gravels, gravel-sand-clay mixtures.	<u>Cohesio</u> Very	nsity of nless Soils / loose		netration Resistance (blows per foot) 0 - 4
(more than half of material is arger than No. 200 sieve size)	SANDS	CLEAN SANDS	SW	Well-graded sands, gravelly sands, little or no fines	Mediu De	oose m Dense ense Dense		5 - 10 11 - 30 31 - 50 > 50
(more	coarse an No. 4	(little or no fines)	SP	Poorly-graded sands, gravelly sand, little or no fines.		ls (more than half of m	natarial is smallar t	
	(more than half of coarse fraction is smaller than No. sieve size)	SANDS WITH	SM	Silty sands, sand-silt mixtures	sieve): Includes (1	inorganic and organ (3) clayey silts. Cons	nic silts and clays; (istency is rated acc	2) gravelly, sandy
	(more fraction	FINES (Appreciable amount of fines)	SC	Clayey sands, sand-clay mixtures.	Consistency of Cohesive soils	SPT N-Value blows per foot	Approximate Undrained Shear Strength (psf)	<u>Field</u> Guidelines
	SILTS AN	ID CLAYS	ML	Inorganic silts and very fine sands, rock flour, silty or clayey fine sands, or clayey silts with slight plasticity.	Very Soft Soft Medium Stiff	WOH, WOR, WOP, <2 2 - 4 5 - 8	0 - 250 250 - 500 500 - 1000	Fist easily Penetrates Thumb easily penetrates Thumb penetrates with moderate effort
FINE- GRAINED SOILS	<i>(</i> 1	4 50	CL	Inorganic clays of low to medium plasticity, gravelly clays, sandy clays, silty clays, lean clays.	Stiff Very Stiff Hard	9 - 15 16 - 30 >30	1000 - 2000 2000 - 4000 over 4000	Indented by thumb with great effort Indented by thumbnai Indented by thumbnail
(e)	(liquia limit i	ess than 50)	OL	Organic silts and organic silty clays of low plasticity.	Rock Quality Des	sum of the lengths	of intact pieces	
(more than half of material is smaller than No. 200 sieve size)	SILTS AN	ID CLAYS	МН	Inorganic silts, micaceous or diatomaceous fine sandy or silty soils, elastic silts.		Correlation of RQI ass Quality	NQ rock core (1.	Quality RQD
ore than hal er than No.			СН	Inorganic clays of high plasticity, fat clays.	P	y Poor Poor Fair Good	5 ⁻	<25% 6% - 50% 1% - 75% 6% - 90%
(mc small	(liquid limit gr	eater than 50)	OH	Organic clays of medium to high plasticity, organic silts	Desired Rock C Color (Munsell of	cellent Observations: (in t color chart)	91 his order)	% - 100%
		ORGANIC IILS	Pt	Peat and other highly organic soils.	Lithology (igned Hardness (very	itic, fine-grained, et ous, sedimentary, m hard, hard, mod. h sh, very slight, sligh	netamorphic, etc. ard, etc.)	,
		ions: (in th	is order)		1	severe, etc.)		
Gradation (ry, damp, m nsistency (fr d, silty sand, well-graded,	oist, wet, sa om above ri , clay, etc., ii , poorly-grad	ght hand sid ncluding po led, uniform	rtions - trace, little, etc.)	Geologic discor	-spacing (very clos close 30-100 cr	o - 55-85, vertical se - <5 cm, close m, wide - 1-3 m, v	- 85-90) - 5-30 cm, mod.
Structure (la Bonding (w Cementatio Geologic O	ayering, frac ell, moderat n (weak, mo rigin (till, ma	tures, crack ely, loosely, oderate, or s rine clay, all	s, etc.) etc., if appl trong, if app uvium, etc.	olicable, ASTM D 2488)	RQD and correl ref: AASHTO	-tightness (tight, op -infilling (grain size erville, Ellsworth, C ation to rock mass Standard Specifica	, color, etc.) ape Elizabeth, e quality (very poo	r, poor, etc.)
Unified Soil Groundwate		on Designati	on		17th Ed. Table Recovery			
Ke	y to Soil	Geotechi	<i>nical Sec</i> Descrip	tions and Terms	Sample Cont PIN Bridge Name Boring Numbe Sample Numb Sample Depth	er oer	Requirements Blow Counts Sample Reco Date Personnel Ini	overy

I	Main	e Dep	artment	of Transport	ation	1	Project:	CNR	Railroac	Crossing, Routes 4/100/202	Boring No.:	_BB-AC	NR-101
			Soil/Rock Exp US CUSTOM/				Location	n: Aub	urn, Ma	ine	PIN:	1560	00.00
Drille	r:		Northern Test	Boring	Ele	vation	(ft.)	238	2		Auger ID/OD:	5" Solid Stem	
Oper	ator:		Mike/Nick		Dat	tum:		NA	VD 88		Sampler:	24" Standard S	plit Spoon
Logg	ed By:		K. Maguire		Rig	ј Туре		Die	lrick D	50	Hammer Wt./Fall:	140#/30"	
	Start/Fi		5/19/08, 5/22/0				lethod:		ed Wasl	n Boring	Core Barrel:	NQ-2"x10'	
Borir	g Loca	tion:	4+45.9, 12.9 R	t.	-	sing IE		HW			Water Level*:	None Observed	
Hamı Definiti		iciency Fa	actor: 0.633	R - Roc	k Core Sa	mmer	Туре:	Autom		Hydraulic ☐ itu Field Vane Shear Strength (psf)	Rope & Cathead) = Lab Vane Shear S	trenath (nsf)
D = Sp MD = U U = Th MU = U V = Ins	lit Spoon S Jnsuccess in Wall Tu Jnsuccess itu Vane S	sful Split Spo abe Sample sful Thin Wal Shear Test,	on Sample attemp I Tube Sample att PP = Pocket Per ne Shear Test atte	SSA = S ot HSA = H RC = RC empt WOH = letrometer WOR/C empt WO1P =	Solid Stem Hollow Ster In Cone Weight of 1 Weight of	Auger m Auger 140lb. ha of rods or	mmer casing		$T_V = Poole q_p = Union N-uncor Hammer N_{60} = S$	ket Torvane Shear Strength (psf) confined Compressive Strength (ksf) rected = Raw field SPT N-value Efficiency Factor = Annual Calibrati PT N-uncorrected corrected for ham lammer Efficiency Factor/60%)*N-u	WC = LL = L PL = F on Value PI = P mer efficiency G = Gi	water content, percent iquid Limit lastic Limit asticity Index rain Size Analysis onsolidation Test	t
		Π_		Sample Information	Ι	1		1	-				Laboratory
Depth (ft.)	Sample No.	Pen./Rec. (in.)	Sample Depth (ft.)	Blows (/6 in.) Shear Strength (psf) or RQD (%)	N-uncorrected	09 _N	Casing Blows	Elevation (ft.)	Graphic Log	Visual De	scription and Remarks		Testing Results/ AASHTO and Unified Class
0							SSA			Pavement			
	1D	15.6/14	1.00 - 2.30	34/27/50(3.6")				237.30		Brown, damp, dense, fine to	coarse SAND, trace grav	el, trace silt, (Fill).	
5 -								233.20				— — —5.00-	G#209920
	2D	24/19	5.00 - 7.00	3/3/5/4	8	8		_		Brown, damp, loose, fine SA	AND, trace silt, trace medi	um sand, (Fill).	A-3, SP-SM WC=4.4%
								-					
10 -	3D	24/20	10.00 - 12.00	5/5/6/8	11	12	60			Similar to 2D, medium dens	e.		
							102						
							149						
1.5							150	-					
15 -	4D	24/15	15.00 - 17.00	14/17/19/21	36	38	65			Brown, damp, dense, fine SA	AND, trace silt, (Fill).		G#209921 A-3, SP-SM WC=11.3%
							118	221.20				17.00	
							140	-				17.00	
							149						
20		24/15	20.00. 22.00		12	1.4	120			Light brown to dark brown,		SAND with iron	G#209922
	5D	24/15	20.00 - 22.00	6/6/7/7	13	14	62	-		staining, little silt, trace med	ium sand.		A-2-4, SM WC=19.7%
							74	215.40				22.80	
							82]				22.30	
25 Rom:							105						

Remarks:

Hammer #283

Stratification lines represent approximate boundaries between soil types; transitions may be gradual.

* Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other than those present at the time measurements were made.

Page 1 of 5

Maine Department of Transportation							Proiect:	CNR I	Railroad	Crossing, Routes 4/100/202	Boring No.:	BB-ACNR-	
		-	Soil/Rock Exp	loration Log			Location			Ç.	PIN:	1560	00.00
Drill	er:		Northern Test	Boring	ΤE	levation	(ft.)	238.	2		Auger ID/OD:	5" Solid Stem	
Ope	rator:		Mike/Nick		Ь	atum:	,	NAV	/D 88		Sampler:	24" Standard S	plit Spoon
Log	ged By:		K. Maguire		R	ig Type	:	Diec	rick D5	50	Hammer Wt./Fall:	140#/30"	
Date	Start/Fi	nish:	5/19/08, 5/22/0	/19/08, 5/22/08			lethod:	Case	d Wash	Boring	Core Barrel:	NQ-2"x10'	
Bori	ng Locat	ion:	4+45.9, 12.9 R	lt.	Casing II			HW			Water Level*:	None Observed	l
		ciency F	actor: 0.633			ammer	Туре:	Automa			Rope & Cathead □		
Definitions: D = Split Spoon Sample SSA = Solid Stem MD = Unsuccessful Split Spoon Sample attempt U = Thin Wall Tube Sample MU = Unsuccessful Thin Wall Tube Sample attempt V = Insitu Vane Shear Test, PP = Pocket Penetrometer MV = Unsuccessful Insitu Vane Shear Test attempt WO1P = Weight of WO1P = Weight of					m Auger tem Auger ie of 140lb. ha t of rods o	ammer r casing		T _V = Poo q _p = Uno N-uncori Hammer N ₆₀ = Si	itu Field Vane Shear Strength (psf) cket Torvane Shear Strength (psf) confined Compressive Strength (ksf) rected = Raw field SPT N-value Efficiency Factor = Annual Calibrati PT N-uncorrected corrected for ham alammer Efficiency Factor/60%)*N-ur	PL = Plastic Limit tion Value PI = Plasticity Index nmer efficiency G = Grain Size Analysis			
		$\widehat{}$		Sample Information			1		ł				Laboratory
Depth (ft.)	Sample No.	Pen./Rec. (in.)	Sample Depth (ft.)	Blows (/6 in.) Shear Strength (psf) or RQD (%)	N-uncorrected	N ₆₀	Casing Blows	Elevation (ft.)	Graphic Log		scription and Remar		Testing Results/ AASHTO and Unified Class. G#209923
25	6D	24/24	25.00 - 27.00	4/5/6/6	11	12	a48			Olive brown, wet, stiff, SILT aWashed ahead of Casing.	Olive brown, wet, stiff, SILT, trace sand in layers, trace gravel. aWashed ahead of Casing.		
							a48						WC=30.1%
	V1		27.33 - 27.50	Su=>1045/943 psf			62			24.5x50.8 mm vane raw torq V1:624/24 in-lbs	24.5x50.8 mm vane raw torque readings: V1:624/24 in-lbs		
	MV			Could not push			67			Failed 24.5x50.8 mm vane a	ttempt.		
30							61			(TD (A) 20 0 21 511			G#200024
	7D 	24/24	30.00 - 32.00 30.63 - 31.00	-/-/5/6 Su=1317/357 psf			51			(7D/A) 30.0-31.5' bgs. Brown/olive, wet, stiff, SILT, some clay 55x110 mm vane raw torque readings:		d in layers.	G#209924 A-4, CL-ML WC=33.1%
	MV			Could not push			58		V2: 29.5/8.0 ft-lbs (7D/B) 31.5-32.0' bgs.				G#209925 A-4, ML
							70			Brown, wet, SILT, some sand with iron staining, trace clay. Failed 55x110 mm vane attempt. Failed Tube sample with piston sampler, no recovery. Brown, wet, soft, SILT, little clay, little sand in layers.	ace clay.	WC=25.3%	
							73						
35	8D/MU	24/22	35.00 - 37.00	3/2/2/2	4	4	56						G#210269 A-4, ML
							65			Brown, wet, sort, Bill 1, Itale	,,		WC=26.9%
							68						
							78						
- 40 -							70	198.70	A) A) A			39.50	
40	a1U	24/24	40.00 - 42.00	Piston Sampler			58			Grey, wet, medium stiff, SILT, some clay, trace fine sand in layer aPiston sampler had sand in it, making it difficult to release, tube dropped when taken off sampler. 55x110 mm vane raw torque readings: V3: 12.0/2.4 ft-lbs V4: 14.2/3.5 ft-lbs			
							60		111				
	V3		42.63 - 43.00	Su=536/107 psf			55						
	V4		43.63 - 44.00	Su=634/156 psf			65						
45							53			Grey, wet, very soft to media	um stiff, SILT, some c	lay, trace fine sand in	G,C#210617
	2U	24/24	45.00 - 47.00	Piston Sampler		+	69			layers.		A-4, ML WC=30.6%	
	V5		47.63 - 48.00	Su=156/89 psf			62						LL=22 PL=19 PI=3
	V5 V6		48.63 - 49.00	Su=723/134 psf			65			55x110 mm vane raw torque V5: 3.5/2.0 ft-lbs	readings:		P1=3
	- 10		10.03 - 47.00	5u-725/15+ psi			56			V6: 16.2/3.0 ft-lbs			
50	<u> </u>				1				אואוא				<u> </u>

Remarks:

Hammer #283

Stratification lines represent approximate boundaries between soil types; transitions may be gradual.

orialinoalion into represent approximate bearingine between een types, transmitte may be gradien

* Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other than those present at the time measurements were made.

Page 2 of 5

Maine Department of Transportation					1	Project:	CNR F	Railroad	Crossing, Routes 4/100/202	Boring No.:	BB-AC	NR-101	
Soil/Rock Exploration Log US CUSTOMARY UNITS							Location	1: Aubi	ırn, Ma	ine	PIN:	1560	00.00
Driller: Northern Test Boring			Ele	vation	(ft.)	238.	2		Auger ID/OD:	5" Solid Stem			
Oper	ator:		Mike/Nick		Da	tum:		NAV	D 88		Sampler:	24" Standard S	plit Spoon
Logged By: K. Maguire			Rig	ј Туре	:	Died	rick D5	0	Hammer Wt./Fall:	140#/30"			
Date	Start/Fi	inish:	5/19/08, 5/22/0)8	Dri	illing N	lethod:	Case	d Wash	Boring	Core Barrel:	NQ-2"x10'	
Borir	ng Loca	tion:	4+45.9, 12.9 R	t.	Ca	sing IC	D/OD:	HW			Water Level*:	None Observed	I
Hamı	ner Effi	iciency F	actor: 0.633		На	mmer	Туре:	Automa			Rope & Cathead □		
Definitions: R = Rock Cor D = Split Spoon Sample SSA = Solid S MD = Unsuccessful Split Spoon Sample attempt HSA = Hollow U = Thin Wall Tube Sample RC = Roller C MU = Unsuccessful Thin Wall Tube Sample attempt WOH = weigh V = Insitu Vane Shear Test, PP = Pocket Penetrometer WOR/C = weigh MV = Unsuccessful Insitu Vane Shear Test attempt WO1P = Weigh						Auger m Auger 140lb. ha of rods o	ammer r casing		T _V = Poc q _p = Unc N-uncorr Hammer N ₆₀ = SF	tu Field Vane Shear Strength (psf) ket Torvane Shear Strength (psf) confined Compressive Strength (ksf) ected = Raw field SPT N-value Efficiency Factor = Annual Calibrati PT N-uncorrected corrected for ham lammer Efficiency Factor/60%)*N-ui	WC 	lab) = Lab Vane Shear S = water content, percen = Liquid Limit = Plastic Limit = Plasticity Index Grain Size Analysis Consolidation Test	
ł		·		Sample Information	ъ			l					Laboratory
Depth (ft.)	Sample No.	Pen./Rec. (in.)	Sample Depth (ft.)	Blows (/6 in.) Shear Strength (psf) or RQD (%)	N-uncorrected	N ₆₀	Casing Blows	Elevation (ft.)	Graphic Log		scription and Remark		Testing Results/ AASHTO and Unified Class.
50	9D V7	24/24	50.00 - 52.00 50.63 - 51.00	sample thru vane Su=625/134 psf			58		W	Grey, wet, medium stiff, Cla 55x110 mm vane raw torque		nd.	G#210270 A-4, CL-ML
	V8		51.63 - 52.00	Su=625/156 psf			57		W	V7: 14.0/3.0 ft-lbs V8: 14.0/3.5 ft-lbs	readingsi		WC=32.4% LL=28
							56						PL=22 PI=6
							57						
- 55 -							57		100	Grey, wet, medium stiff, Cla	vev SILT, trace fine sa	nd.	G,C#210618
	3U	24/24	55.00 - 57.00	Piston Sampler			68				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		A-6, CL WC=32.8%
	V9		57.63 - 58.00	S (25/147			70		W				LL=30 PL=19
	V9 V10		58.63 - 59.00	Su=625/147 psf Su=737/170 psf			69			55x110 mm vane raw torque V9: 14.0/3.3 ft-lbs	readings:		PI=11
			20.03				86		W	V10: 16.5/3.8 ft-lbs			
- 60 -	10D	24/24	60.00 - 62.00	sample thru vane			83			Grey, wet, medium stiff, Cla		nd.	G#210271 A-4, CL
	V11 V12		60.63 - 61.00 61.63 - 62.00	Su=737/170 psf Su=848/192 psf			91			V11: 16.5/3.8 ft-lbs V12: 19.0/4.3 ft-lbs	readings.		WC=30.9% LL=30
							105						PL=22 PI=8
							108		W				
- 65 -							108		W	Grey, wet, medium stiff, Cla	ivey SILT trace fine so	nd	G,C#210619
	4U	24/24	65.00 - 67.00	Piston Sampler			101			Orey, wet, medium stirr, era	yey SiL1, trace fine sa	iiu.	A-6, CL WC=38.0%
							95		111				LL=35 PL=24
	V13		67.63 - 68.00	Su=603/45 psf			97			55x110 mm vane raw torque V13: 13.5/1.0 ft-lbs	readings:		PI=11
	V14		68.63 - 69.00	Su=589/45 psf			94			V14: 13.2/1.0 ft-lbs			
- 70 -	11D	24/24	70.00 - 72.00	sample thru vane			120			Grey, wet, medium stiff, Cla		nd.	G#210272 A-6, CL
	V15 V16		70.63 - 71.00 71.63 - 72.00	Su=674/22 psf Su=562/40 psf			100			55x110 mm vane raw torque V15: 15.1/0.5 ft-lbs	readings:		A-6, CL WC=34.4% LL=31
				-			95			V16: 12.6/0.9 ft-lbs			PL=12 PI=19
							92						
İ							80]	MXV				

75 Remarks:

Hammer #283

Stratification lines represent approximate boundaries between soil types; transitions may be gradual.

orialinoalion into represent approximate bearingine between een types, transmitte may be gradien

* Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other than those present at the time measurements were made.

Page 3 of 5

Maine Department of Transportation						Project:	CNR	Railroad	Crossing, Routes 4/100/202	Boring No.: BB-A		CNR-101	
Soil/Rock Exploration Log US CUSTOMARY UNITS							Location	1: Aub	urn, Ma	ine	PIN:	1560	00.00
Drille	er:		Northern Test	Boring	Ele	evation	(ft.)	238.	2		Auger ID/OD:	5" Solid Stem	
Ope	rator:		Mike/Nick		Da	tum:		NA	VD 88		Sampler:	24" Standard S	plit Spoon
Logged By: K. Maguire			Rig	д Туре	:	Die	lrick D5	0	Hammer Wt./Fall:	140#/30"			
Date	Date Start/Finish: 5/19/08, 5/22/08			Dri	illing N	lethod:	Case	ed Wash	Boring	Core Barrel:	NQ-2"x10'		
Bori	ng Loca	tion:	4+45.9, 12.9 F	Rt.	Ca	sing IE	D/OD:	HW			Water Level*:	None Observed	
Ham	mer Effi	iciency Fa	ctor: 0.633		Ha	mmer	Туре:	Autom	atic 🛛	Hydraulic □	Rope & Cathead □		
MD = U = TI MU = V = In	olit Spoon Unsuccess nin Wall Tu Unsuccess situ Vane S	sful Split Spoo be Sample sful Thin Wall Shear Test,	on Sample attemp Tube Sample att PP = Pocket Per ne Shear Test atte	SSA = S ot	k Core Sa olid Stem lollow Ste ller Cone weight of Weight o	Auger m Auger 140lb. ha of rods or	ammer r casing		$T_V = Poc$ $q_p = Unc$ N-uncorr Hammer $N_{60} = SF$	tu Field Vane Shear Strength (psf) ket Torvane Shear Strength (psf) onfined Compressive Strength (ksf, ected = Raw field SPT N-value Efficiency Factor = Annual Calibrat PT N-uncorrected corrected for ham ammer Efficiency Factor/60%)*N-u	WC = LL = L PL = I ion Value PI = F imer efficiency G = G	o) = Lab Vane Shear S water content, percentiquid Limit Plastic Limit Plasticity Index Irain Size Analysis Insolidation Test	
				Sample Information	I	_	1		4				Laboratory
Depth (ft.)	Sample No.	Pen./Rec. (in.)	Sample Depth (ft.)	Blows (/6 in.) Shear Strength (psf) or RQD (%)	N-uncorrected	N ₆₀	Casing Blows	Elevation (ft.)	Graphic Log	Visual De	scription and Remarks		Testing Results/ AASHTO and Unified Class
75	5U	24/24	75.00 - 77.00	Piston Sampler			89		KKK!	Grey, wet, medium stiff, SII	LT, some clay, trace fine s	and.	G,C#210620 A-4, ML
							102	1	KK.				WC=26.4%
							102		W				LL=22 PL=20
	V17		77.63 - 78.00	Su=625/67 psf			85		W/L	55x110 mm vane raw torque	e readings:		PI=2
80 -	V18		78.63 - 79.00	Su=616/54 psf			73			V17: 14.0/1.5 ft-lbs V18: 13.8/1.2 ft-lbs			
							74		W				
	12D	24/24	80.00 - 82.00	sample thru vane			88			Grey, wet, stiff, Clayey SILT, trace fine sand.			
	V19 V20	24/24	80.63 - 81.00 81.63 - 82.00	Su=1286/138 psf Su=>1339/192 psf			73			55x110 mm vane raw torque V19: 28.8/3.1 ft-lbs			
			01.05 02.00	Du 71337/172 psi			68			V20: >30.0/4.3 ft-lbs			
							74						
							72						
85 -	6U	24/18	85.00 - 87.00	Piston Sampler			83			Grey, wet, stiff, Clayey SIL fine sand seam.	Γ, trace fine sand. Lost bo	ttom 6" of tube,	G,C#210621 A-4, CL
							66						WC=35.2% LL=31 PL=22
	MV			Could not push			99			Failed 55x110 mm vane atte	mpt.		PL=22 PI=9
							138						
00							168	1 40 20	W.			00.00	
90 -	13D	4.2/3	90.00 - 90.35	50(4.2")			123	148.20		Grey, wet, dense, fine SANI coarse sand, trace gravel.	O, little silt, trace clay, tra	———90.00- ce medium to	G#210273 A-2-4, SC-SM
							282	146.20		Refusal at 90.35' bgs. Roller	Ç .		WC=21.8%
	R1	18/10	92.00 - 93.50	RQD = N/A%			320 NQ	140.20		R1:White, grey with garnets R1:Core Times (min:sec)	, Granite pegmetite BOU	92.00- LDER.	
							CORE 323	144.70		92.0-93.0' (1:45) 93.0-93.5' (0:36) 53% Recov			
							269	İ				93.50-	
95 -	14D	14.4/14.4	95.00 - 96.20	19/32/50(2.4")			192			Roller Coned ahead from 93 Grey, wet, fine to coarse SA nose of spoon.	•	el, broken rock in	G#210274 A-2-4, SP-SM
							845			Roller Coned ahead from 95	.0-100.5' bgs.		WC=18.6%
							905			Sand with frequent cobbles a thru shoe. 60 blows/in move		e bent, roller cone	
							RC				-		
100													

100 J Remarks:

Hammer #283

Stratification lines represent approximate boundaries between soil types; transitions may be gradual.

orialinoalion into represent approximate boundaries between our types, transmitte may be gradien

* Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other than those present at the time measurements were made.

Page 4 of 5

]	Maine Department of Transportat						Project:	CNR	Railroac	Crossing, Routes 4/100/202	Boring No.:	BB-ACNR-1	
Soil/Rock Exploration Log US CUSTOMARY UNITS							Location	n: Aub	ourn, Ma	ine	PIN:	15600.00	
Drille	er:		Northern Test	Boring	Eleva	tion	(ft.)	238	.2		Auger ID/OD:	5" Solid Stem	
Oper			Mike/Nick		Datur		(')		VD 88		Sampler:	24" Standard S	plit Spoon
•	ed By:		K. Maguire		Rig T		<u> </u>		drick D	0	Hammer Wt./Fall:	140#/30"	1
	Start/Fi	inish·	5/19/08, 5/22/	08	+		lethod:			Boring	Core Barrel:	NQ-2"x10'	
	Boring Location: 4+45.9, 12.9 Rt.			Casin			HW		Doring	Water Level*:	None Observed	1	
			actor: 0.633	XI.	Hamr			Autom		IIdli.		TVOIIC OUSCIVE	1
Definit D = Sp MD = 1 U = Th MU = 1 V = Ins	ions: blit Spoon Jnsuccess in Wall Tu Jnsuccess situ Vane S	Sample sful Split Spo ube Sample sful Thin Wa Shear Test,	oon Sample attemp II Tube Sample att PP = Pocket Per une Shear Test atte	RC = Roller WOH = wei netrometer	Core Samp d Stem Au low Stem A r Cone ight of 140 weight of ro	le iger Auger Olb. ha	mmer casing	Autoin	$S_u = Ins$ $T_v = Poole$ $q_p = Une$ N-uncor M-uncor M-uncor M-uncor	Hydraulic □ tu Field Vane Shear Strength (psf) ket Torvane Shear Strength (psf) confined Compressive Strength (ksf) ected = Raw field SPT N-value Efficiency Factor = Annual Calibratie PT N-uncorrected corrected for ham	WC = wa LL = Liqu PL = Plas on Value PI = Plas mer efficiency G = Grain		
		Τ _		Sample Information	_ 1		1	1	4				Laboratory
Depth (ft.)	Sample No.	Pen./Rec. (in.)	Sample Depth (ft.)	Blows (/6 in.) Shear Strength (psf) or RQD (%)	N-uncorrected	N ₆₀	Casing Blows	Elevation (ft.)	Graphic Log	Visual De:	scription and Remarks		Testing Results/ AASHTO and Unified Clas
100	R2	117.6/ 117.6	100.50 - 110.30	RQD = 77%			NQ	137.70				100.50	-
		117.0	110.50				CORE	1		Top of Bedrock at Elev. 137. Bedrock: White, green and g		te GRANITE	
		1					HOKE		25 P	with garnet and mica. Rock I	Mass Quality = Good		
									12/2/2	R2:Core Times (min:sec) 100.5-101.5' (5:01)			
										101.5-102.5' (5:01) 102.5-103.5' (4:39)			
								•	逐	103.5-104.5' (5:40)			
105 -		-							1980 M	104.5-105.5' (5:06) 105.5-106.5' (6:09)			
									1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	106.5-107.5' (6:20)			
										107.5-108.5' (4:58) 108.5-109.5' (5:07)			
									1	109.5-110.3' (4:52) 100% Re	covery		
									12/2 12/2				
									134				
- 110 -							+V-	127.90	A.S.			110.30	
								127.90	Ί	Bottom of Exploration	tion at 110.30 feet below ground sur		
- 115 -													
110													
								1					
								-					
		1						-					
120 -													
								1					
								-					
105													
125 Rem	arks:		1				1						L

Hammer #283

 $Stratification\ lines\ represent\ approximate\ boundaries\ between\ soil\ types;\ transitions\ may\ be\ gradual.$

Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other than those present at the time measurements were made.

Page 5 of 5

I	Main	e Dep	E Department of Trans Soil/Rock Exploration Log US CUSTOMARY UNITS		ation	1	Project:	CNR	Railroac	Crossing, Routes 4/100/202	Boring No.:	BB-AC	NR-102A
							Location	n: Aub	urn, Ma	ine	PIN:	156	00.00
Drille	r:		Northern Test	Boring	Ele	vation	(ft.)	216.	6		Auger ID/OD:	N/A	
Oper	ator:		Mike/Nick		Dat	tum:		NA	VD 88		Sampler:	24" Standard S	plit Spoon
Logg	ed By:		K. Maguire		Rig	Туре		Die	drick D5	0	Hammer Wt./Fall:	140#/30"	
Date	Start/Fi	nish:	5/22/08; 13:00)-14:00	Dri	lling M	lethod:	Case	ed Wash	Boring	Core Barrel:	N/A	
Borir	ng Loca	tion:	4+93.9, 14.3 F	Rt.	Cas	sing IC	D/OD:	HW			Water Level*:	None Observe	i
Hami	mer Effi	ciency Fa	ctor: 0.633		Hai	mmer	Туре:	Autom	atic 🗵	Hydraulic □	Rope & Cathead □		
MD = U U = Th MU = U V = Ins	lit Spoon S Jnsuccess in Wall Tu Jnsuccess situ Vane S	ful Split Spo be Sample ful Thin Wall Shear Test,	on Sample attemp Tube Sample att PP = Pocket Per se Shear Test atte	RC = Roll WOH = w work olid Stem ollow Ster ler Cone reight of 1 weight of	Auger m Auger 140lb. ha of rods or	casing		$T_V = Poole q_p = Uno N-uncoro Hammer N_{60} = S$	tu Field Vane Shear Strength (psf) ket Torvane Shear Strength (psf) confined Compressive Strength (ksf, ected = Raw field SPT N-value Efficiency Factor = Annual Calibrat PT N-uncorrected corrected for ham ammer Efficiency Factor/60%)*N-u	\(\text{WC} = \) \(\text{LL} = \text{L} \\ \text{PL} = \text{F} \\ \text{ion Value} \text{PI} = \text{PI} \\ \text{imer efficiency} \text{G} = \text{Gi}) = Lab Vane Shear S water content, percer iquid Limit Plastic Limit lasticity Index rain Size Analysis onsolidation Test		
ł				Sample Information					┨				Laboratory
Depth (ft.)	Sample No.	Pen./Rec. (in.)	Sample Depth (ft.)	Blows (/6 in.) Shear Strength (psf) or RQD (%)	N-uncorrected	09 _N	Casing Blows	Elevation (ft.)	Graphic Log	Visual De	scription and Remarks		Testing Results/ AASHTO and Unified Clas
0	1D	24/6	0.00 - 2.00	1/0/1/1	1	1	анр	-		Grass and brush at surface. Light brown/yellow, damp, trace medium to coarse sand		lt, trace gravel,	G#210275 A-2-4, SP-SN WC=9.6%
							13			aHydraulic Push			
							17						
							28		\bowtie				
- 5 -							45	210.60		Casing refusal on top of Pier South to BB-ACNR-102.	Pile Cap, abandon hole a		
								210.00		Bottom of Exploration	n at 6.00 feet below grou	6.00 nd surface.	
10													
							-						
15													
- 20								1					
								1					
								1					
							1	1					
							1	-					
25													

Hammer #283 0.7' Concrete Deck thickness. 23.2' from top of Bridge Deck to Ground Surface.

Stratification lines represent approximate boundaries between soil types; transitions may be gradual.

Page 1 of 1

	Main	e Depa	artment	of Transporta	tion		Project:	CNR I	Railroad	Crossing, Routes 4/100/202	Boring No.:	BB-AC	NR-102
		_	Soil/Rock Expl US CUSTOMA				Locatio	1: Aub	urn, Ma	ine	PIN:	1560	00.00
Drille	er:		Northern Test	Boring	Eleva	ation	(ft.)	217.	8		Auger ID/OD:	N/A	
Ope	rator:		Mike/Nick		Datu	ım:		NA	VD 88		Sampler:	24" Standard Sp	olit Spoon
Log	ged By:		K. Maguire		Rig 1	Гуре:		Diec	drick D5	0	Hammer Wt./Fall:	140#/30"	
Date	Start/Fi	nish:	5/22/08, 5/29/0	08	Drilli	ing M	ethod:	Case	ed Wash	Boring	Core Barrel:	NQ-2"x10'	
Bori	ng Locat	ion:	4+91.6, 14.3 R	t.	Casi	ng ID	/OD:	HW			Water Level*:	None Observed	
		ciency Fa	octor: 0.633				Туре:	Automa			Rope & Cathead		1. (6
MD = U = TI MU = V = In	olit Spoon S Unsuccess nin Wall Tub Unsuccess situ Vane S	ful Split Spoo be Sample ful Thin Wall hear Test,	on Sample attemp Tube Sample atte PP = Pocket Pen ne Shear Test atte	RC = Rolle	d Stem Ai low Stem r Cone ight of 14 veight of r	uger Auger Olb. ha rods or	casing		$T_V = Poole q_p = Uncorr Hammer N_{60} = SI$	tu Field Vane Shear Strength (psf) ket Torvane Shear Strength (psf) confined Compressive Strength (ksf) ected = Raw field SPT N-value Efficiency Factor = Annual Calibrati PT N-uncorrected corrected for ham lammer Efficiency Factor/60%)*N-un		b) = Lab Vane Shear St water content, percent idquid Limit Plastic Limit lasticity Index rain Size Analysis onsolidation Test	
				Sample Information				Ι	4				Laboratory
Depth (ft.)	Sample No.	Pen./Rec. (in.)	Sample Depth (ft.)	Blows (/6 in.) Shear Strength (psf) or RQD (%)	N-uncorrected	N ₆₀	Casing Blows	Elevation (ft.)	Graphic Log		scription and Remarks		Testing Results/ AASHTO and Unified Class.
0							4	217.50		Grass at Ground Surface.		0.30-	
							8						
							11						
_	1D	24/4	4.00 - 6.00	10/5/3/2	8	8	10			Brown, damp, loose, fine to 0.2' decomposed wood layer		el, broken rock,	
5 -							14						
							15						
							16						
10 -	2D		9.00 - 11.00	1/0/1/0	1	1	1			Brown, damp, very loose, fin trace medium to coarse sand		clay in layers,	G#210294 A-4, SC-SM WC=28.6%
10							аНР			^a Hydraulic Push			WC=28.6%
								205.80		Brown, wet, stiff, SILT, som	ne clay, trace fine sand.	12.00	
	an		1100	1110:-	_					(3D/A) 14.0-15.0'			G#210296
15 -	3D/AB V1 V2		14.00 - 16.00 14.63 - 15.00 15.63 - 16.00	1/1/0/0 Su=1116/134 psf Su=362/67 psf	1	1		202.80		55x110 mm vane raw torque V1: 25.0/3.0 ft-lbs	readings:	15.00-	A-4, CL-ML WC=32.9% LL=27
										(3D/B)15.0-16.0' Grey, wet, soft, SILT, some 55x110 mm vane raw torque V2: 8.1/1.5 ft-lbs	clay, trace fine sand in lage readings:		PL=22 PI=5 G#210297 A-4, CL-ML WC=33.5%
20 -	1U	24/22	19.00 - 21.00	Piston Sampler						Grey, wet, medium stiff, SIL	.T, some clay, trace fine s	and.	LL=25 PL=20 PI=5 G,C#210622 A-4, CL-ML
	V3		21.63 - 22.00	Su=674/232 psf						55v110 m	, mondim and		WC=30.2% Non-Plastic
	V4		22.63 - 23.00	Su=629/89 psf						55x110 mm vane raw torque V3: 15.1/5.2 ft-lbs V4: 14.1/2.0 ft-lbs	e readings:		
25	4D	24/24	24.00 - 26.00	sample thru vane						Grey, wet, medium stiff, SII 55x110 mm vane raw torque	•	and.	G#210295 A-4, CL-ML

Hammer #283 0.7' Concrete Deck thickness.

 20.9° from top of Bridge Deck to Ground Surface.

Stratification lines represent approximate boundaries between soil types; transitions may be gradual.

* Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other than those present at the time measurements were made.

Page 1 of 4

	Main	e Dep	artment	of Transporta	ation	1	Project	: CNR	Railroad	d Crossing, Routes 4/100/202	Boring No	.: BB-AC	NR-102
			Soil/Rock Expl US CUSTOMA				Location	on: Aub	urn, Ma	nine	PIN:	1560	00.00
Drill	er:		Northern Test	Boring	Ele	vation	(ft.)	217.	8		Auger ID/OD:	N/A	
Ope	rator:		Mike/Nick		Dat	um:		NA	/D 88		Sampler:	24" Standard S	plit Spoon
Log	ged By:		K. Maguire		Rig	Type:		Die	rick D5	50	Hammer Wt./Fa	all: 140#/30"	
Date	Start/Fi	nish:	5/22/08, 5/29/0)8	Dril	lling M	ethod:	Case	d Wash	n Boring	Core Barrel:	NQ-2"x10'	
Bori	ng Locat	ion:	4+91.6, 14.3 R	t.	Cas	sing ID	/OD:	HW			Water Level*:	None Observed	
		ciency F	actor: 0.633			nmer ⁻	Туре:	Autom		Hydraulic □	Rope & Cathead □		
MD = U = T MU = V = In	olit Spoon S Unsuccessf nin Wall Tub Unsuccessf situ Vane S	ful Split Spo be Sample ful Thin Wal hear Test,	oon Sample attemp Il Tube Sample atte PP = Pocket Pen ne Shear Test atte	RC = Roll WOH = w etrometer WOR/C = w wo1P =	olid Stem a bllow Ster er Cone reight of 1 weight o	Auger n Auger 40lb. ha f rods or	casing		T _V = Poo q _p = Uno N-uncori Hammer N ₆₀ = S	itu Field Vane Shear Strength (psf) ket Torvane Shear Strength (psf) confined Compressive Strength (ksf) rected = Raw field SPT N-value r Efficiency Factor = Annual Calibrati PT N-uncorrected corrected for ham lammer Efficiency Factor/60%)*N-un	ion Value mer efficiency	Su(lab) = Lab Vane Shear S WC = water content, percent LL = Liquid Limit PL = Plastic Limit PI = Plasticity Index G = Grain Size Analysis C = Consolidation Test	trength (psf)
		_		Sample Information			П	1	ł				Laboratory
Depth (ft.)	Sample No.	Pen./Rec. (in.)	Sample Depth (ft.)	Blows (/6 in.) Shear Strength (psf) or RQD (%)	N-uncorrected	N ₆₀	Casing Blows	Elevation (ft.)	Graphic Log		scription and Rer	narks	Testing Results/ AASHTO and Unified Class.
25	V5 V6		24.63 - 25.00 25.63 - 26.00	Su=545/98 psf Su=643/161 psf						V5: 12.2/2.2 ft-lbs V6: 14.4/3.6 ft-lbs			WC=31.5% LL=27 PL=20 PI=7
- 30 -	2U	24/15	29.00 - 31.00	Piston Sampler						Grey, wet, medium stiff, SII	T, some clay, trace	e fine sand in layers.	G,C#210623 A-6, CL WC=29.8% LL=34 PL=23
	V7 V8		31.63 - 32.00 32.63 - 33.00	Su=384/103 psf						55x110 mm vane raw torque V7: 8.6/2.3 ft-lbs	e readings:		PI=11
	V 0		33.63 - 34.00	Su=527/94 psf Su=616/134 psf						V8: 11.8/2.1 ft-lbs	r		
- 35 -	5D V10	24/24	34.00 - 36.00 34.63 - 35.00	sample thru vane Su=750/156 psf						55x110 mm vane raw torque V9: 13.8/3.0 ft-lbs Grey, wet, medium stiff, Cla V10: 16.8/3.5 ft-lbs	-	e sand.	
- 40 -	6D/MU 3U 7D V11 V12	24/24 24/24 24/24	39.00 - 41.00 41.00 - 43.00 43.00 - 45.00 43.63 - 44.00 44.63 - 45.00	0-24"(WO1P) Piston Sampler sample thru vane Su=670/67 psf Su=714/76 psf				-		Failed Tube attempt, tube en Grey, wet, medium stiff, Cla sand. Washed ahead 2.0' to 41.0' b Grey, wet, medium stiff, silt Grey, wet, medium stiff, silt 55x110 mm vane raw torque V11: 15.0/1.5 ft-lbs V12: 16.0/1.7 ft-lbs	yey SILT, with bla gs, took tube samp y CLAY with black y CLAY with black	ck staining, trace fine le 3U. c staining, trace fine sand.	G#210298 A-4, ML WC=35.4% LL=35 PL=27 PI=8 G,C#210624 A-4, CL WC=38.4% LL=27 PL=19 PI=8
50	4U	24/24	49.00 - 51.00	Piston Sampler						Grey, wet, medium stiff, Cla	yey SILT, trace fin	e sand.	G,#210625 A-4, CL-ML

50 40 Remarks:

Hammer #283

0.7' Concrete Deck thickness.
20.9' from top of Bridge Deck to Ground Surface.

Stratification lines represent approximate boundaries between soil types; transitions may be gradual.

Page 2 of 4

]	Main	e Dep	artment	of Transporta	ation	ì	Proje	ct:	CNR Railroa	Crossing, Routes 4/100/202	Boring No.:	BB-AC	NR-102
			Soil/Rock Exp US CUSTOM/				Loca	tior	: Auburn, M	ine	PIN:	1560	00.00
Drille	er:		Northern Test	Boring	Ele	vation	(ft.)		217.8		Auger ID/OD:	N/A	
Oper	ator:		Mike/Nick		Dat	tum:			NAVD 88		Sampler:	24" Standard S	plit Spoon
Logg	ed By:		K. Maguire		Rig	Туре			Diedrick D	50	Hammer Wt./Fall:	140#/30"	
Date	Start/Fi	nish:	5/22/08, 5/29/0)8	Dri	lling M	ethod	<u>1:</u>	Cased Was	n Boring	Core Barrel:	NQ-2"x10'	
Borir	ng Loca	tion:	4+91.6, 14.3 R	t.	Ca	sing IC	/OD:		HW		Water Level*:	None Observed	l
		ciency F	actor: 0.633			mmer	Гуре:		Automatic ⊠		Rope & Cathead □		
MD = I U = Th MU = I V = Ins	lit Spoon S Jnsuccess in Wall Tu Jnsuccess situ Vane S	iful Split Spo be Sample iful Thin Wal Shear Test,	on Sample attemp I Tube Sample att PP = Pocket Per ne Shear Test atte	RC = Rol empt WOH = w etrometer WOR/C =	olid Stem ollow Ster ler Cone reight of r weight of	Auger m Auger 140lb. ha of rods or	casing		$T_V = Po$ $q_p = Un$ N -uncol $Hamme$ $N_{60} = S$	itu Field Vane Shear Strength (psf) ket Torvane Shear Strength (psf) confined Compressive Strength (ksf) rected = Raw field SPT N-value Efficiency Factor = Annual Calibrati PT N-uncorrected corrected for ham lammer Efficiency Factor/60%)*N-un	WC =	Lab Vane Shear S water content, perceniquid Limit Plastic Limit lasticity Index rain Size Analysis ensolidation Test	
				Sample Information				_					Laboratory
S Depth (ft.)	Sample No.	Pen./Rec. (in.)	Sample Depth (ft.)	Blows (/6 in.) Shear Strength (psf) or RQD (%)	N-uncorrected	N ₆₀	Casing	Blows	Elevation (ft.) Graphic Log	Visual Des	scription and Remarks		Testing Results/ AASHTO and Unified Class.
30													WC=30.7% LL=26
	V13		51.63 - 52.00	Su=670/85 psf									PL=19 PI=7
				•			H			55x110 mm vane raw torque V13: 15.0/1.9 ft-lbs	readings:		11 /
	V14		52.63 - 53.00	Su=629/54 psf						V14: 14.1/1.2 ft-lbs			
	8D	24/24	54.00 - 56.00	sample thru vane						Grey, wet, medium stiff, Cla	· ·	•	G#210299
55 -	V15	2,,2,	54.63 - 55.00	Su=580/80 psf			\vdash			55x110 mm vane raw torque V15: 13.0/1.8 ft-lbs	readings:		A-4, CL WC=30.6%
	V16		55.63 - 56.00	Su=848/89 psf						V16: 19.0/2.0 ft-lbs			LL=29 PL=20
													PL=20 PI=9
							1	\neg					
							H	+					
	5U	24/20	59.00 - 61.00	Piston Sampler						Grey, wet, medium stiff to st	iff, Clayey SILT, trace fir	ne sand.	G,C#210626 A-6, CL
60 -							Н	\vdash					WC=36.8%
							\sqcup	\sqcup					LL=33 PL=22
	V17		61.63 - 62.00	Su=723/152 psf						55x110 mm vane raw torque	readings:		PI=11
	V18		62.63 - 63.00	Su=1045/179 psf						V17: 16.2/3.4 ft-lbs			
				•			+	_		V18: 23.4/4.0 ft-lbs			
									153.80			64.00	G#210300
	9D	24/14	64.00 - 66.00	12/24/23/29	47	50	90)		Grey, wet, dense, fine SAND), little silt, trace medium		A-2-4, SM
65 -							b10)9		uniform. b109 blows for 0.7'.			WC=20.3%
							+						
							79	,					
							15	4					
							13	+					
70													
70 -							13	7					
	10D	24/12	71.00 - 73.00	33/25/25/33	50	53	18			Grey, wet, very dense, fine to	o coarse SAND, some gra	vel, trace silt, with	
		21/12	75.00	55, 25, 25, 55						broken rock. c257 blows for 0.8'.			A-1-b, SW-SM WC=10.4%
							c25	/					
										Grey, wet, very dense, fine to	o coarse SAND, somo	vel trace cilt	
75 _	11D	9.6/8	74.00 - 74.80	36/50(3.6")			81			occasional cobbles.	o com se oznivo, some gra	voi, trace siit,	

Hammer #283

0.7' Concrete Deck thickness.
20.9' from top of Bridge Deck to Ground Surface.

 $Stratification\ lines\ represent\ approximate\ boundaries\ between\ soil\ types;\ transitions\ may\ be\ gradual.$

Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other than those present at the time measurements were made.

Page 3 of 4

1	Moin	o Don	artmant	of Transporta	tion	I	D		p	1.G	Boring No.:	BR-AC	NR-102
	viaiii	_		-	111011	.	Projec	t: CNR	Railroa	d Crossing, Routes 4/100/202	Borning No	DD /IC	1111 102
			Soil/Rock Expl US CUSTOM/				Locati	on: Au	ourn, M	nine	PIN:	1560	00.00
Drille	er:		Northern Test	Boring	Elev	vation	(ft.)	217	.8		Auger ID/OD:	N/A	
Oper	ator:		Mike/Nick		Date	um:		NA	VD 88		Sampler:	24" Standard S	plit Spoon
Logg	jed By:		K. Maguire		Rig	Туре:		Die	drick D	50	Hammer Wt./Fall:	140#/30"	
Date	Start/Fi	inish:	5/22/08, 5/29/0)8	Dril	ling M	ethod:	Cas	ed Was	h Boring	Core Barrel:	NQ-2"x10'	
Bori	ng Loca	tion:	4+91.6, 14.3 R	t.	Cas	ing ID	/OD:	HV	7		Water Level*:	None Observed	l
Ham	mer Effi	iciency Fa	actor: 0.633		Han	nmer ⁻	Гуре:	Auton	atic 🗵	Hydraulic □	Rope & Cathead □		
MD = U = Th MU = V = In:	olit Spoon S Jnsuccess In Wall Tu Jnsuccess Situ Vane S	sful Split Spo lbe Sample sful Thin Wall Shear Test,	on Sample attemp I Tube Sample atte PP = Pocket Pen ne Shear Test atte	RC = Roll WOH = w work WOR/C = mpt WO1P = work WO1P = work work WO1P = work olid Stem A bllow Stem ler Cone reight of 14 weight of	Auger n Auger 40lb. ha f rods or	casing		$T_V = Pc$ $q_p = Ur$ N -unco $Hamme$ $N_{60} = S$	isitu Field Vane Shear Strength (psf) cket Torvane Shear Strength (psf) confined Compressive Strength (ksf) rected = Raw field SPT N-value r Efficiency Factor = Annual Calibrati PT N-uncorrected corrected for ham hammer Efficiency Factor/60%)*N-ur 1	WC = wa LL = Liqu PL = Plas ion Value Pl = Plas imer efficiency G = Grain			
				Sample Information	75			1	1				Laboratory
Depth (ft.)	Sample No.	Pen./Rec. (in.)	Sample Depth (ft.)	Blows (/6 in.) Shear Strength (psf) or RQD (%)	N-uncorrected	N ₆₀	Casing Blows	Elevation (ft.)	Graphic Log	Visual De	scription and Remarks		Testing Results/ AASHTO and Unified Clas
75							115						
							129						
							176						
							559			^d 765 blows for 0.8'.			
- 80 -	12D	9.6/2	79.00 - 79.80	48/50(3.6")			d765			Grey, wet, very dense, fine to occasional cobbles, (Till).	o coarse SAND, some grave	el, trace silt,	
							eWA			eWashed ahead to 84.9' bgs.			
0.5	13D R1	7.2/2 111.6/55	84.00 - 84.60 84.90 - 94.20	79/50(1.2") ROD = N/A%			'NQ'	132.9		Grey, wet, very dense, fine to	o coarse SAND, little gravel	l, little silt, (Till). — — —84.90	G#210602 A-2-4, SP-SN
- 85 -	- Kı	111.0/33	04.70 - 74.20	NQD - IV/A%			CORE	7 132.7		R1: Pegmetite boulders with to coarse silty sand layers.	iron staining over Gneiss be	oulders with fine	WC=12.2%
										R1:Core Times: (min:sec) 84.9-85.9' (2:08)			
								129.9		85.9-86.9' (2:00) 86.9-87.9' (4:03) 87.9-88.9' (3:46)			
										88.9-89.9' (3:40) 88.9-89.9' (3:40) 89.9-90.9' (3:15)			
00										90.9-91.9' (4:31)			
- 90 -										91.9-92.9' (5:04) 92.9-93.9' (5:45)			
								-		93.9-94.2' (3:11) 46% Recov	very		
										Core Blocked		- — ——87.90-	
										Grey, wet very dense, fine to	o coarse SAND, little gravel		
	D2	40/40	04.20 09.20	DOD - 65%				123.8) , ,	Top of Bedrock at Elev. 123	8'	94.00	
- 95 -	R2	48/48	94.20 - 98.20	RQD = 65%					73.3	Bedrock: Black, white and g intrusions, chlorite rich. Roc	rey, GNEISS interbedded w	ith pegmetite	
								4	2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	R2:Core Times (min:sec)			
							$[\setminus]$		× î	94.2-95.2' (3:32) 95.2-96.2' (3:35)			
							 \ /	1	1 ye . E.	96.2-97.2' (3:15)			
							$+$ \forall	119.6	4	97.2-98.2' (2:16) 100% reco	very		
							'	119.6	,	(at 98.20 feet below ground	98.20- d surface.	
100													

Hammer #283

0.7' Concrete Deck thickness.
20.9' from top of Bridge Deck to Ground Surface.

 $Stratification\ lines\ represent\ approximate\ boundaries\ between\ soil\ types;\ transitions\ may\ be\ gradual.$

Page 4 of 4

	Main	e Dep	artment	of Transporta	ation	ı	Project:	CNR I	Railroad	Crossing, Routes 4/100/202	Boring No.:	BB-AC	NR-103
			Soil/Rock Exp US CUSTOM				Location	1: Aub	ırn, Mai	ne	PIN:	1560	00.00
Drille	er:		MaineDOT		Ele	vation	(ft.)	224.	4		Auger ID/OD:	N/A	
Ope	rator:		E. Giguere/C.	Giles	Da	tum:		NAV	'D 88		Sampler:	24" Standard Sp	olit Spoon
Log	ged By:		B. Wilder		Riç	ј Туре	:	CMI	E 45C		Hammer Wt./Fall:	140#/30"	
Date	Start/Fi	nish:	5/19/08, 5/21/0	08	Dri	lling N	lethod:	Case	d Wash	Boring	Core Barrel:	NQ-2"	
Bori	ng Loca	tion:	5+60.6, 14.2 F	tt.	Ca	sing IE)/OD:	HW			Water Level*:	None Observed	
Ham Definit		ciency Fa	actor: 0.77	R = Rock		mmer	Туре:	Automa		Hydraulic □ u Field Vane Shear Strength (psf)	Rope & Cathead	ab) = Lab Vane Shear St	trongth (not)
D = S MD = U = TI MU = V = In	olit Spoon S Unsuccess nin Wall Tu Unsuccess situ Vane S	ful Split Spo be Sample ful Thin Wall Shear Test,	on Sample attemp Tube Sample att PP = Pocket Per ne Shear Test atte	SSA = Sc ot HSA = Hc RC = Roll empt WOH = w letrometer WOR/C = empt WO1P = V	ollid Stem ollow Ste er Cone eight of weight o	Auger m Auger 140lb. ha of rods or	mmer casing		T _V = Pock q _p = Unco N-uncorre Hammer N ₆₀ = SP	tet Torvane Shear Strength (psf) onfined Compressive Strength (ksf) onfined Raw field SPT N-value Efficiency Factor = Annual Calibrati T N-uncorrected corrected for ham ammer Efficiency Factor/60%)*N-ur	WC LL = PL = on Value PI = mer efficiency G =	ab) - Lab Valle Glied of = water content, percent Liquid Limit Plastic Limit Plasticity Index Grain Size Analysis Consolidation Test	arengur (psi)
				Sample Information									Laboratory
Depth (ft.)	Sample No.	Pen./Rec. (in.)	Sample Depth (ft.)	Blows (/6 in.) Shear Strength (psf) or RQD (%)	N-uncorrected	N ₆₀	Casing Blows	Elevation (ft.)	Graphic Log	Visual De	scription and Remarks	3	Testing Results/ AASHTO and Unified Class.
0	1D	24/4	0.00 - 2.00	1/1/1/1	2	3	6		₩	Light brown, dry, very loose	, fine SAND with roots	and wood, (Fill).	
							7						
							5						
							3						
							5						
- 5 -	2D	24/12	5.00 - 7.00	1/2/2/1	4	5	8		\bowtie	Light brown, wet, loose, fine		trace medium to	G#210603
		- "		5, 2, 2			2		\bowtie	coarse sand, trace gravel, tra-	ce ciay, (Fili).		A-4, ML WC=25.8%
							2						
							3						
							2						
- 10 -	3D	24/14	10.00 - 12.00	WOR/WOH/WOH/ WOR			3			Similar to above.			
							7						
							10						
							6						
							3	210.40	W			14.00	
- 15 -	1U	24/24	15.00 - 17.00	WOR/WOR			WOC		111	Grey, wet, medium stiff, SIL	T, some clay, trace fine	sand.	G,C#210627 A-4, CL-ML
							WOC		X				WC=34.3% LL=28
	V1		17.52 - 17.95	Su=632/110 psf			WOH		W	65x130 mm vane raw torque	readings:		PL=21 PI=7
	V2		18.52 - 18.95	Su=632/82 psf			WOH			V1: 23.0/4.0 ft-lbs V2: 23.0/3.0 ft-lbs			
- 20 -							WOH		W				
20 -	4D	24/24	20.50 - 22.50	push thru vane			WOC		W	Grey, wet, medium stiff, SIL		sand.	G#210604
	V3		21.07 - 21.50	Su=659/110 psf			WOC		111	65x130 mm vane raw torque V3: 24.0/4.0 ft-lbs	readings:		A-6, CL WC=33.2%
	V4		22.07 - 22.50	Su=522/82 psf			WOH		111	V4: 19.0/3.0 ft-lbs			LL=36 PL=22 PI=14
							WOH		W				11-14
25 .							WOH		100				

0.6' Concrete Deck thickness. 19.0' from top of Bridge Deck to Ground Surface.

Stratification lines represent approximate boundaries between soil types; transitions may be gradual.

* Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other than those present at the time measurements were made.

Page 1 of 4

]	Main	e Dep	artment	of Transport	ation	ı	Project:	CNR I	Railroad	Crossing, Routes 4/100/202	Boring No.:	BB-AC	NR-103
			Soil/Rock Exp US CUSTOM				Location	1: Aub	ırn, Ma	ine	PIN:	1560	00.00
Drille	r:		MaineDOT		Ele	vation	(ft.)	224.	4		Auger ID/OD:	N/A	
Oper	ator:		E. Giguere/C.	Giles	Da	tum:		NAV	/D 88		Sampler:	24" Standard S	plit Spoon
Logg	ed By:		B. Wilder		Rig	g Type:		CMI	E 45C		Hammer Wt./Fall:	140#/30"	
Date	Start/Fi	inish:	5/19/08, 5/21/	08	Dri	illing M	lethod:	Case	d Wash	Boring	Core Barrel:	NQ-2"	
Bori	ng Loca	tion:	5+60.6, 14.2 I	Rt.	Ca	sing ID)/OD:	HW			Water Level*:	None Observed	i
		iciency F	actor: 0.77			mmer	Туре:	Automa			Rope & Cathead		
MD = 1 U = Th MU = 1 V = Ins	lit Spoon Jnsuccess in Wall Tu Jnsuccess situ Vane S	sful Split Spo ube Sample sful Thin Wa Shear Test,	oon Sample attem II Tube Sample att PP = Pocket Pei ne Shear Test atte	SSA = Si pt		Auger m Auger 140lb. ha of rods or	casing		T _V = Poo q _p = Uno N-uncorr Hammer N ₆₀ = SI	tu Field Vane Shear Strength (psf) ket Torvane Shear Strength (psf) confined Compressive Strength (ksf) ected = Raw field SPT N-value Efficiency Factor = Annual Calibrati PT N-uncorrected corrected for ham lammer Efficiency Factor/60%)*N-ui		p) = Lab Vane Shear S water content, percen iquid Limit Plastic Limit lasticity Index rain Size Analysis onsolidation Test	trength (pst)
		·	Ę		ъ				1				Laboratory
Depth (ft.)	Sample No.	Pen./Rec. (in.)	Sample Depth (ft.)	Blows (/6 in.) Shear Strength (psf) or RQD (%)	N-uncorrected	09 _N	Casing Blows	Elevation (ft.)	Graphic Log		scription and Remarks		Testing Results/ AASHTO and Unified Class.
25	2U	24/24	25.00 - 27.00	WOR/WOR			WOH		娰	Grey, wet, medium stiff, SIL	T, some clay, trace fine s	and.	G,C#210628 A-4, ML
							WOH		W				WC=29.0% LL=27
							14						PL=23 PI=4
	V5		28.57 - 29.00	Su=522/110 psf			22			65x130 mm vane raw torque	readings:		
	V6		29.57 - 30.00	Su=577/137 psf			19			V5: 19.0/4.0 ft-lbs V6: 21.0/5.0 ft-lbs	returnings.		
30 -	5D	24/18	30.50 - 32.50	push thru vane			14			Similar to above.			
	V7		31.07 - 31.50	Su=838/165 psf			19			65x130 mm vane raw torque V7: 30.5/6.0 ft-lbs	e readings:		
	V8		32.07 - 32.50	Su=879/192 psf			21			V8: 32.0/7.0 ft-lbs			
							21						
							22		W				
- 35 -	3U	24/24	35.00 - 37.00	WOR/HydralicPush			14			Grey, wet, stiff, SILT, some	clay, trace fine sand.		G,C#210629 A-6, CL
							21						WC=34.3% LL=35
	V9		37.57 - 38.00	Su=1044/220 psf			27			65x130 mm vane raw torque	e readings:		PL=21 PI=14
	V10		38.57 - 39.00	Su=1099/247 psf			29			V9: 38.0/8.0 ft-lbs V10: 40.0/9.0 ft-lbs			
- 40 -							30		1				
40	6D	24/24	40.50 - 42.50	push thru vane			12			Grey, wet, medium stiff, Cla			G#210605
	V11		41.13 - 41.50	Su=893/156 psf			22		1	55x110 mm vane raw torque V11: 20.0/3.5 ft-lbs	readings:		A-6, CL WC=36.8% LL=36
	V12		42.13 - 42.50	Su=893/156 psf			26			V12: 20.0/3.5 ft-lbs			PL=22 PI=14
							26		W				11-14
- 45 -							24				T. 1		G G 210422
15	4U	24/24	45.00 - 47.00	WOR/WOR			13		继	Grey, wet, medium stiff, SIL	1, some clay, trace fine s	and.	G,C#210630 A-6, ML WC=40.8%
							18						LL=37 PL=27
	V13		47.63 - 48.00	Su=871/134 psf			20		继	55x110 mm vane raw torque	readings:		PI=10
	V14		48.63 - 49.00	Su=982/223 psf			19			V13: 19.5/3.0 ft-lbs V14: 22.0/5.0 ft-lbs			
							21		WW				

0.6' Concrete Deck thickness.

19.0' from top of Bridge Deck to Ground Surface.

Stratification lines represent approximate boundaries between soil types; transitions may be gradual.

oracinoation into represent approximate boundaries between son types, transitions may se gradual.

Page 2 of 4

	Main	e Dep	artment	of Transport	ation	ı	Project:	CNR	Railroad	Crossing, Routes 4/100/202	Boring No.:	BB-AC	NR-103
			Soil/Rock Expl US CUSTOM/				Location	1: Aub	urn, Ma	ine	PIN:	1560	00.00
Drill	er:		MaineDOT		Ele	vation	(ft.)	224.	4		Auger ID/OD:	N/A	
Ope	rator:		E. Giguere/C.	Giles	Da	tum:		NA	VD 88		Sampler:	24" Standard S	plit Spoon
Log	ged By:		B. Wilder		Rig	Type:	1	CM	E 45C		Hammer Wt./Fall:	140#/30"	
Date	Start/Fi	nish:	5/19/08, 5/21/0)8	Dri	illing M	lethod:	Case	ed Wash	Boring	Core Barrel:	NQ-2"	
Bori	ng Loca	tion:	5+60.6, 14.2 R	t.	Ca	sing IC	/OD:	HW			Water Level*:	None Observed	l
		ciency Fa	actor: 0.77			mmer	Туре:	Autom			Rope & Cathead □		
MD = U = TI MU = V = In	plit Spoon S Unsuccess nin Wall Tu Unsuccess situ Vane S	ful Split Spo be Sample ful Thin Wal Shear Test,	on Sample attemp I Tube Sample atte PP = Pocket Pen ne Shear Test atte	RC = Roll empt WOH = v etrometer WOR/C =	olid Stem ollow Ste ller Cone veight of weight of	Auger m Auger 140lb. ha of rods or	casing		$T_V = Poole q_p = Uncorr Hammer N_{60} = SF$	tu Field Vane Shear Strength (psf) ket Torvane Shear Strength (psf) onfined Compressive Strength (ksf) ected = Raw field SPT N-value Efficiency Factor = Annual Calibrati T7 N-uncorrected corrected for ham ammer Efficiency Factor/60%)*N-ur		p) = Lab Vane Shear S water content, percen iquid Limit Plastic Limit Plasticity Index rain Size Analysis onsolidation Test	
				Sample Information									Laboratory
Depth (ft.)	Sample No.	Pen./Rec. (in.)	Sample Depth (ft.)	Blows (/6 in.) Shear Strength (psf) or RQD (%)	N-uncorrected	N ₆₀	Casing Blows	Elevation (ft.)	Graphic Log	Visual De	scription and Remarks		Testing Results/ AASHTO and Unified Class
50	7D	24/24	50.50 - 52.50	push thru vane			18			Grey, wet, stiff, SILT, trace	fine sand.		
	V15		51.13 - 51.50	Su=1161/112 psf			21	1		55x110 mm vane raw torque	readings:		
	<u> </u>								W	V15: 26.0/2.5 ft-lbs V16: 28.0/4.5 ft-lbs			
	V16		52.13 - 52.50	Su=1250/201 psf			24						
							24		KK				
							23		W				
55 -	511	24/24	55.00 - 57.00	WOR/WOR			21		W	Gret, wet, stiff, Clayey SILT	, trace fine sand.		G,C#210631
	5U	24/24	33.00 - 37.00	WOR/WOR			21		W				A-6, CL WC=40.2%
							26		KW				LL=35 PL=23
	V17		57.63 - 58.00	Su=1473/179 psf			26		W	55x110 mm vane raw torque	readings:		PL=23 PI=12
	V18		58.63 - 59.00	Su=1384/223 psf			26			V17: 33.0/4.0 ft-lbs	readings.		
				-			48	164.90		V18: 31.0/5.0 ft-lbs		59.50	
60	8D	24/16	60.00 - 62.00	7/6/7/14	13	17	48	104.70		Brown, wet, medium dense, coarse sand, trace gravel.	fine to medium SAND, li		G#210606 A-2-4, SM
							62	1					WC=22.5%
							77						
							77						
							82						
65	9D	24/17	65.00 - 67.00	4/5/5/10	10	13	64			Brown, wet, medium dense, coarse sand, trace gravel.	fine to medium SAND, li	ttle silt, trace	
							93						
							120						
							174						
							246						
70	10D	24/16	70.00 - 72.00	26/42/40/55	82	105	74			Brown, wet, very dense, fine	e to coarse SAND, little g	ravel, little silt.	G#210607 A-2-4, SM WC=13.0%
							127						11 (-13.070
							175	151 10		_ a125 blows for 0.3'.			
	R1	60/59	73.30 - 78.30	RQD = 65%		L_	a1 <u>25</u> NQ	151.10			1'	73.30-	
75							CORE			Top of Bedrock at Elev. 151 Bedrock: White, green and g		netite GRANITE,	

0.6' Concrete Deck thickness.

19.0' from top of Bridge Deck to Ground Surface.

Stratification lines represent approximate boundaries between soil types; transitions may be gradual.

orialineator into represent approximate bearing to better our types, it another may be gradual.

Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other than those present at the time measurements were made.

Page 3 of 4

I	Main	e Dep	artment	of Transporta	ation		Project:	CNR	Railroa	d Crossing, Routes 4/100/202	Boring No.:	BB-AC	NR-103
			Soil/Rock Exp US CUSTOM/				Locatio	n: Au	burn, M	nine	PIN:	156	00.00
Drille	er:		MaineDOT		Eleva	ation	(ft.)	224	.4		Auger ID/OD:	N/A	
Oper	ator:		E. Giguere/C.	Giles	Datu	ım:		NA	VD 88		Sampler:	24" Standard S	plit Spoon
Logg	ed By:		B. Wilder		Rig 1	Гуре:		CM	IE 45C		Hammer Wt./Fall:	140#/30"	
Date	Start/Fi	inish:	5/19/08, 5/21/0	08	Drilli	ing M	ethod:	Cas	sed Was	n Boring	Core Barrel:	NQ-2"	
Borin	ng Loca	ition:	5+60.6, 14.2 R	Rt.	Casi	ng ID	/OD:	HV	7		Water Level*:	None Observed	i
Ham	mer Effi	iciency Fa	actor: 0.77		Ham	mer -	Гуре:	Auton	atic 🗵	Hydraulic □	Rope & Cathead □		
MD = I U = Th MU = I V = Ins	lit Spoon Jnsuccess in Wall Tu Jnsuccess situ Vane S	sful Split Spo ube Sample sful Thin Wal Shear Test,	on Sample attemp I Tube Sample att PP = Pocket Per ne Shear Test atte	SSA = Sc Dt	Core Samp blid Stem Au bllow Stem ler Cone reight of 140 weight of o Weight of o	uger Auger Olb. ha rods or	casing		$T_V = Po$ $q_p = Un$ N -uncon $Hamme$ $N_{60} = S$	itu Field Vane Shear Strength (psf) cket Torvane Shear Strength (psf) confined Compressive Strength (ksf, rected = Raw field SPT N-value Efficiency Factor = Annual Calibrat PT N-uncorrected corrected for ham lammer Efficiency Factor/60%)*N-u	WC = LL = L PL = F F F F F F F F F F	y = Lab Vane Shear S water content, percen iquid Limit Plastic Limit lasticity Index rain Size Analysis onsolidation Test	strength (psf) t
		1		Sample Information					4				Laboratory
Depth (ft.)	Sample No.	Pen./Rec. (in.)	Sample Depth (ft.)	Blows (/6 in.) Shear Strength (psf) or RQD (%)	N-uncorrected	N ₆₀	Casing Blows	Elevation (ft.)	Graphic Log	Visual De	scription and Remarks		Testing Results/ AASHTO and Unified Clas
75									1/2/2	with garnet and mica, no bed Rock Mass Quality = Fair	lding.		
								1	17.5	R1:Core Times (min:sec)			
								1		73.3-74.3' (7:41) 74.3-75.3' (7:06)			
									14.	75.3-76.3' (6:35)			
	R2	60/58	78.30 - 83.30	RQD = 45%				1	1	76.3-77.3' (6:41) 77.3-78.3' (6:52) 98% Recov	verv		
								1		R2: Rock Quality = Poor Core Times (min:sec)	,		
- 80]		78.3-79.3' (5:14)			
00									17.	79.3-80.3' (5:08) 80.3-81.3' (5:24)			
								1	SY	81.3-82.3' (5:29)			
							 	-	1	82.3-83.3' (5:00) 96% Recov	very		
									(5)				
							\ \V	141.1	0	Rottom of Evploration	at 83.30 feet below grou	83.30	1
										Bottom of Exploration	at 63.50 feet below grot	inu sui iace.	
- 85 -								1					
								1					
								1					
								1					
- 90 -								ł					
								1					
								1					
- 95 -								1					
								-					
								-					
100													
100 Rem	arks:	1	1										

0.6' Concrete Deck thickness. 19.0' from top of Bridge Deck to Ground Surface.

Stratification lines represent approximate boundaries between soil types; transitions may be gradual.

Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other than those present at the time measurements were made.

Page 4 of 4

	Main	e Dep	artment	of Transport	atio	n	Project:	CNR	Railroad	Crossing, Routes 4/100/202	Boring No.:	BB-AC	NR-104
		_	Soil/Rock Exp US CUSTOM/				Location	n: Aut	urn, Ma	ine	PIN:	1560	00.00
Drille	er:		MaineDOT		Ele	evation	(ft.)	241	1		Auger ID/OD:	5" Solid Stem	
Ope	ator:		E. Giguere/C.	Giles	Da	atum:		NA	VD 88		Sampler:	24" Standard Sp	plit Spoon
Logg	ged By:		B. Wilder		Ri	g Type:	:	CM	E 45C		Hammer Wt./Fall:	140#/30"	
Date	Start/Fi	nish:	5/21/08, 5/27/0	08	Dr	rilling M	lethod:	Cas	ed Wash	Boring	Core Barrel:	NQ-2"	
Bori	ng Loca	tion:	6+01.9, 11.7 R	tt.	Ca	asing IC	O/OD:	HW			Water Level*:	None Observed	1
		ciency Fa	actor: 0.77			ammer	Туре:	Autom			Rope & Cathead □		
MD = U = Th MU = V = In	olit Spoon S Unsuccess nin Wall Tu Unsuccess situ Vane S	ful Split Spo be Sample ful Thin Wall Shear Test,	on Sample attemp I Tube Sample att PP = Pocket Per ne Shear Test atte	RC = Ro empt	olid Stem ollow Ste ller Cone veight of weight	n Auger em Auger	mmer casing		$T_V = Poc$ $q_p = Unc$ N -uncorr $Hammer$ $N_{60} = SF$	tu Field Vane Shear Strength (psf) ket Torvane Shear Strength (psf) onfined Compressive Strength (ksf) ected = Raw field SPT N-value Efficiency Factor = Annual Calibrati T N-uncorrected corrected for ham ammer Efficiency Factor/60%)*N-ui	WC LL = PL = ion Value	ab) = Lab Vane Shear S = water content, percent Liquid Limit Plastic Limit Plasticity Index Grain Size Analysis Consolidation Test	
		Ε_		Sample Information		1	1		-				Laboratory
Depth (ft.)	Sample No.	ID 13.2/13.2 1.00 - 2.10 10/25/20(1.			N-uncorrected	N ₆₀	Casing Blows	Elevation (ft.)	Graphic Log	Visual De	scription and Remarks	5	Testing Results/ AASHTO and Unified Class
0							SSA	240.60	****	Pavement		0.50	
	1D	13.2/13.2	1.00 - 2.10	10/25/20(1.2")						Brown, dry, very dense, fine occasional cobbles, (Fill). Boulder from 2.1-3.2' bgs.	to coarse SAND, little §	gravel, little silt,	
										Bounder from 2.1-3.2 egs.			
5 -	2D/A	24/18	5.00 - 7.00	4/6/5/4	11	14				(2D/A) 5.0-6.5'. Similar to above, medium de	ense.		G#210608 A-1-b, SM WC=4.5%
								234.60		(2D) 6.5-7.0' bgs. Light brown, damp, Sandy S	SILT, little clay, (Fill).	- — — — —6.50 ⁻	G#210609 A-4, ML WC=20.9%
10 -	210	24/10	10.00 12.00	15/0/0/17	10	22		232.10		Golden brown, damp, mediu			
	3D	24/19	10.00 - 12.00	15/9/9/16	18	23				medium to coarse sand, (Fill).		
15 -	4D	24/20	15.00 - 17.00	4/7/9/9	16	21	143	-		Golden brown, damp, mediumedium to coarse sand, (Fill		ace silt, trace	G#210610 A-3, SP-SM
							157			,,,	,		WC=8.6%
							123 79	223.10				18.00	
							87]					
20 -	5D	24/20	20.50 - 22.50	2/4/8/7	12	15	64			Olive-brown, moist, medium trace roots.	n dense, SILT, some fine	sand, little clay,	G#210611 A-4, ML
							81						WC=21.0%
							87						
25 Rem	6D arks:	24/22	24.00 - 26.00	7/6/7/6	13	17	57						G#210612 A-4, ML

Stratification lines represent approximate boundaries between soil types; transitions may be gradual.

Page 1 of 3

	Main	o Dom		of Two war and	-4: o -						Boring No.:	RR AC	NR-104
	viain	ine Department of Transporta Soil/Rock Exploration Log US CUSTOMARY UNITS Maine DOT			ation	1	Project:	CNR I	Railroad	d Crossing, Routes 4/100/202		<u> </u>	1111-104
							Locatio	n: Aub	urn, Ma	nine	PIN:	1560	00.00
Drill	er:		MaineDOT		Ele	vation	(ft.)	241.	1		Auger ID/OD:	5" Solid Stem	
	ator:		E. Giguere/C.	Giles	+	tum:			/D 88		Sampler:	24" Standard S	plit Spoon
	ged By: Start/Fir	aiah.	B. Wilder	00	+	Type:			E 45C	- Davina	Hammer Wt./Fal		
	ng Locat		5/21/08, 5/27/ 6+01.9, 11.7 F		$\overline{}$	sing ID	lethod:	HW	ed wasi	n Boring	Water Level*:	NQ-2" None Observed	<u> </u>
			actor: 0.77		_	mmer '		Automa	ntic 🛛	Hydraulic □	Rope & Cathead □	Tione Goserved	•
Defini D = S MD = U = TI MU = V = In	ions: olit Spoon S Unsuccessi nin Wall Tub Unsuccessi situ Vane S	sample ful Split Spo pe Sample ful Thin Wa hear Test,	oon Sample attemp II Tube Sample att PP = Pocket Per ne Shear Test atte	RC = Rol empt WOH = w netrometer WOR/C = empt WO1P =	olid Stem ollow Ster ler Cone veight of ' weight of	Auger m Auger 140lb. ha of rods or	casing		$S_u = Ins$ $T_V = Po$ $q_p = Un$ N -uncor $Hamme$ $N_{60} = S$	itu Field Vane Shear Strength (psf) cket Torvane Shear Strength (psf) confined Compressive Strength (ksf) rected = Raw field SPT N-value r Efficiency Factor = Annual Calibrati PT N-uncorrected corrected for ham lammer Efficiency Factor/60%)*N-ui	ion Value mer efficiency	S _{U((ab)} = Lab Vane Shear S WC = water content, percent LL = Liquid Limit PL = Plastic Limit PI = Plasticity Index G = Grain Size Analysis C = Consolidation Test	
		_		Sample Information					1				Laboratory
Depth (ft.)	Sample No.	Pen./Rec. (in.)	Sample Depth (ft.)	Blows (/6 in.) Shear Strength (psf) or RQD (%)	N-uncorrected	09 _N	Casing Blows	Elevation (ft.)	Graphic Log	Visual De	scription and Rem	arks	Testing Results/ AASHTO and Unified Class.
25							67			Olive-brown, wet, medium of	dense, SILT, little sa	nd, little clay.	WC=25.5%
							68						
							67						
							66						
30 -	7D/MV	24/24	29.50 - 31.50	3/WOH/WOH/1			53			Failed 55x110 mm vane atte			G#210613
30							59			Olive, wet, very soft, SILT,	little clay, trace fine	sand.	A-4, ML WC=30.7% LL=25
							61						PL=22 PI=3
							55						
							54	207.70		Grey, wet, soft to medium st	iff Clavey SILT tra	33.40	G,C#210632
35 -	1U	24/24	34.00 - 36.00	WOR/Hyd Push			46			Grey, wei, sort to medium st	ini, ciayey bibi, ac	ce fine said.	A-4, CL WC=36.7%
							55			1			LL=30 PL=22
	V1		36.63 - 37.00	Su=513/89 psf			59			55x110 mm vane raw torque V1: 11.5/2.0 ft-lbs	e readings:		PI=8
	V2		37.63 - 38.00	Su=491/89 psf			54			V2: 11.0/2.0 ft-lbs			
							59	-]			
40 -	8D	24/24	40.50 42.50				54						
	V3	24/24	40.50 - 42.50 41.13 - 41.50	push thru vane Su=625/89 psf			70	-		Similar to above, medium st 55x110 mm vane raw torque			G#210614 A-6, CL
	V3 V4		42.13 - 42.50	Su=737/134 psf			79			V3: 14.0/2.0 ft-lbs V4: 16.5/3.0 ft-lbs			WC=31.9% LL=31
	**		72.13 - 42.30	5u=757/15+ psi			73	-					PL=19 PI=12
	2U	24/24	44.00 - 46.00	WOR/HydraulicPus			62			Grey, wet, stiff, Silty CLAY	, trace fine sand.		G,C#210633
45 -		,-,		- · ,			73	1		1			A-6, CL WC=36.9% LL=36
	V5		46.63 - 47.00	Su=1049/223 psf			79	1		55-110	1'		PL=24 PI=12
	V6		47.63 - 48.00	Su=1071/223 psf			77	1		55x110 mm vane raw torque V5: 23.5/5.0 ft-lbs V6: 24.0/5.0 ft-lbs	e readings:		
							73	1		v 0: 24.0/3.0 It-108			
50 -	9D	24/24	49.50 - 51.50	push thru vane			66			Similar to above, stiff.			G#210615

50 Pemarks:

 $Stratification\ lines\ represent\ approximate\ boundaries\ between\ soil\ types;\ transitions\ may\ be\ gradual.$

Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other than those present at the time measurements were made.

Page 2 of 3

											-		
]	Maine Department of Transportation Project: CNR Railroad Crossing, Routes 4/100/202 Boring No.: BB-ACNR-10 Soil/Rock Exploration Log US CUSTOMARY UNITS Location: Auburn, Maine PIN: 15600.00 Iller: MaineDOT Elevation (ft.) 241.1 Auger ID/OD: 5" Solid Stem erator: E. Giguere/C. Giles Datum: NAVD 88 Sampler: 24" Standard Split Spoon 140 (Maine) agged By: B. Wilder Rig Type: CME 45C Hammer Wt./Fall: 140 (Maine) te Start/Finish: 5/21/08, 5/27/08 Drilling Method: Cased Wash Boring Core Barrel: NQ-2" ring Location: 6+01.9, 11.7 Rt. Casing ID/OD: HW Water Level*: None Observed mmer Efficiency Factor: 0.77 Hammer Type: Automatic Maine Hydraulic Maine Rope & Cathead Maine			NR-104									
		-	Soil/Rock Exp	loration Log		- 1	Locatio	n: Aub	urn, Ma	ine	PIN:	1560	00.00
Drille	er:		MaineDOT		Elev	vation	(ft.)	241.	1		Auger ID/OD:	5" Solid Stem	
Oper	ator:		E. Giguere/C.	Giles	Dat	um:		NAV	VD 88		f	24" Standard S	plit Spoon
Logo	ed By:		B. Wilder		Rig	Type:		CMI	E 45C		<u> </u>	140#/30"	
		inish:		08	Ť					n Boring			
					_								i
										Hydraulic □			
Definit D = Sp MD = U = Th MU = V = In:	ions: olit Spoon Unsuccess nin Wall Tu Unsuccess situ Vane S	Sample sful Split Spo ube Sample sful Thin Wal Shear Test,	oon Sample attemp Il Tube Sample att PP = Pocket Per ne Shear Test atte	RC = Rolle empt WOH = w etrometer WOR/C =	Core San lid Stem A llow Sten er Cone eight of 1- weight of	mple Auger n Auger 40lb. har f rods or	nmer casing		S_u = Insi T_V = Pool q_p = Uncorr N-uncorr Hammer N_{60} = SI	itu Field Vane Shear Strength (psf) cket Torvane Shear Strength (psf) confined Compressive Strength (ksf) rected = Raw field SPT N-value Efficiency Factor = Annual Calibrati PT N-uncorrected corrected for ham lammer Efficiency Factor/60%)*N-u	$\begin{array}{ccc} S_{U(la)} & & \\ WC = & \\ VC = $	b) = Lab Vane Shear S = water content, percen Liquid Limit Plastic Limit Plasticity Index Grain Size Analysis Consolidation Test	
		1		Sample Information					_				Laboratory
Depth (ft.)	Sample No.	Pen./Rec. (in.)	Sample Depth (ft.)	Blows (/6 in.) Shear Strength (psf) or RQD (%)	N-uncorrected	09 _N	Casing Blows	Elevation (ft.)	Graphic Log	Visual De	scription and Remarks		Testing Results/ AASHTO and Unified Clas
50	V7		50.13 - 50.50	Su=1027/201 psf			67			55x110 mm vane raw torque V7: 23.0/4.5 ft-lbs	e readings:		A-6, CL WC=40.9% LL=39
	V8		51.13 - 51.50	Su=1161/268 psf			67			V8: 26.0/6.0 ft-lbs			PL=25 PI=14
							73	_					
	3U	12/12	54.00 - 55.00	Hydraulic Push			53	187.10		Grey, wet, soft, SILT, some	clay, trace sand, trace gra	54.00- avel.	G,C#210634 A-4, CL-MI
- 55 -							200						WC=29.5% LL=25
	R1	60/60	56.10 - 61.10	RQD = 28%			NQ CORE-	185.00	からいいで	Roller Coned ahead to 56.1' Top of Bedrock at Elev. 185 Bedrock: White, green and g	i.0' grey, coarse grained, pegi	56.10-	PL=20 PI=5
									N. C.	with garnet and mica. Rock R1: Core Times (min:sec) 56.1-57.1' (7:28)	Mass Quality = Poor		
- 60 -									(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	57.1-58.1' (5:42) 58.1-59.1' (4:43) 59.1-60.1' (3:19)			
	R2	60/60	61.10 - 66.10	RQD = 53%						60.1-61.1' (10:32) 100% Rec Rock Mass Quality = Fair R2: Core Times (min:sec)	covery		
								-		61.1-62.1' (7:08) 62.1-63.1' (4:28)			
								1	7-3-	63.1-64.1' (7:48)			
		1						-		64.1-65.1' (8:00) 65.1-66.1' (8:51) 100% Reco	overy		
- 65 -									感				
							V	175.00	4/3/	D. (1 D.)		66.10	
										Bottom of Exploration	at 66.10 feet below gro	und surface.	
								-					
- 70 -								1					
								1					
75													

Stratification lines represent approximate boundaries between soil types; transitions may be gradual.

statilisation into represent approximate beariagnees settles to set types, transitions may be gradual.

* Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other than those present at the time measurements were made.

Page 3 of 3

Appendix B

Laboratory Data

State of Maine - Department of Transportation Laboratory Testing Summary Sheet

Town(s):	Aubu	rn			Proje	ect l	Nur	nb	er: 15	600.0)0
Boring & Sample	Station	Offset	Depth	Reference	G.S.D.C.	W.C.	L.L.	P.I.	Clas	sification	า
Identification Number	(Feet)	(Feet)	(Feet)	Number	Sheet	%			Unified	AASHTO	Frost
BB-ACNR-101, 2D	4+45.9	12.9 Rt.	5.0-7.0	209920	1	4.4			SP-SM	A-3	0
BB-ACNR-101,4D	4+45.9	12.9 Rt.	15.0-17.0	209921	1	11.3			SP-SM	A-3	0
BB-ACNR-101, 5D	4+45.9	12.9 Rt.	20.0-22.0	209922	1	19.7			SM	A-2-4	Ш
BB-ACNR-101, 6D	4+45.9	12.9 Rt.	25.0-27.0	209923	1	30.1			ML	A-4	IV
BB-ACNR-101, 7D/A	4+45.9	12.9 Rt.	30.0-31.5	209924	1	33.1			CL-ML	A-4	IV
BB-ACNR-101, 7D/B	4+45.9	12.9 Rt.	31.5-32.0	209925	1	25.3			ML	A-4	IV
BB-ACNR-101, 8D	4+45.9	12.9 Rt.	35.0-37.0	210269	2	26.9			ML	A-4	IV
BB-ACNR-101, 2U	4+45.9	12.9 Rt.	45.0-47.0	210617	2	30.6	22	3	ML	A-4	IV
BB-ACNR-101, 9D	4+45.9	12.9 Rt.	50.0-52.0	210270	2	32.4	28	6	CL-ML	A-4	IV
BB-ACNR-101, 3U	4+45.9	12.9 Rt.	55.0-57.0	210618	2	32.8	30	11	CL	A-6	IV
BB-ACNR-101, 10D	4+45.9	12.9 Rt.	60.0-62.0	210271	2	30.9	30	8	CL	A-4	IV
BB-ACNR-101, 4U	4+45.9	12.9 Rt.	65.0-67.0	210619	2	38.0	35	11	CL	A-6	IV
BB-ACNR-101, 11D	4+45.9	12.9 Rt.	70.0-72.0	210272	3	34.4	31	19	CL	A-6	Ш
BB-ACNR-101, 5U	4+45.9	12.9 Rt.	75.0-77.0	210620	3	26.4	22	2	ML	A-4	IV
BB-ACNR-101, 6U	4+45.9	12.9 Rt.	85.0-87.0	210621	3	35.2	31	9	CL	A-4	IV
BB-ACNR-101, 13D	4+45.9	12.9 Rt.	90.0-90.35	210273	3	21.8			SC-SM	A-2-4	Ш
BB-ACNR-101, 14D	4+45.9	12.9 Rt.	95.0-96.2	210274	3	18.6			SP-SM	A-2-4	0
BB-ACNR-102, 2D	4+91.6	14.3 Rt.	9.0-11.0	210294	4	28.6			SC-SM	A-4	Ш
BB-ACNR-102, 3D/A	4+91.6	14.3 Rt.	14.0-15.0	210296	4	32.9	27	5	CL-ML	A-4	IV
BB-ACNR-102, 3D/B	4+91.6	14.3 Rt.	15.0-16.0	210297	4	33.5	25	5	CL-ML	A-4	IV
BB-ACNR-102, 1U	4+91.6	14.3 Rt.	19.0-21.0	210622	4	30.2	-N	P-	CL-ML	A-4	IV
BB-ACNR-102, 4D	4+91.6	14.3 Rt.	24.0-26.0	210295	4	31.5	27	7	CL-ML	A-4	IV
BB-ACNR-102, 2U	4+91.6	14.3 Rt.	29.0-31.0	210623	5	29.8	34	11	CL	A-6	IV
BB-ACNR-102, 6D	4+91.6	14.3 Rt.	39.0-41.0	210298	5	35.4	35	8	ML	A-4	IV
BB-ACNR-102, 3U	4+91.6	14.3 Rt.	41.0-43.0	210624	5	38.4	27	8	CL	A-4	IV
BB-ACNR-102, 4U	4+91.6	14.3 Rt.	49.0-51.0	210625	5	30.7	26	7	CL-ML	A-4	IV
BB-ACNR-102, 8D	4+91.6	14.3 Rt.	54.0-56.0	210299	5	30.6	29	9	CL	A-4	IV
BB-ACNR-102, 5U	4+91.6	14.3 Rt.	59.0-61.0	210626	6	36.8	33	11	CL	A-6	IV
BB-ACNR-102, 9D	4+91.6	14.3 Rt.	64.0-66.0	210300	6	20.3			SM	A-2-4	Ш
BB-ACNR-102, 10D	4+91.6	14.3 Rt.	71.0-73.0	210601	6	10.4			SW-SM	A-1-b	0
BB-ACNR-102, 13D	4+91.6	14.3 Rt.	84.0-84.6	210602	6	12.2			SP-SM	A-2-4	0
BB-ACNR-102A/1D	4+93.9	14.3 Rt.	0.0-2.0	210275	6	9.6			SP-SM	A-2-4	0
BB-ACNR-103, 2D	5+60.6	14.2 Rt.	5.0-7.0	210603	7	25.8			ML	A-4	IV
BB-ACNR-103, 1U	5+60.6	14.2 Rt.	15.0-17.0	210627	7	34.3	28	7	CL-ML	A-4	IV
BB-ACNR-103, 4D	5+60.6	14.2 Rt.	20.5-22.5	210604	7	33.2		14	CL	A-6	Ш
BB-ACNR-103, 2U	5+60.6	14.2 Rt.	25.0-27.0	210628	7	29.0	27	4	ML	A-4	IV
BB-ACNR-103, 3U	5+60.6	14.2 Rt.	35.0-37.0	210629	7	34.3		14	CL	A-6	Ш
BB-ACNR-103, 6D	5+60.6	14.2 Rt.	40.5-42.5	210605	8	36.8		14	CL	A-6	Ш
BB-ACNR-103, 4U	5+60.6		45.0-47.0	210630	8	40.8		10	ML	A-6	IV
BB-ACNR-103, 5U	5+60.6	14.2 Rt.	55.0-57.0	210631	8	40.2		12	CL	A-6	Ш
	E L GO G	1449 D+	60 0 63 0	210606	0	22 5		1	CM	A 2 4	11

Classification of these soil samples is in accordance with AASHTO Classification System M-145-40. This classification is followed by the "Frost Susceptibility Rating" from zero (non-frost susceptible) to Class IV (highly frost susceptible).

The "Frost Susceptibility Rating" is based upon the MDOT and Corps of Engineers Classification Systems.

210606

210607

22.5

13.0

8

8

A-2-4

Ш

SM

GSDC = Grain Size Distribution Curve as determined by AASHTO T 88-93 (1996) and/or ASTM D 422-63 (Reapproved 1998)

70.0-72.0

14.2 Rt. 60.0-62.0

14.2 Rt.

5+60.6

5+60.6

BB-ACNR-103, 8D

BB-ACNR-103, 10D

WC = water content as determined by AASHTO T 265-93 and/or ASTM D 2216-98

LL = Liquid limit as determined by AASHTO T 89-96 and/or ASTM D 4318-98

PI = Plasticity Index as determined by AASHTO 90-96 and/or ASTM D4318-98

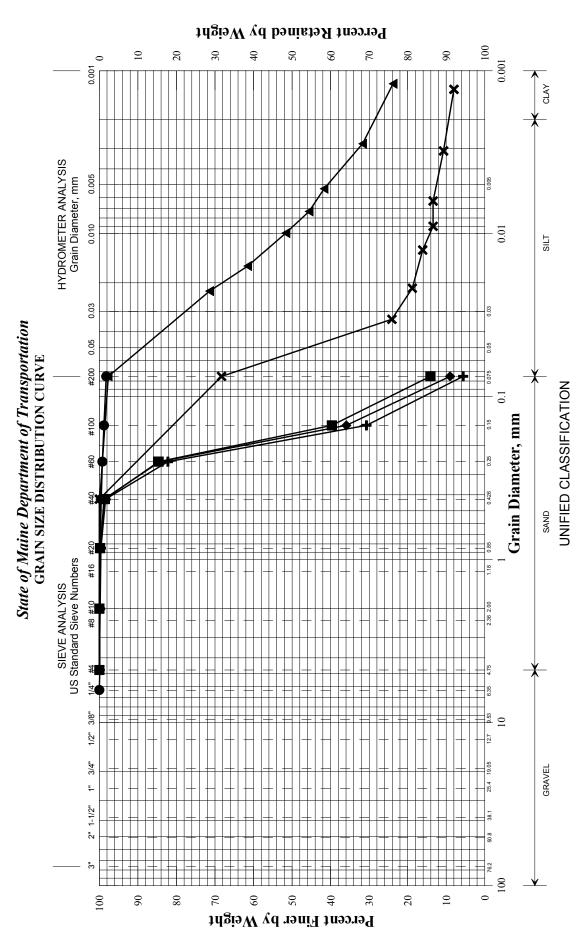
State of Maine - Department of Transportation <u>Laboratory Testing Summary Sheet</u>

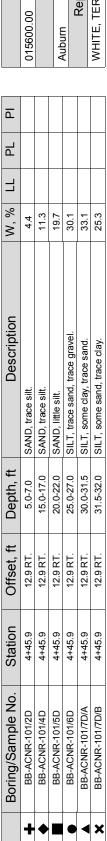
Town(s): Auburn

Project Number:	15600.00
------------------------	----------

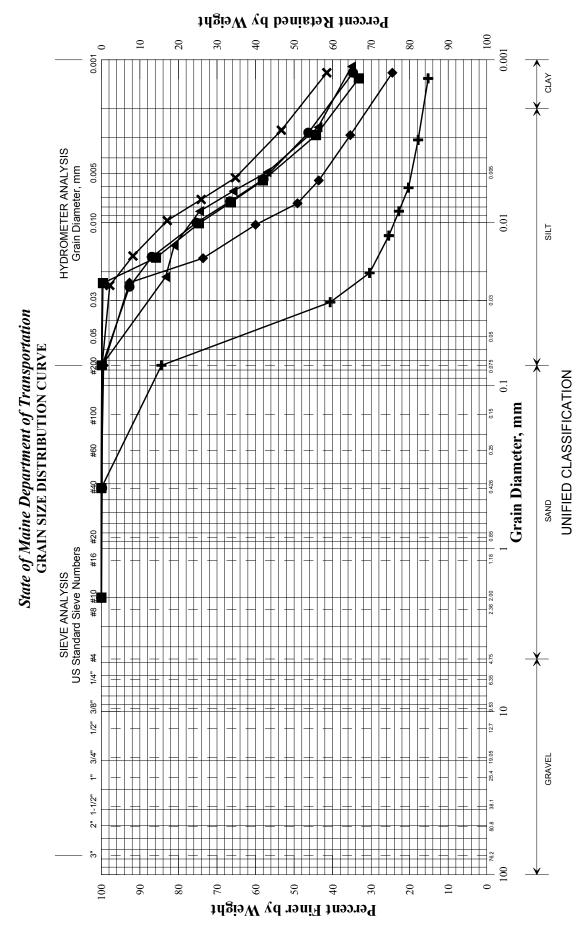
Boring & Sample	Station	Offset	Depth	Reference	G.S.D.C.	W.C.	L.L.	P.I.	Cla	ssificatio	n
Identification Number	(Feet)	(Feet)	(Feet)	Number	Sheet	%			Unified	AASHTO	Frost
BB-ACNR-104, 2D/A	6+01.9	11.7 Rt.	5.0-6.5	210608	9	4.5			SM	A-1-b	II
BB-ACNR-104, 2D/B	6+01.9	11.7 Rt.	6.5-7.0	210609	9	20.9			ML	A-4	IV
BB-ACNR-104, 4D	6+01.9	11.7 Rt.	15.0-17.0	210610	9	8.6			SP-SM	A-3	0
BB-ACNR-104, 5D	6+01.9	11.7 Rt.	20.5-22.5	210611	9	21.0			ML	A-4	IV
BB-ACNR-104, 6D	6+01.9	11.7 Rt.	24.0-26.0	210612	9	25.5			ML	A-4	IV
BB-ACNR-104, 7D	6+01.9	11.7 Rt.	29.5-31.5	210613	9	30.7	25	3	ML	A-4	IV
BB-ACNR-104, 1U	6+01.9	11.7 Rt.	34.0-36.0	210632	10	36.7	30	8	CL	A-4	IV
BB-ACNR-104, 8D	6+01.9	11.7 Rt.	40.5-42.5	210614	10	31.9	31	12	CL	A-6	Ш
BB-ACNR-104, 2U	6+01.9	11.7 Rt.	44.0-46.0	210633	10	36.9	36	12	CL	A-6	Ш
BB-ACNR-104, 9D	6+01.9	11.7 Rt.	49.5-51.5	210615	10	40.9	39	14	CL	A-6	Ш
BB-ACNR-104, 3U	6+01.9	11.7 Rt.	54.0-55.0	210634	10	29.5	25	5	CL-ML	A-4	IV

Classification of these soil samples is in accordance with AASHTO Classification System M-145-40. This classification is followed by the "Frost Susceptibility Rating" from zero (non-frost susceptible) to Class IV (highly frost susceptible).

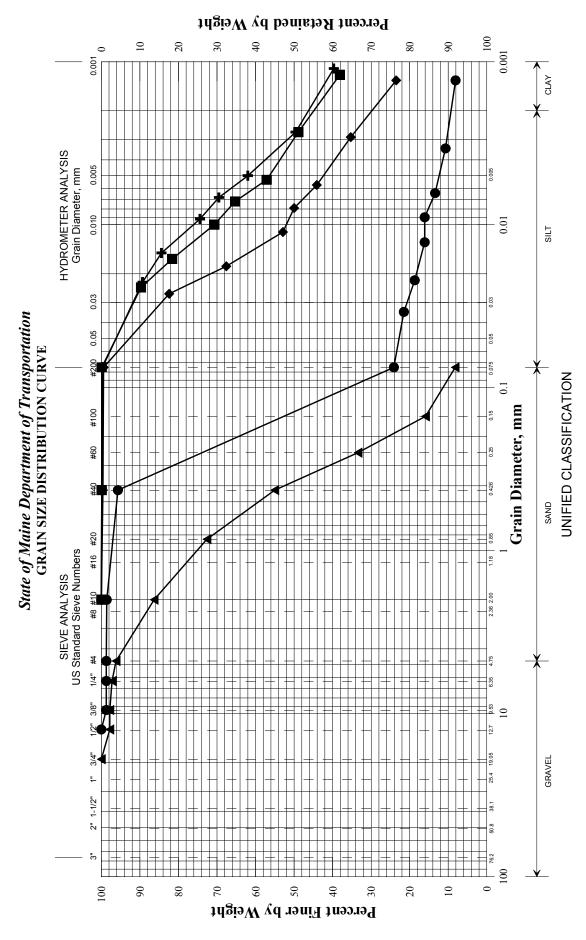

The "Frost Susceptibility Rating" is based upon the MDOT and Corps of Engineers Classification Systems.


GSDC = Grain Size Distribution Curve as determined by AASHTO T 88-93 (1996) and/or ASTM D 422-63 (Reapproved 1998)

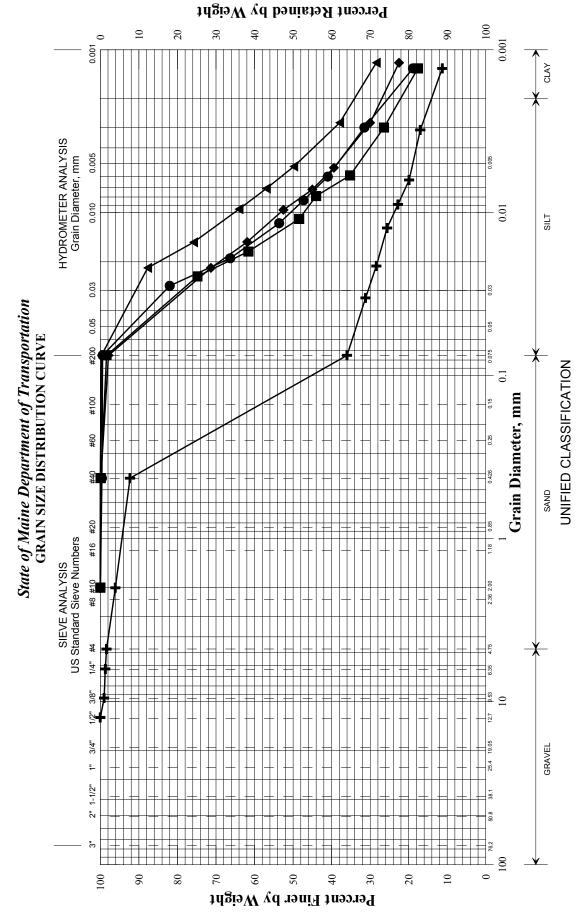
WC = water content as determined by AASHTO T 265-93 and/or ASTM D 2216-98

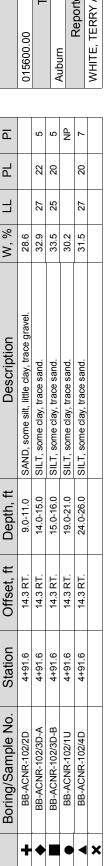

LL = Liquid limit as determined by AASHTO T 89-96 and/or ASTM D 4318-98

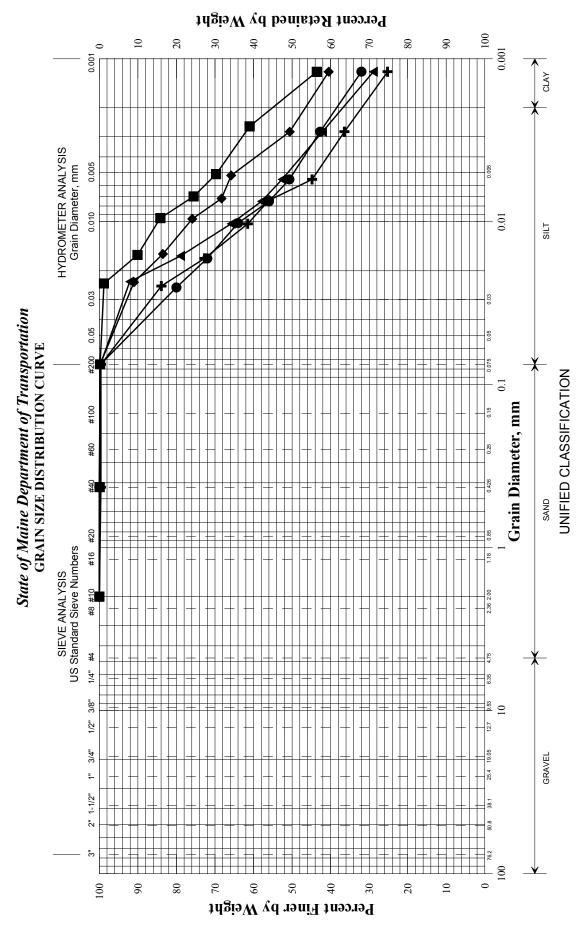
PI = Plasticity Index as determined by AASHTO 90-96 and/or ASTM D4318-98



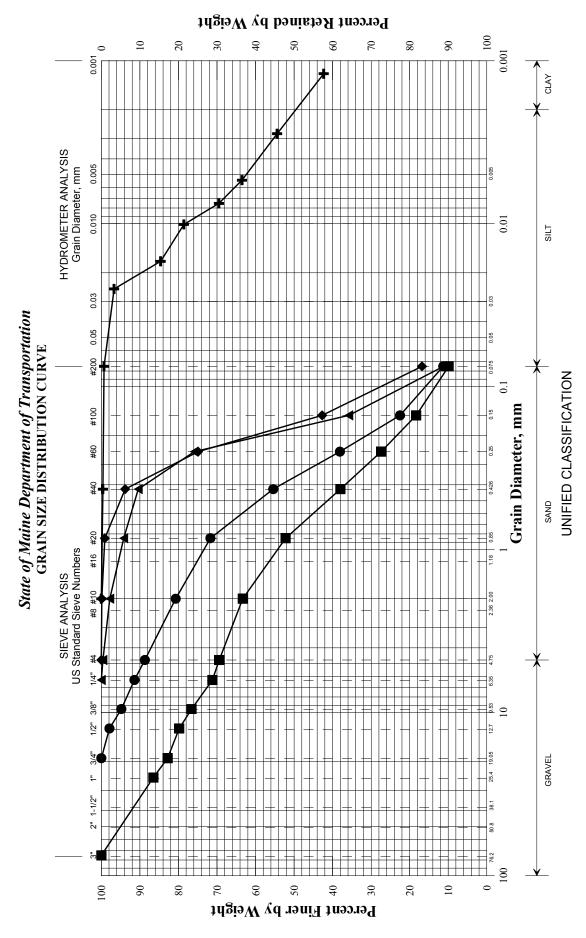
 NIG	
015600.00	
Town	
Auburn	
Reported by/Date	y/Date
 WHITE, TERRY A	7/10/2008



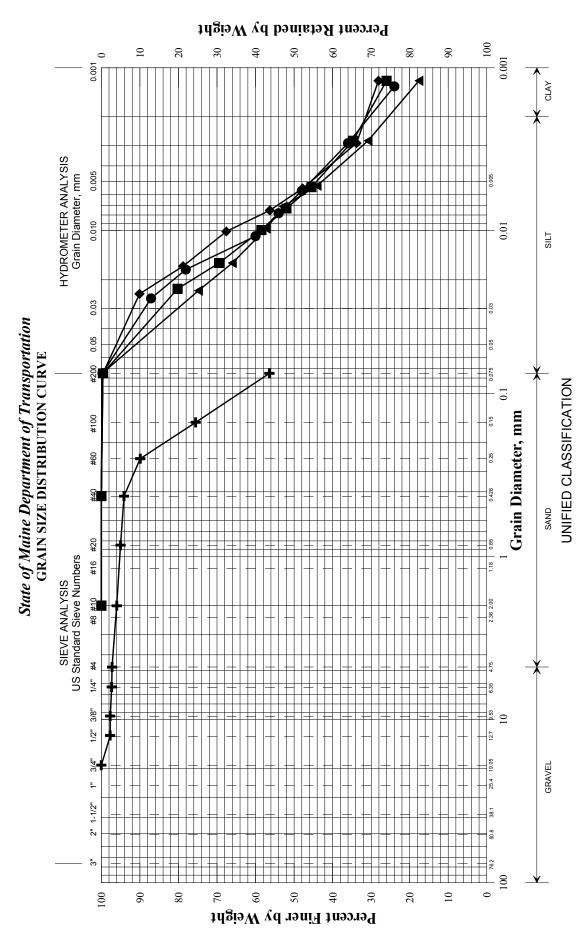

PIN 015600.00 Town	Auburn Reported by/Date WHITE, TERRY A 8/6/2008
--------------------------	---

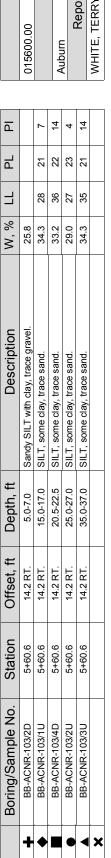

	015600.00		ariquy		dex	WHITE, TERF
Ы	19	2	6			
PL	12	20	22			
TT	34.4 31 12	22	31			
W, % LL PL	34.4	26.4	35.2	21.8	18.6	
Description	Clayey SILT, trace sand.	75.0-77.0 SILT, some clay, trace sand.	85.0-87.0 Clayey SILT, trace sand.	90.0-90.35 SAND, little silt, trace clay, trace gravel.	SAND, trace silt, trace gravel.	
Depth, ft	70.0-72.0	75.0-77.0	85.0-87.0	90.0-90.35	95.0-96.2	
Offset, ft Depth, ft	12.9 RT.	12.9 RT.	12.9 RT.	12.9 RT.	12.9 RT.	
Station	4+45.9	4+45.9	4+45.9	4+45.9	4+45.9	
Boring/Sample No.	BB-ACNR-101/11D	BB-ACNR-101/5U	BB-ACNR-101/6U	BB-ACNR-101/13D	BB-ACNR-101/14D	
	+	•		•	4	×

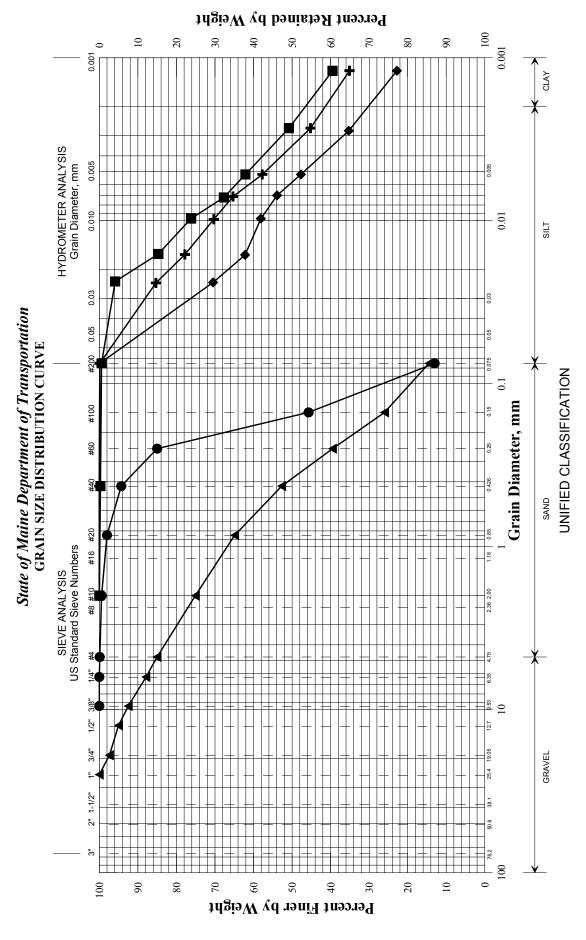
PIN
015600.00
Town
Auburn
Reported by/Date
WHITE, TERRY A 8/6/2008

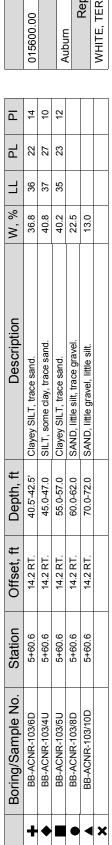


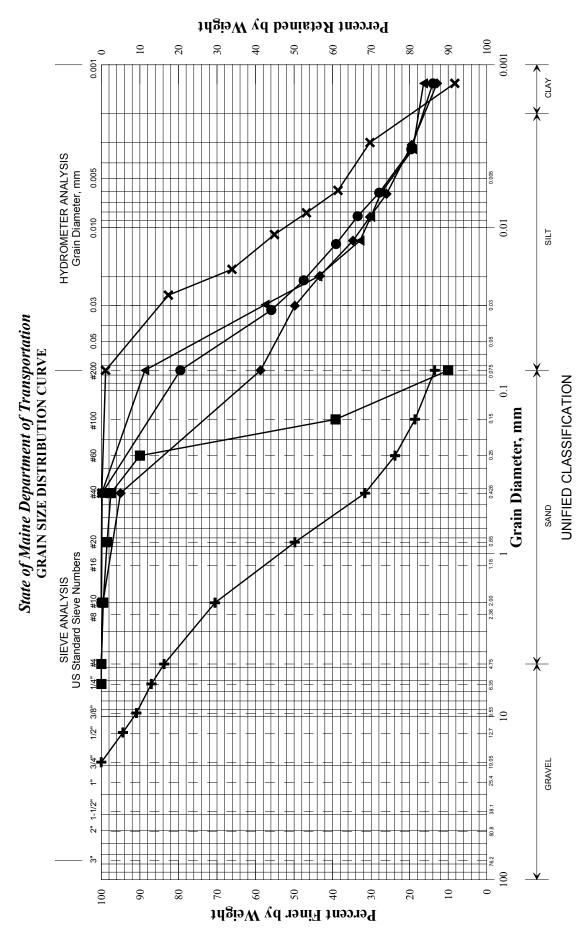
PIN 015600.00 Town Auburn Reported by/Date
--

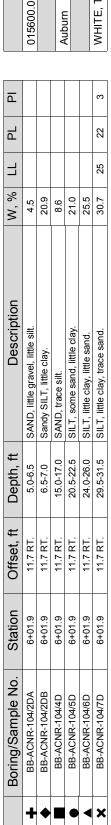


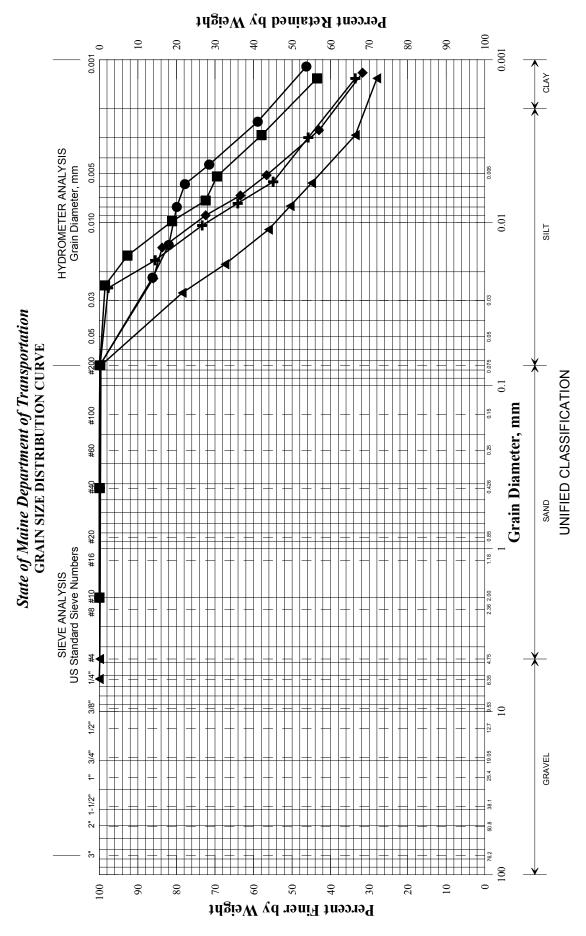



	Boring/Sample No.	Station	Offset, ft Depth, ft	Depth, ft	Description	W, % LL PL	<u></u>	굽	⊒	
+	BB-ACNR-102/5U	4+91.6	14.3 RT.	59.0-61.0	Clayey SILT, trace sand.	36.8	33	22	1	015600.00
•	BB-ACNR-102/9D	4+91.6	14.3 RT.	64.0-66.0	64.0-66.0 SAND, little silt.	20.3				
	BB-ACNR-102/10D	4+91.6	14.3 RT.	71.0-73.0	71.0-73.0 SAND, some gravel, trace silt.	10.4				- Calldill
•	BB-ACNR-102/13D	4+91.6	14.3 RT.	84.0-84.6	84.0-84.6 SAND, little gravel, little silt.	12.2				
•	BB-ACNR-102A/1D	4+93.9	14.3 RT.	0.0-2.0	SAND, little silt, trace gravel.	9.6				Керопе
×										WHITE, TERRY A

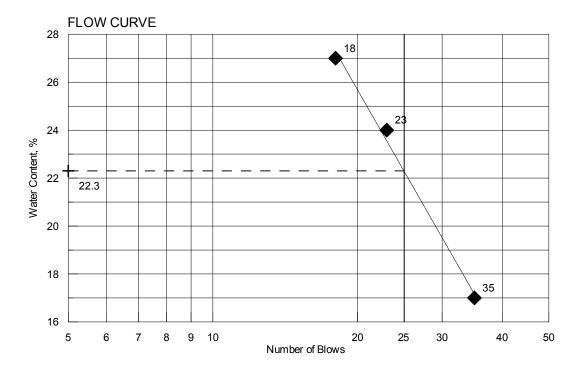

PIN 015600.00	
Town	
Auburn	
Reported by/Date	/Date
WHITE, TERRY A	8/6/2008

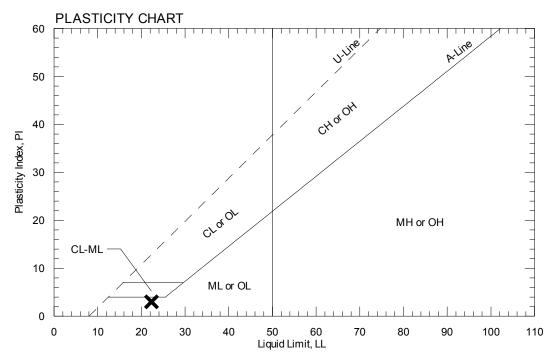



	PIN	
015600.00		
	Town	
Auburn		
Ľ	Reported by/Date	y/Date
WHITE, TERRY A	ERRY A	8/14/2008

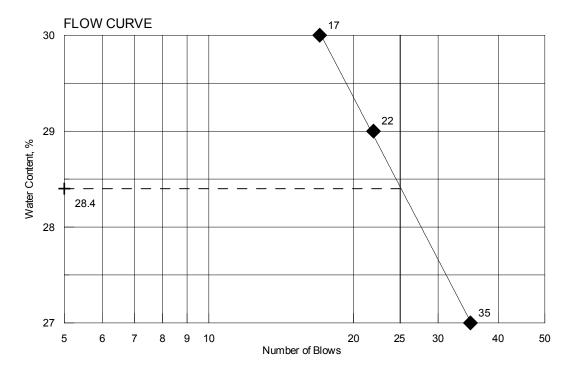


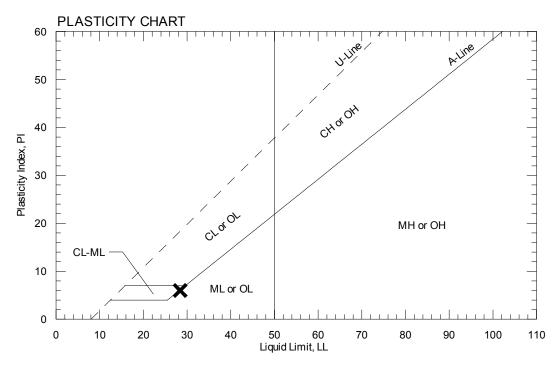
NIA	
015600.00	
Town	ر
Auburn	
Reported by/Date	y/Date
WHITE, TERRY A	8/25/2008

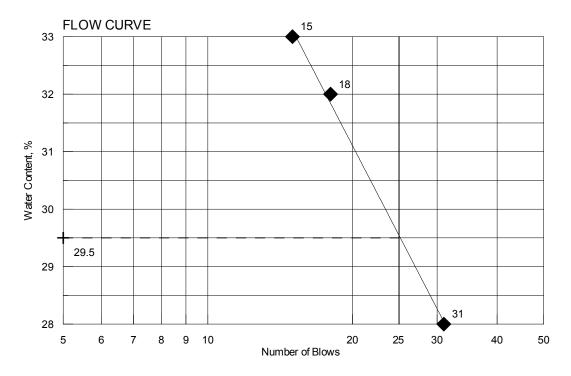

NIG	
015600.00	
Town	
Auburn	
Reported by/Date	//Date
WHITE, TERRY A	7/16/2008

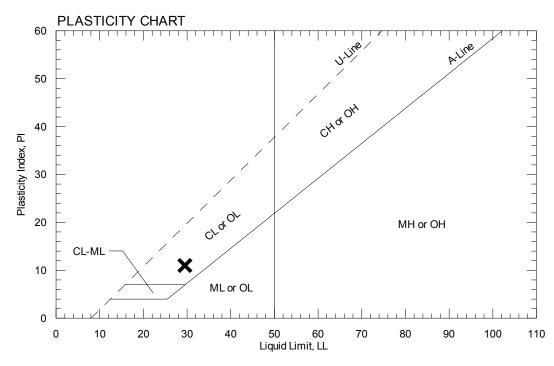


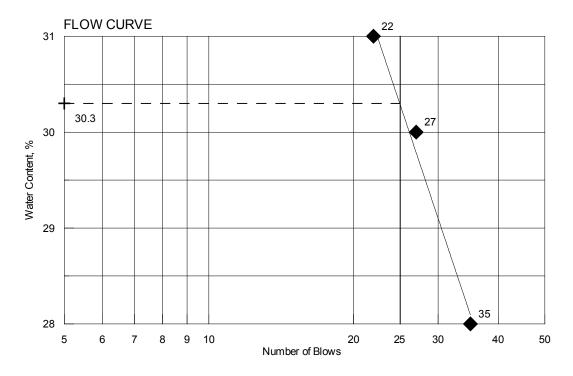
	015600.00		allqliv		Керс	WHITE, TERR
Ы	8	12	12	14	2	
귑	22	19	24	25	20	
Ⅎ	30	31	36	39	25	
W, % LL PL	36.7	31.9	36.9	40.9	29.5	
Description	Clayey SILT, trace sand.	Clayey SILT, trace sand.	Silty CLAY, trace sand.	Silty CLAY, trace sand.	SILT, some clay, trace sand, trace gravel.	
Depth, ft	34.0-36.0	40.5-42.5	44.0-46.0	49.5-51.5	54.0-55.0	
Offset, ft Depth, ft	11.7 RT.	11.7 RT.	11.7 RT.	11.7 RT.	11.7 RT.	
Station	6+01.9	6+01.9	6+01.9	6+01.9	6+01.9	
Boring/Sample No.	BB-ACNR-104/1U	BB-ACNR-104/8D	BB-ACNR-104/2U	BB-ACNR-104/9D	BB-ACNR-104/3U	
	+	•		•	•	×

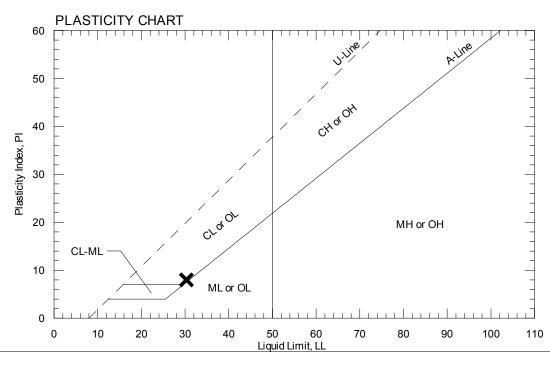

015600.00 Town	
Town	
Auburn	
Reported by/Date	
WHITE, TERRY A 8/25/2008	80

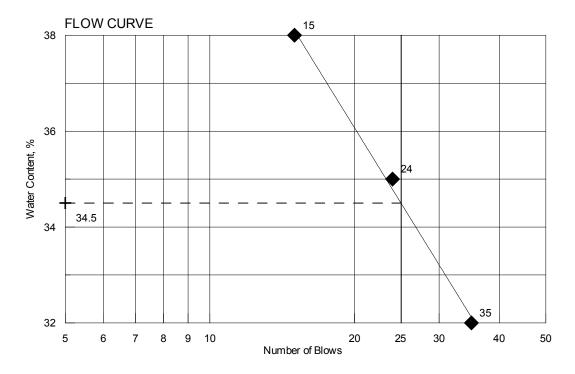

TOWN	Auburn	Reference No.	210617
PIN	015600.00	Water Content, %	30.6
Sampled		Plastic Limit	19
Boring No./Sample No.	BB-ACNR-101/2U	Liquid Limit	22
Station	4+45.9	Plasticity Index	3
Depth	45.0-47.0	Tested By	BBURR

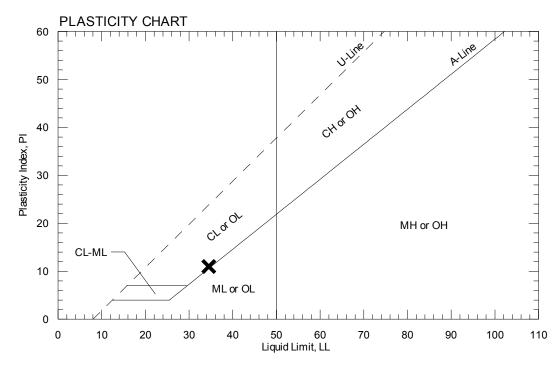


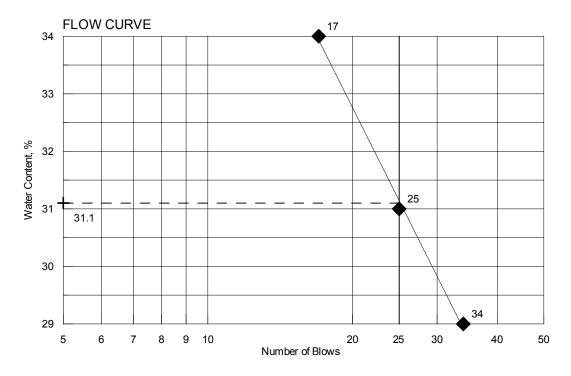

TOWN	Auburn	Reference No.	210270
PIN	015600.00	Water Content, %	32.4
Sampled		Plastic Limit	22
Boring No./Sample No.	BB-ACNR-101/9D	Liquid Limit	28
Station	4+45.9	Plasticity Index	6
Depth	50.0-52.0	Tested By	BBURR

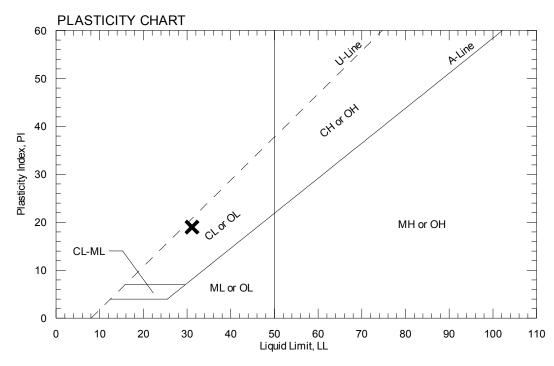


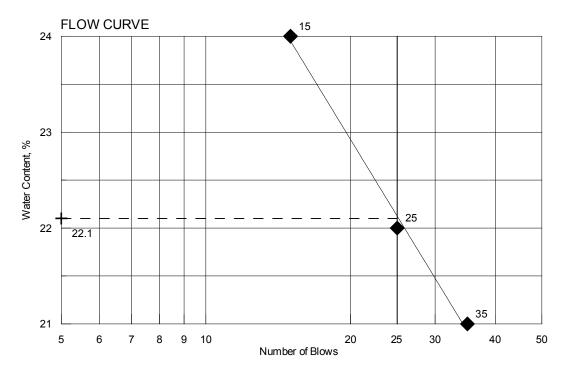

TOWN	Auburn	Reference No.	210618
PIN	015600.00	Water Content, %	32.8
Sampled	5/20/2008	Plastic Limit	19
Boring No./Sample No.	BB-ACNR-101/3U	Liquid Limit	30
Station	4+45.9	Plasticity Index	11
Depth	55.0-57.0	Tested By	BBURR

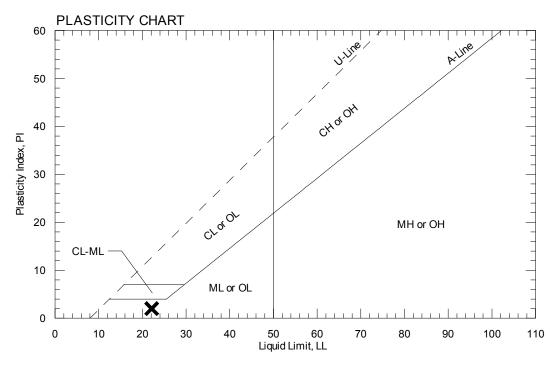


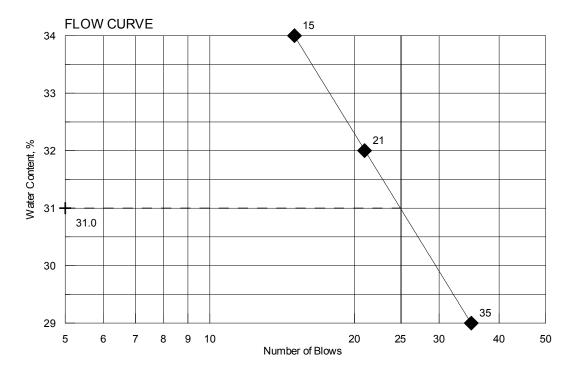

TOWN	Auburn	Reference No.	210271
PIN	015600.00	Water Content, %	30.9
Sampled		Plastic Limit	22
Boring No./Sample No.	BB-ACNR-101/10D	Liquid Limit	30
Station	4+45.9	Plasticity Index	8
Depth	60.0-62.0	Tested By	BBURR

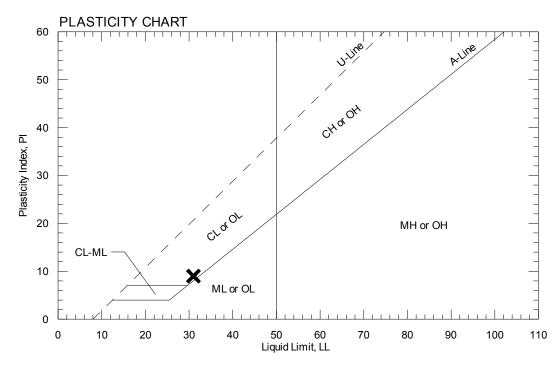


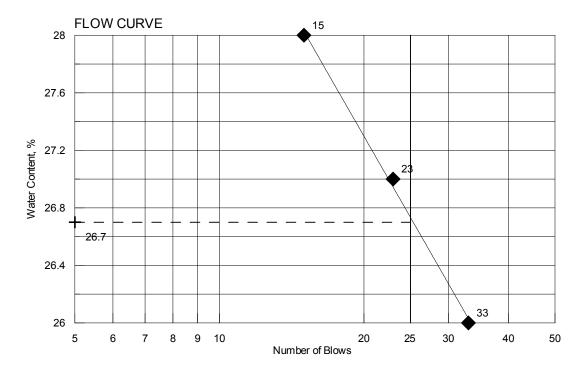

TOWN	Auburn	Reference No.	210619
PIN	015600.00	Water Content, %	38
Sampled	5/20/2008	Plastic Limit	24
Boring No./Sample No.	BB-ACNR-101/4U	Liquid Limit	35
Station	4+45.9	Plasticity Index	11
Depth	65.0-67.0	Tested By	BBURR

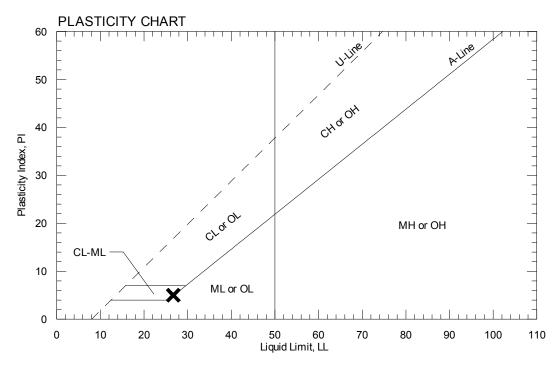


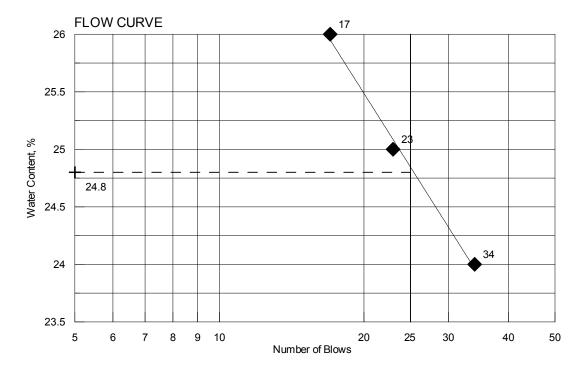

TOWN	Auburn	Reference No.	210272
PIN	015600.00	Water Content, %	34.4
Sampled		Plastic Limit	12
Boring No./Sample No.	BB-ACNR-101/11D	Liquid Limit	31
Station	4+45.9	Plasticity Index	19
Depth	70.0-72.0	Tested By	BBURR

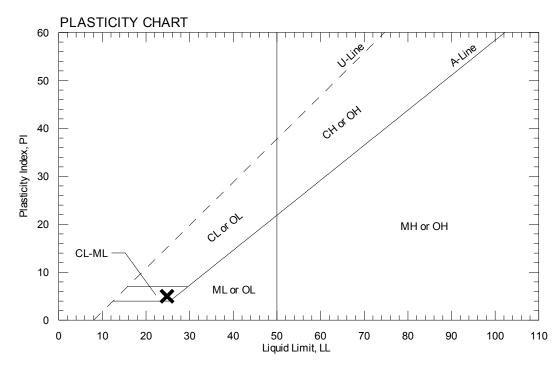


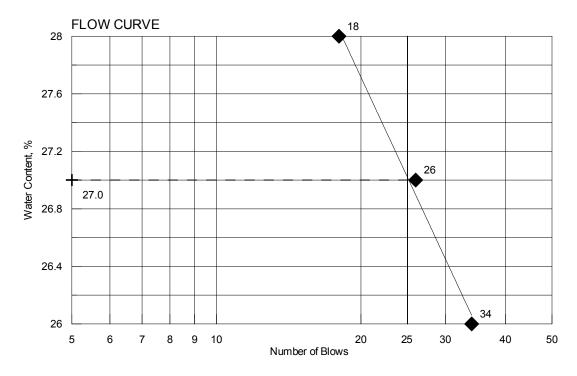

TOWN	Auburn	Reference No.	210620
PIN	015600.00	Water Content, %	26.4
Sampled	5/20/2008	Plastic Limit	20
Boring No./Sample No.	BB-ACNR-101/5U	Liquid Limit	22
Station	4+45.9	Plasticity Index	2
Depth	75.0-77.0	Tested By	BBURR

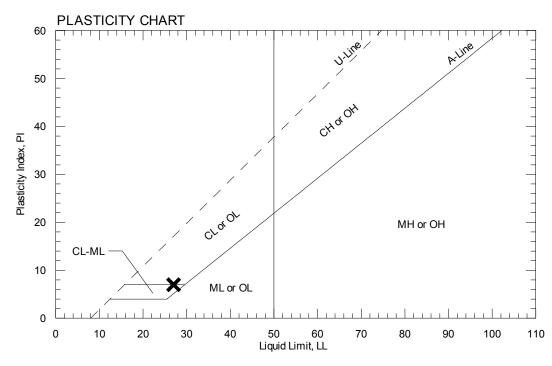


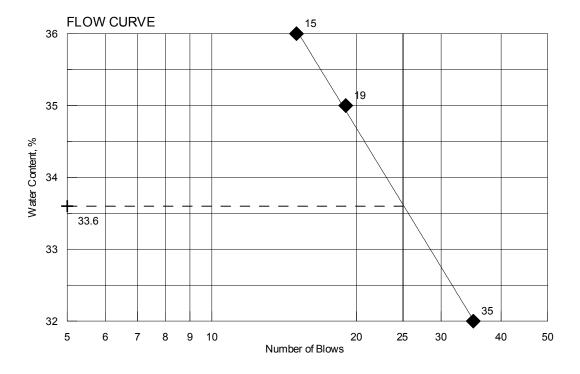

TOWN	Auburn	Reference No.	210621
PIN	015600.00	Water Content, %	35.2
Sampled	5/20/2008	Plastic Limit	22
Boring No./Sample No.	BB-ACNR-101/6U	Liquid Limit	31
Station	4+45.9	Plasticity Index	9
Depth	85.0-87.0	Tested By	BBURR

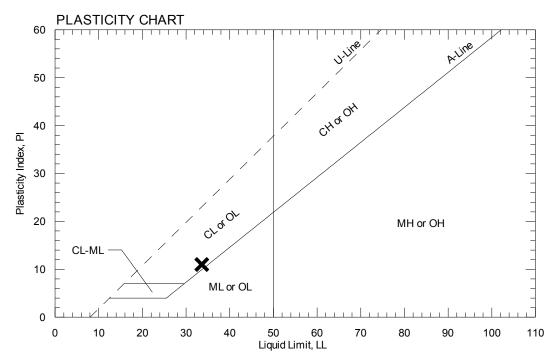


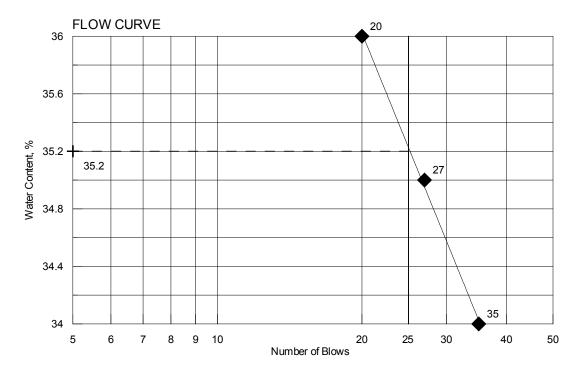

TOWN	Auburn	Reference No.	210296
PIN	015600.00	Water Content, %	32.9
Sampled		Plastic Limit	22
Boring No./Sample No.	BB-ACNR-102/3D-A	Liquid Limit	27
Station	4+91.6	Plasticity Index	5
Depth	14.0-15.0	Tested By	BBURR

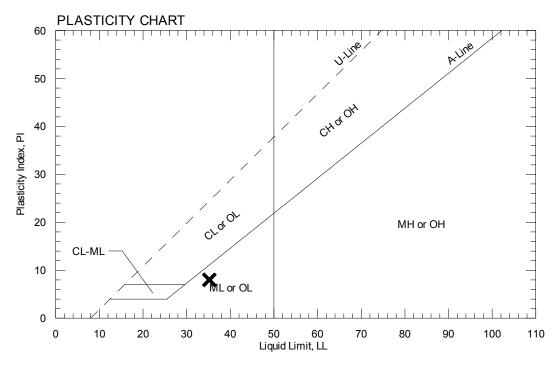


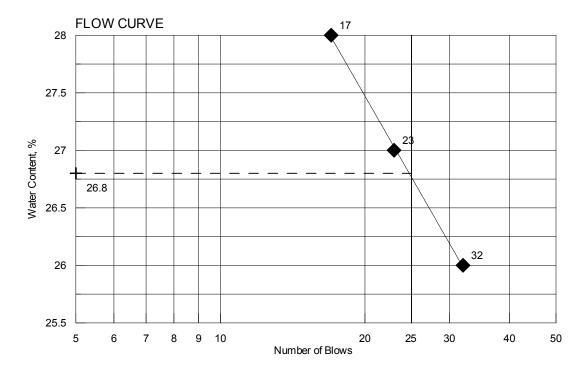

TOWN	Auburn	Reference No.	210297
PIN	015600.00	Water Content, %	33.5
Sampled		Plastic Limit	20
Boring No./Sample No.	BB-ACNR-102/3D-B	Liquid Limit	25
Station	4+91.6	Plasticity Index	5
Depth	15.0-16.0	Tested By	BBURR

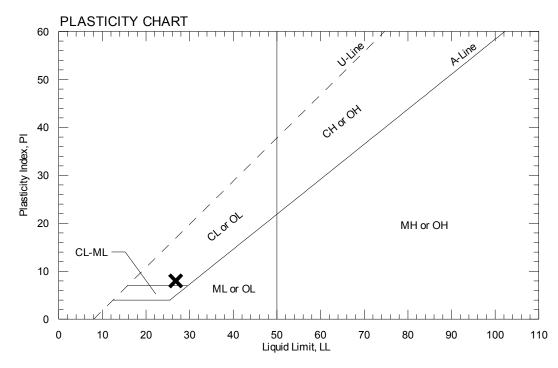


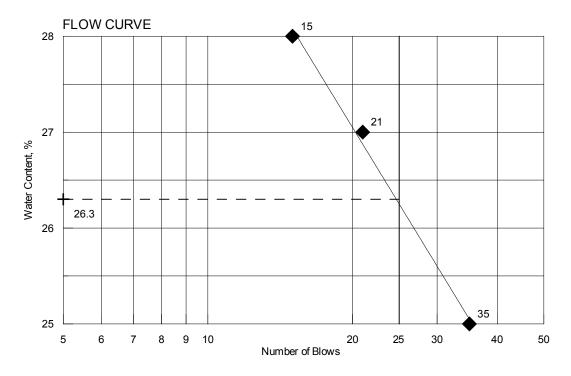

TOWN	Auburn	Reference No.	210295
PIN	015600.00	Water Content, %	31.5
Sampled		Plastic Limit	20
Boring No./Sample No.	BB-ACNR-102/4D	Liquid Limit	27
Station	4+91.6	Plasticity Index	7
Depth	24.0-26.0	Tested By	BBURR

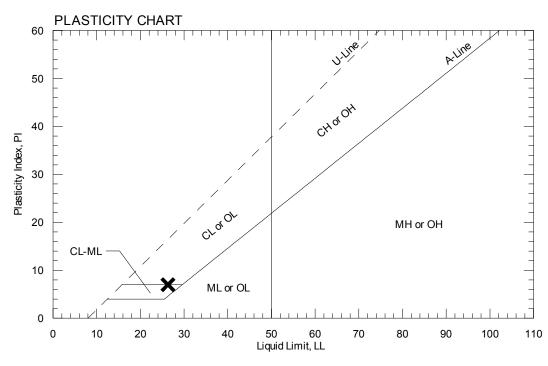



TOWN	Auburn	Reference No.	210623
PIN	015600.00	Water Content, %	29.8
Sampled	5/20/2008	Plastic Limit	23
Boring No./Sample No.	BB-ACNR-102/2U	Liquid Limit	34
Station	4+91.6	Plasticity Index	11
Depth	29.0-31.0	Tested By	BBURR

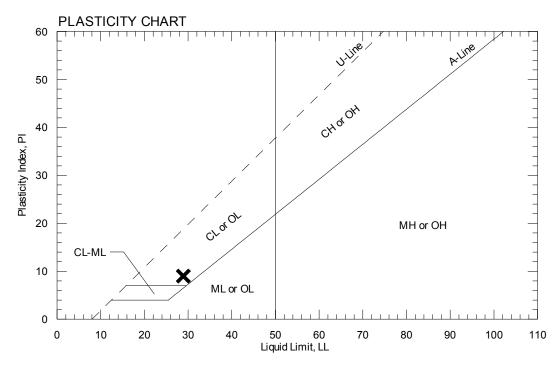


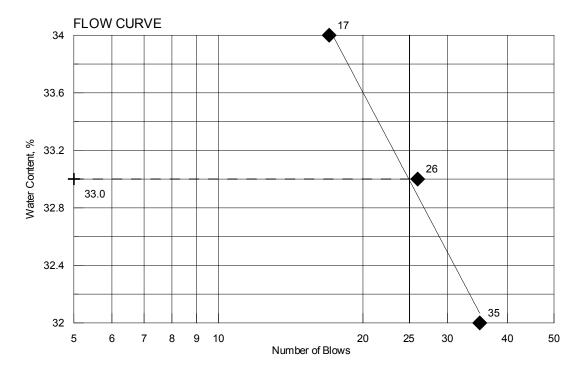

TOWN	Auburn	Reference No.	210298
PIN	015600.00	Water Content, %	35.4
Sampled		Plastic Limit	27
Boring No./Sample No.	BB-ACNR-102/6D	Liquid Limit	35
Station	4+91.6	Plasticity Index	8
Depth	39.0-41.0	Tested By	BBURR

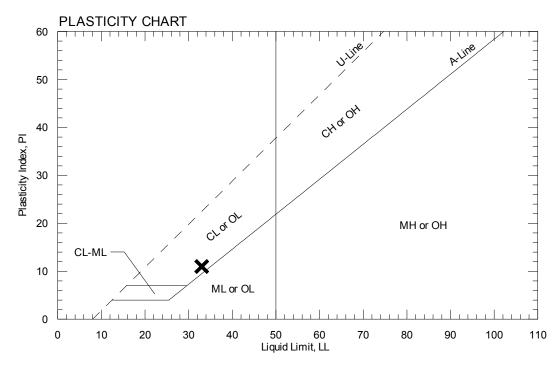


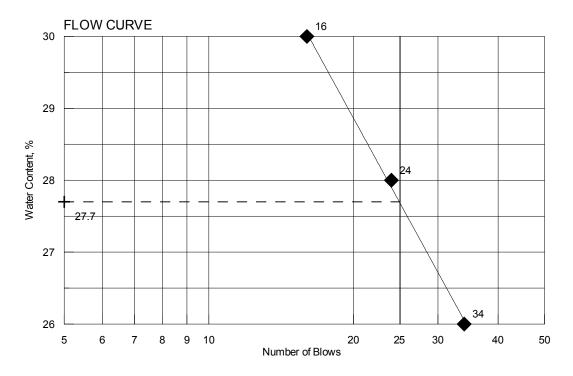

TOWN	Auburn	Reference No.	210624
PIN	015600.00	Water Content, %	38.4
Sampled	5/20/2008	Plastic Limit	19
Boring No./Sample No.	BB-ACNR-102/3U	Liquid Limit	27
Station	4+91.6	Plasticity Index	8
Depth	41.0-43.0	Tested By	BBURR

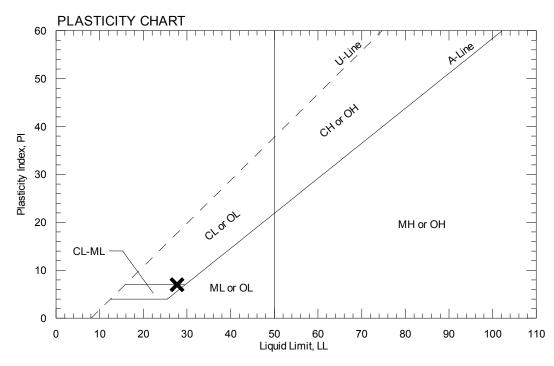


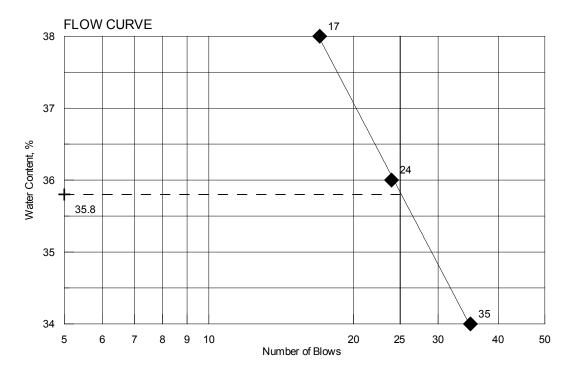

TOWN	Auburn	Reference No.	210625
PIN	015600.00	Water Content, %	30.7
Sampled	5/20/2008	Plastic Limit	19
Boring No./Sample No.	BB-ACNR-102/4U	Liquid Limit	26
Station	4+91.6	Plasticity Index	7
Depth	49.0-51.0	Tested By	BBURR

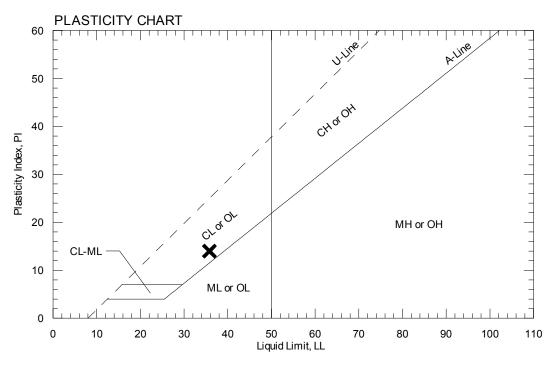


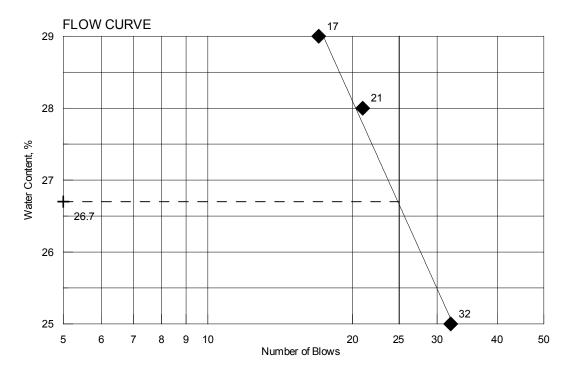

TOWN	Auburn	Reference No.	210299
PIN	015600.00	Water Content, %	30.6
Sampled		Plastic Limit	20
Boring No./Sample No.	BB-ACNR-102/8D	Liquid Limit	29
Station	4+91.6	Plasticity Index	9
Depth	54.0-56.0	Tested By	BBURR

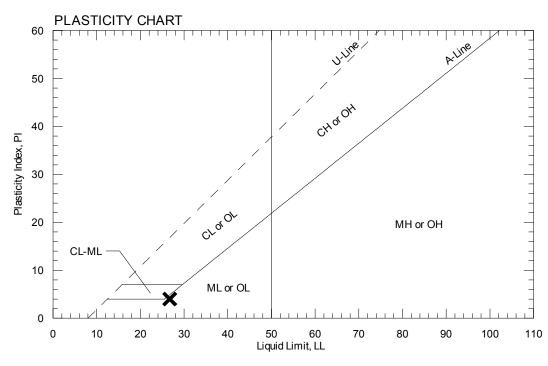


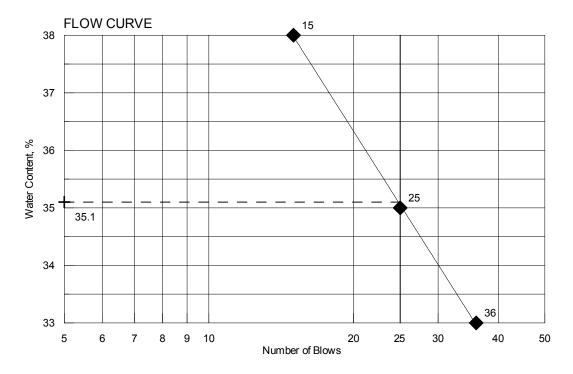

TOWN	Auburn	Reference No.	210626
PIN	015600.00	Water Content, %	36.8
Sampled	5/20/2008	Plastic Limit	22
Boring No./Sample No.	BB-ACNR-102/5U	Liquid Limit	33
Station	4+91.6	Plasticity Index	11
Depth	59.0-61.0	Tested By	BBURR

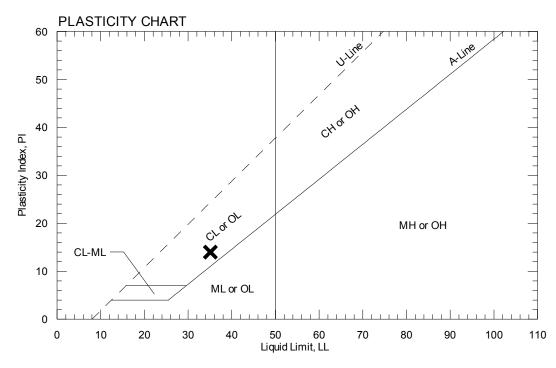


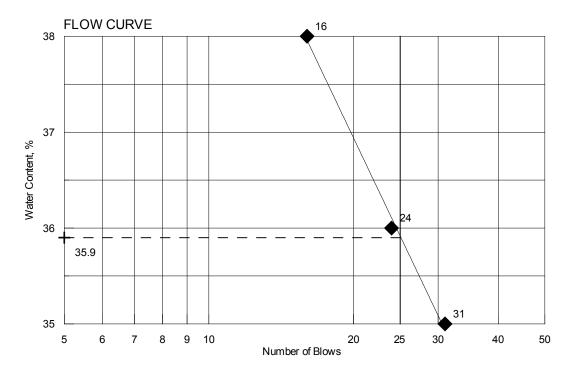

TOWN	Auburn	Reference No.	210627
PIN	015600.00	Water Content, %	34.3
Sampled	5/20/2008	Plastic Limit	21
Boring No./Sample No.	BB-ACNR-103/1U	Liquid Limit	28
Station	5+60.6	Plasticity Index	7
Depth	15.0-17.0	Tested By	BBURR

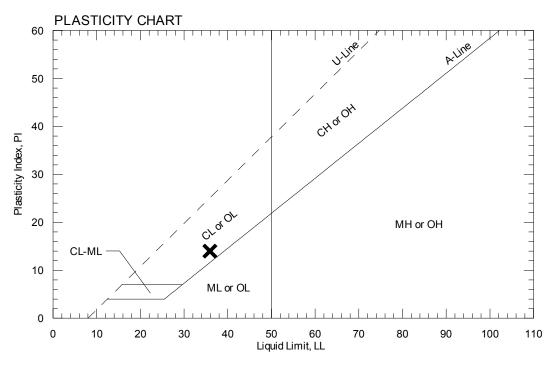


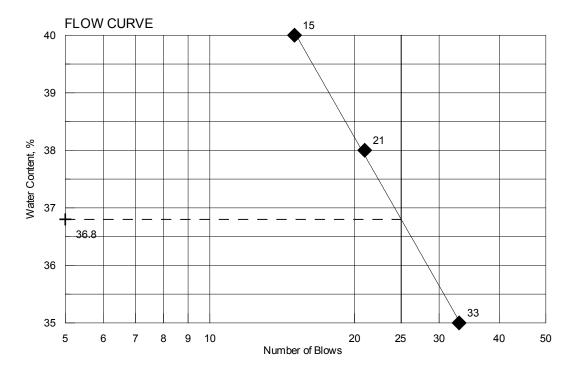

TOWN	Auburn	Reference No.	210604
PIN	015600.00	Water Content, %	33.2
Sampled		Plastic Limit	22
Boring No./Sample No.	BB-ACNR-103/4D	Liquid Limit	36
Station	5+60.6	Plasticity Index	14
Depth	20.5-22.5	Tested By	BBURR

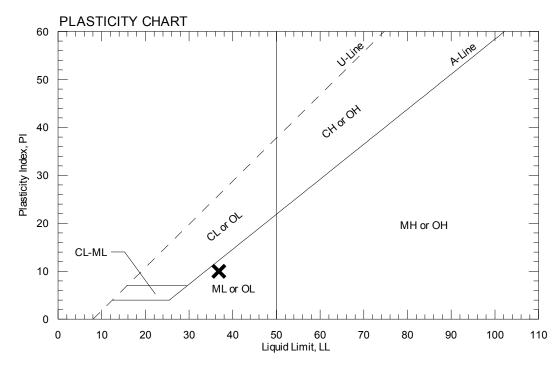


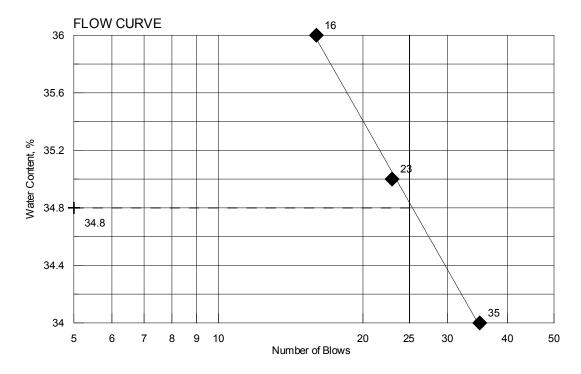

TOWN	Auburn	Reference No.	210628
PIN	015600.00	Water Content, %	29
Sampled	5/20/2008	Plastic Limit	23
Boring No./Sample No.	BB-ACNR-103/2U	Liquid Limit	27
Station	5+60.6	Plasticity Index	4
Depth	25.0-27.0	Tested By	BBURR

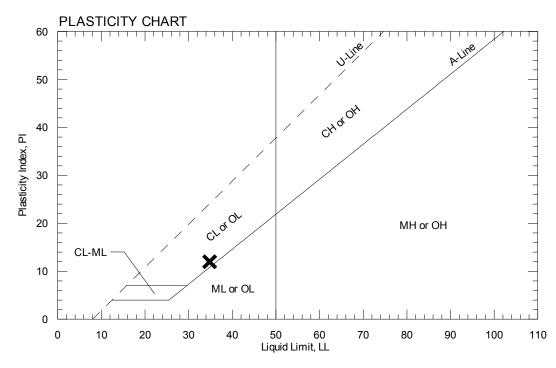


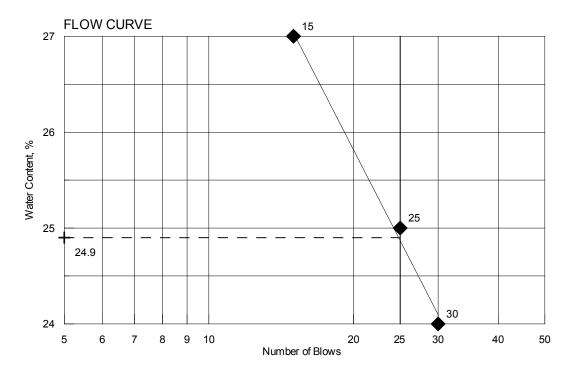

TOWN	Auburn	Reference No.	210629
PIN	015600.00	Water Content, %	34.3
Sampled	5/20/2008	Plastic Limit	21
Boring No./Sample No.	BB-ACNR-103/3U	Liquid Limit	35
Station	5+60.6	Plasticity Index	14
Depth	35.0-37.0	Tested By	BBURR

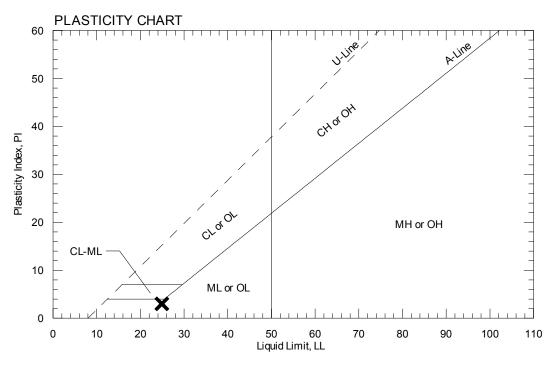


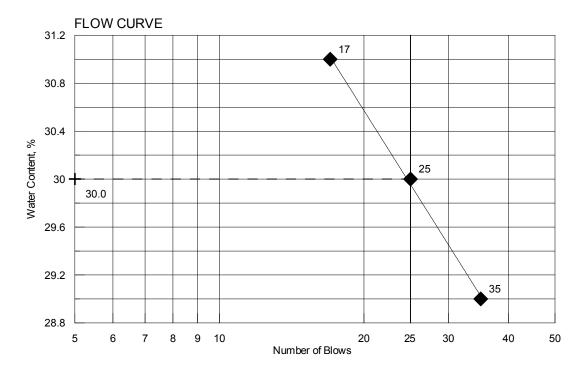

TOWN	Auburn	Reference No.	210605
PIN	015600.00	Water Content, %	36.8
Sampled		Plastic Limit	22
Boring No./Sample No.	BB-ACNR-103/6D	Liquid Limit	36
Station	5+60.6	Plasticity Index	14
Depth	40.5'-42.5'	Tested By	BBURR

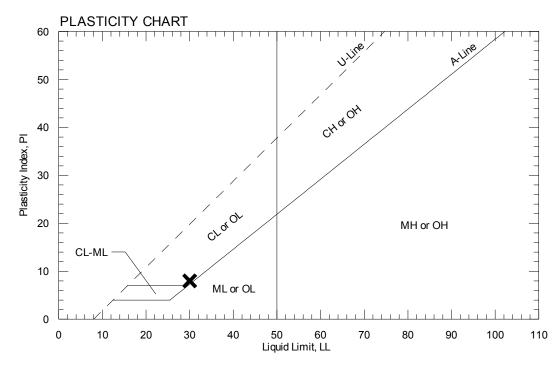


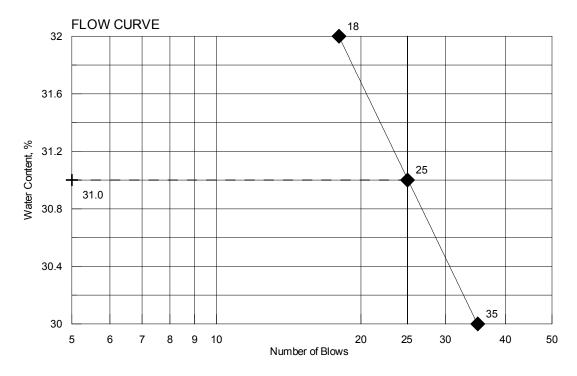

TOWN	Auburn	Reference No.	210630
PIN	015600.00	Water Content, %	40.8
Sampled	5/20/2008	Plastic Limit	27
Boring No./Sample No.	BB-ACNR-103/4U	Liquid Limit	37
Station	5+60.6	Plasticity Index	10
Depth	45.0-47.0	Tested By	BBURR

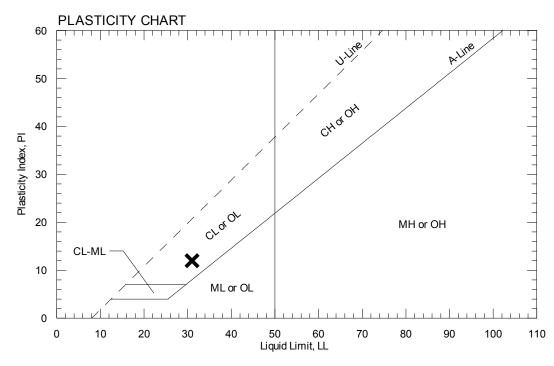


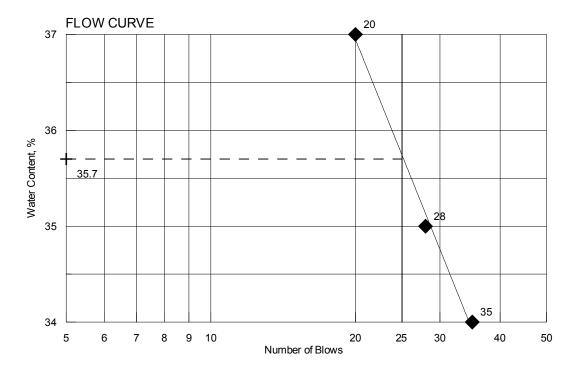

TOWN	Auburn	Reference No.	210631
PIN	015600.00	Water Content, %	40.2
Sampled	5/20/2008	Plastic Limit	23
Boring No./Sample No.	BB-ACNR-103/5U	Liquid Limit	35
Station	5+60.6	Plasticity Index	12
Depth	55.0-57.0	Tested By	BBURR

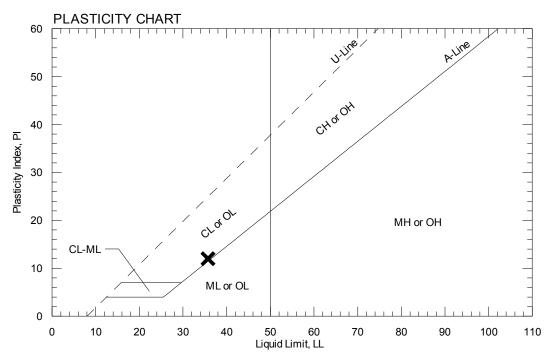


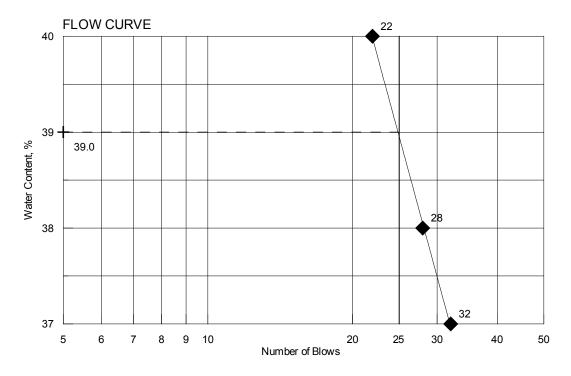

TOWN	Auburn	Reference No.	210613
PIN	015600.00	Water Content, %	30.7
Sampled		Plastic Limit	22
Boring No./Sample No.	BB-ACNR-104/7D	Liquid Limit	25
Station	6+01.9	Plasticity Index	3
Depth	29.5-31.5	Tested By	BBURR

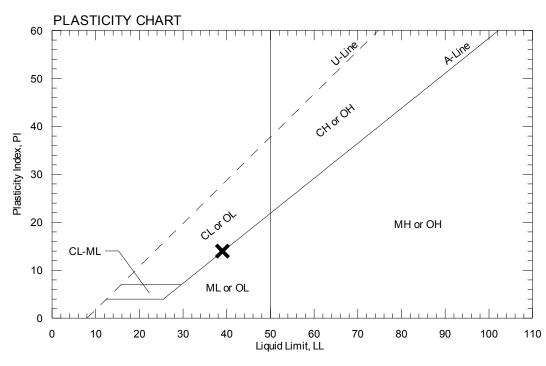


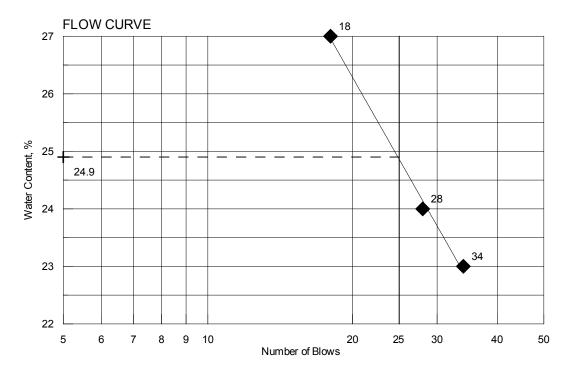

TOWN	Auburn	Reference No.	210632
PIN	015600.00	Water Content, %	36.7
Sampled	5/20/2008	Plastic Limit	22
Boring No./Sample No.	BB-ACNR-104/1U	Liquid Limit	30
Station	6+01.9	Plasticity Index	8
Depth	34.0-36.0	Tested By	BBURR

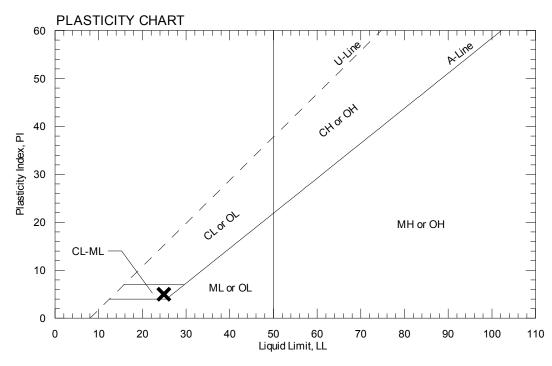


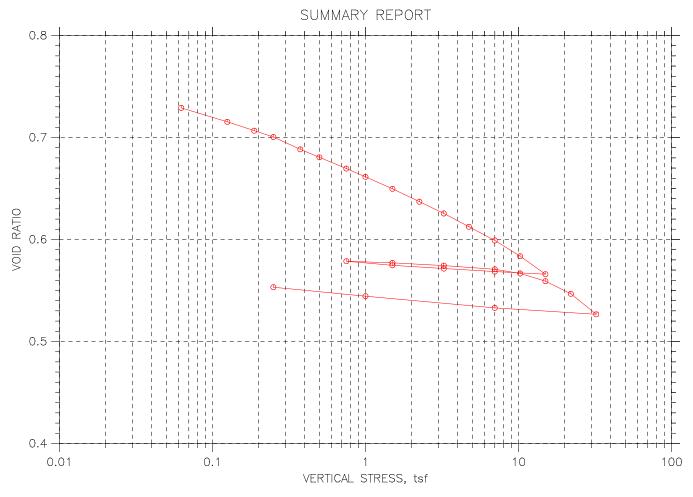

TOWN	Auburn	Reference No.	210614
PIN	015600.00	Water Content, %	31.9
Sampled		Plastic Limit	19
Boring No./Sample No.	BB-ACNR-104/8D	Liquid Limit	31
Station	6+01.9	Plasticity Index	12
Depth	40.5-42.5	Tested By	BBURR

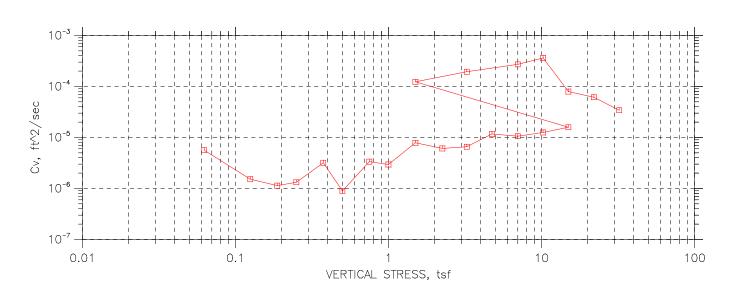



TOWN	Auburn	Reference No.	210633
PIN	015600.00	Water Content, %	36.9
Sampled	5/20/2008	Plastic Limit	24
Boring No./Sample No.	BB-ACNR-104/2U	Liquid Limit	36
Station	6+01.9	Plasticity Index	12
Depth	44.0-46.0	Tested By	BBURR




TOWN	Auburn	Reference No.	210615
PIN	015600.00	Water Content, %	40.9
Sampled		Plastic Limit	25
Boring No./Sample No.	BB-ACNR-104/9D	Liquid Limit	39
Station	6+01.9	Plasticity Index	14
Depth	49.5-51.5	Tested By	BBURR





TOWN	Auburn	Reference No.	210634
PIN	015600.00	Water Content, %	29.5
Sampled	5/20/2008	Plastic Limit	20
Boring No./Sample No.	BB-ACNR-104/3U	Liquid Limit	25
Station	6+01.9	Plasticity Index	5
Depth	54.0-55.0	Tested By	BBURR

Project: CNR CROSSING BRIDGE	Location: AUBURN	Project No.: 15600.00
Boring No.: BB-ACNR-101	Tested By: Brian Fogg	Checked By:
Sample No.: 2U	Test Date: 7/11/2008	Depth: 45-47 FT
Test No.: 210617	Sample Type: Shelby Tube	Elevation:
Description: GREY SILTY CLAY		
Remarks:		

Project: CNR CROSSING BRIDGE Boring No.: BB-ACNR-101 Sample No.: 2U Test No.: 210617

Location: AUBURN Tested By: Brian Fogg Test Date: 7/11/2008 Sample Type: Shelby Tube

Project No.: 15600.00 Checked By: Depth: 45-47 FT Elevation: ---

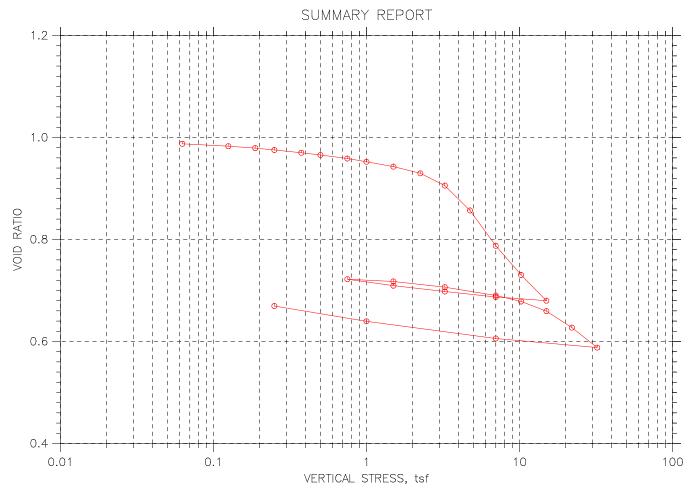
Soil Description: GREY SILTY CLAY

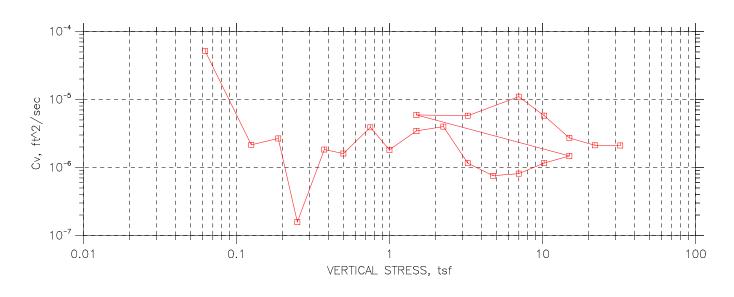
Remarks:

Measured Specific Gravity: 2.81 Initial Void Ratio: 0.81 Final Void Ratio: 0.55

Liquid Limit: 22 Plastic Limit: 19 Plasticity Index: 3 Initial Height: 1.02 in Specimen Diameter: 2.48 in

	Before Consolidation		After Consol	idation
	Trimmings	Specimen+Ring	Specimen+Ring	Trimmings
Container ID	200	RING	RING	35
Wt. Container + Wet Soil, gm	193.76	422.61	413.18	215.56
Wt. Container + Dry Soil, gm	166.33	388.33	388.33	190.79
Wt. Container, qm	65.2	262.25	262.25	65.13
Wt. Dry Soil, gm	101.13	126.08	126.08	125.66
Water Content, %	27.12	27.19	19.71	19.71
Void Ratio		0.81	0.55	
Degree of Saturation, %		93.78	100.14	
Dry Unit Weight, pcf		96.663	112.95	


CONSOLIDATION TEST DATA


Project: CNR CROSSING BRIDGE Boring No.: BB-ACNR-101 Sample No.: 2U Test No.: 210617

Location: AUBURN Tested By: Brian Fogg Test Date: 7/11/2008 Sample Type: Shelby Tube

Project No.: 15600.00 Checked By: Depth: 45-47 FT Elevation: ---

	Applied	Final	Void	Strain		Fitting		cient of Con	
	Stress	Displacement	Ratio	at End	Sq.Rt.	Log	Sq.Rt.	Log	Ave.
	tsf	in		*	min	min	ft^2/sec	ft^2/sec	ft^2/sec
1	0.0625	0.04842	0.729	4.73	1.6	0.4	3.47e-006	1.49e-005	5.63e-006
2	0.125	0.05615	0.715	5.48	3.5	3.6	1.53e-006	1.51e-006	1.52e-006
3	0.188	0.06105	0.707	5.96	4.5	4.9	1.19e-006	1.09e-006	1.14e-006
4	0.25	0.06454	0.700	6.30	4.3	3.7	1.23e-006	1.43e-006	1.32e-006
5	0.375	0.07137	0.688	6.97	1.6	1.7	3.33e-006	3.06e-006	3.19e-006
6	0.5	0.07579	0.681	7.40	8.8	2.7	5.86e-007	1.90e-006	8.96e-007
7	0.75	0.08201	0.670	8.00	1.5	1.6	3.51e-006	3.21e-006	3.35e-006
8	1	0.08659	0.661	8.45	1.7	1.7	2.95e-006	2.95e-006	2.95e-006
9	1.5	0.09319	0.650	9.10	0.9	0.4	5.63e-006	1.30e-005	7.86e-006
10	2.25	0.1003	0.637	9.79	0.8	0.0	6.09e-006	0.00e+000	6.09e-006
11	3.25	0.1068	0.626	10.43	0.9	0.6	5.53e-006	8.09e-006	6.57e-006
12	4.75	0.1142	0.612	11.15	0.6	0.2	8.32e-006	1.97e-005	1.17e-005
13	7	0.1218	0.599	11.89	0.7	0.2	6.60e-006	2.68e-005	1.06e-005
14	10.3	0.1305	0.584	12.74	0.6	0.2	8.11e-006	2.77e-005	1.25e-005
15	15	0.1405	0.566	13.71	0.5	0.1	9.63e-006	4.46e-005	1.58e-005
16	7	0.139	0.569	13.57	0.0	0.0	6.89e-004	0.00e+000	6.89e-004
17	3.25	0.1373	0.572	13.41	0.0	0.0	2.06e-004	0.00e+000	2.06e-004
18	1.5	0.1356	0.575	13.23	0.0	0.0	1.18e-004	1.55e-004	1.34e-004
19	0.75	0.1333	0.579	13.01	0.1	0.0	3.20e-005	0.00e+000	3.20e-005
20	1.5	0.1342	0.577	13.10	0.0	0.0	1.23e-004	0.00e+000	1.23e-004
21	3.25	0.1357	0.574	13.25	0.0	0.0	1.94e-004	0.00e+000	1.94e-004
22	7	0.1378	0.571	13.45	0.0	0.0	3.53e-004	2.20e-004	2.71e-004
23	10.3	0.14	0.567	13.67	0.0	0.0	3.62e-004	0.00e+000	3.62e-004
24	15	0.1443	0.559	14.09	0.1	0.0	5.43e-005	1.48e-004	7.94e-005
25	22	0.1513	0.547	14.77	0.1	0.0	4.41e-005	1.02e-004	6.16e-005
26	32.3	0.1627	0.527	15.88	0.2	0.0	2.04e-005	1.06e-004	3.42e-005
27	7	0.1591	0.533	15.53	0.0	0.0	2.93e-004	0.00e+000	2.93e-004
28	1	0.1526	0.544	14.90	0.1	0.0	8.47e-005	2.28e-004	1.24e-004
29	0.25	0.1477	0.553	14.42	0.5	0.2	9.25e-006	1.76e-005	1.21e-005

Project: CNR CROSSING BRIDGE	Location: AUBURN	Project No.: 15600.00
Boring No.: BB-ACNR-101	Tested By: Brian Fogg	Checked By:
Sample No.: 3U	Test Date: 7/16/08	Depth: 55-57 FT
Test No.: 210618	Sample Type: Shelby Tube	Elevation:
Description: GREY SILTY CLAY		
Remarks:		

Project: CNR CROSSING BRIDGE Boring No.: BB-ACNR-101 Sample No.: 3U Test No.: 210618

Remarks:

Soil Description: GREY SILTY CLAY

Measured Specific Gravity: 2.76 Initial Void Ratio: 0.99 Final Void Ratio: 0.67

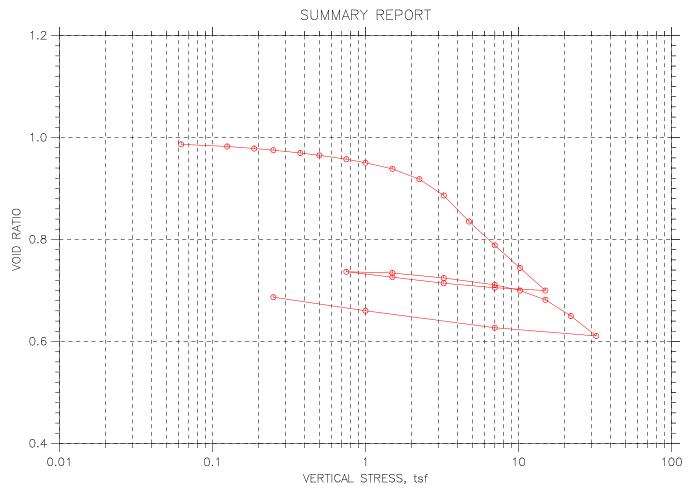
Location: AUBURN Tested By: Brian Fogg Test Date: 7/16/08 Sample Type: Shelby Tube

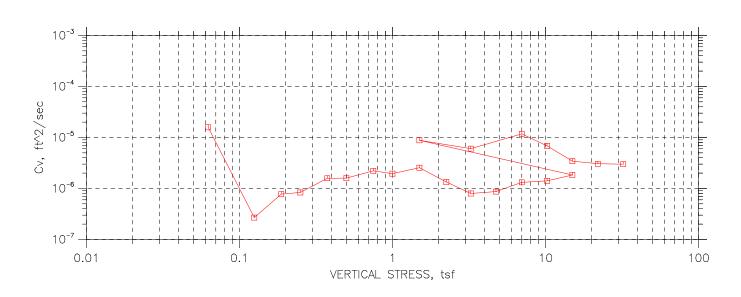
Project No.: 15600.00 Checked By: Depth: 55-57 FT Elevation: ---

Liquid Limit: 30 Plastic Limit: 19 Plasticity Index: 11 Initial Height: 0.99 in Specimen Diameter: 2.48 in

	Before Consolidation		After Consol	
	Trimmings	Specimen+Ring	Specimen+Ring	Trimmings
Container ID	44	RING	RING	22
Wt. Container + Wet Soil, gm	144.76	408.7	398.01	187.15
Wt. Container + Dry Soil, gm	121.65	371.5	371.5	160.89
Wt. Container, qm	53.81	262.21	262.21	52.65
Wt. Dry Soil, gm	67.84	109.29	109.29	108.24
Water Content, %	34.07	34.04	24.26	24.26
Void Ratio		0.99	0.67	
Degree of Saturation, %		94.51	100.01	
Dry Unit Weight, pcf		86.404	103.21	

CONSOLIDATION TEST DATA


Project: CNR CROSSING BRIDGE Boring No.: BB-ACNR-101 Sample No.: 3U Test No.: 210618


Location: AUBURN Tested By: Brian Fogg Test Date: 7/16/08 Sample Type: Shelby Tube

Project No.: 15600.00 Checked By: Depth: 55-57 FT Elevation: ---

Soil Description: GREY SILTY CLAY Remarks:

	Applied	Final	Void	Strain		Fitting		cient of Con	
	Stress	Displacement	Ratio	at End	Sq.Rt.	Log	Sq.Rt.	Log	Ave.
	tsf	in		*	min	min	ft^2/sec	ft^2/sec	ft^2/sec
1	0.0625	0.003247	0.988	0.33	0.1	0.0	5.13e-005	0.00e+000	5.13e-005
2	0.125	0.005603	0.983	0.56	2.8	2.4	1.99e-006	2.35e-006	2.15e-006
3	0.188	0.007458	0.979	0.75	2.0	2.2	2.83e-006	2.52e-006	2.67e-006
4	0.25	0.009327	0.975	0.94	35.1	0.0	1.58e-007	0.00e+000	1.58e-007
5	0.375	0.012	0.970	1.21	3.6	2.4	1.53e-006	2.28e-006	1.84e-006
6	0.5	0.01424	0.966	1.43	4.4	2.5	1.26e-006	2.21e-006	1.60e-006
7	0.75	0.01762	0.959	1.77	1.6	1.2	3.46e-006	4.43e-006	3.89e-006
8	1	0.02079	0.952	2.09	3.0	0.0	1.82e-006	0.00e+000	1.82e-006
9	1.5	0.02556	0.943	2.57	1.6	1.6	3.46e-006	3.43e-006	3.45e-006
10	2.25	0.03213	0.930	3.23	1.6	1.1	3.41e-006	4.81e-006	3.99e-006
11	3.25	0.04408	0.906	4.44	4.5	0.0	1.16e-006	0.00e+000	1.16e-006
12	4.75	0.0684	0.857	6.88	7.0	6.3	7.15e-007	8.00e-007	7.55e-007
13	7	0.1029	0.788	10.36	7.0	4.6	6.73e-007	1.02e-006	8.11e-007
1.4	10.3	0.1314	0.730	13.23	3.5	4.1	1.26e-006	1.08e-006	1.16e-006
15	15	0.1565	0.680	15.75	2.3	3.2	1.76e-006	1.27e-006	1.48e-006
16	7	0.1529	0.687	15.39	0.1	0.0	6.68e-005	0.00e+000	6.68e-005
17	3.25	0.1475	0.698	14.85	0.5	0.0	8.78e-006	0.00e+000	8.78e-006
18	1.5	0.1418	0.710	14.27	1.0	0.0	4.23e-006	0.00e+000	4.23e-006
19	0.75	0.1356	0.722	13.65	3.5	3.6	1.18e-006	1.17e-006	1.17e-006
20	1.5	0.1377	0.718	13.86	0.7	0.0	5.92e-006	0.00e+000	5.92e-006
21	3.25	0.1433	0.706	14.43	0.7	0.0	5.76e-006	0.00e+000	5.76e-006
22	7	0.1515	0.690	15,25	0.5	0.2	7.85e-006	1.84e-005	1.10e-005
23	10.3	0.1572	0.679	15.82	0.7	0.7	5.73e-006	5.84e-006	5.78e-006
24	15	0.1667	0.659	16.78	1.4	1.5	2.83e-006	2.62e-006	2.72e-006
25	22	0.1829	0.627	18.41	1.8	1.8	2.16e-006	2.08e-006	2.12e-006
26	32.3	0.2024	0.588	20.37	1.6	1.8	2.23e-006	1.99e-006	2.11e-006
27	7	0.1935	0.606	19.47	0.0	0.0	9.83e-005	0.00e+000	9.83e-005
28	i	0.1767	0.640	17.78	1.8	2.2	2.08e-006	1.72e-006	1.88e-006
29	0.25	0.1617	0.670	16.28	7.1	8.8	5.49e-007	4.41e-007	4.89e-007
6.0	0.00	012021	0.0.0	20.20		0.0	0.430 001	11470 001	1.020.001

Project: CNR CROSSING BRIDGE	Location: AUBURN	Project No.: 15600.00
Boring No.: BB-ACNR-101	Tested By: Brian Fogg	Checked By:
Sample No.: 4U	Test Date: 6/18/08	Depth: 65-67 FT
Test No.: 210619	Sample Type: Shelby Tube	Elevation:
Description: GREY SILTY CLAY		
Remarks:		

Project: CNR CROSSING BRIDGE Boring No.: BB-ACNR-101 Sample No.: 4U Test No.: 210619

Soil Description: GREY SILTY CLAY Remarks:

Measured Specific Gravity: 2.76 Initial Void Ratio: 1.16 Final Void Ratio: 0.69

Location: AUBURN Tested By: Brian Fogg Test Date: 6/18/08 Sample Type: Shelby Tube

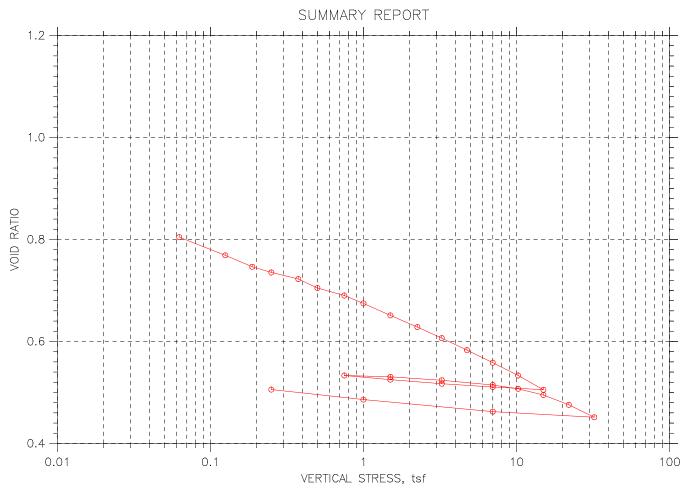
Project No.: 15600.00 Checked By: Depth: 65-67 FT Elevation: ---

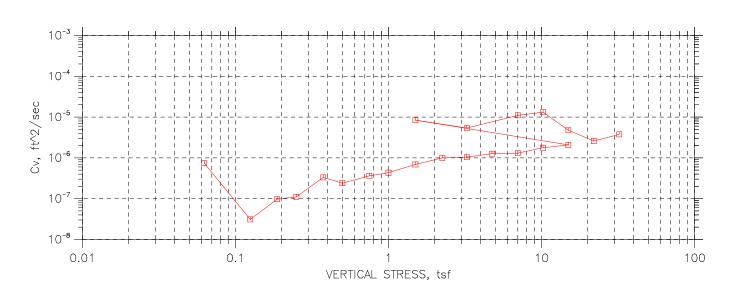
Liquid Limit: 35 Plastic Limit: 24 Plasticity Index: 11

Initial Height: 1.11 in Specimen Diameter: 2.48 in

	Before Consolidation		After Consol	idation
	Trimmings	Specimen+Ring	Specimen+Ring	Trimmings
Container ID	71	RING	RING	203
Wt. Container + Wet Soil, gm	199.52	413.68	402.51	204.54
Wt. Container + Dry Soil, gm	158.27	374.52	374.52	176.61
Wt. Container, qm	45	262.16	262.16	64.51
Wt. Dry Soil, gm	113.27	112.36	112.36	112.1
Water Content, *	36.42	34.86	24.92	24.92
Void Ratio		1.16	0.69	
Degree of Saturation, %		83.13	100.15	
Dry Unit Weight, pcf		79.867	102.16	

CONSOLIDATION TEST DATA


Project: CNR CROSSING BRIDGE Boring No.: BB-ACNR-101 Sample No.: 4U Test No.: 210619


Location: AUBURN Tested By: Brian Fogg Test Date: 6/18/08 Sample Type: Shelby Tube

Project No.: 15600.00 Checked By: Depth: 65-67 FT Elevation: ---

Soil Description: GREY SILTY CLAY

	Applied	Final	Void	Strain		Fitting		cient of Con	
	Stress	Displacement	Ratio	at End	Sq.Rt.	Log	Sq.Rt.	Log	Ave.
	tsf	in		*	min	min	ft^2/sec	ft^2/sec	ft^2/sec
1	0.0625	0.08751	0.986	7.92	0.4	0.0	1.58e-005	0.00e+000	1.58e-005
2	0.125	0.08961	0.982	8.11	21.9	0.0	2.69e-007	0.00e+000	2.69e-007
3	0.188	0.09172	0.978	8.30	7.0	8.1	8.33e-007	7.22e-007	7.74e-007
4	0.25	0.09339	0.975	8.45	7.0	0.0	8.35e-007	0.00e+000	8.35e-007
5	0.375	0.09616	0.970	8.70	3.7	3.7	1.59e-006	1.58e-006	1.59e-006
6	0.5	0.09855	0.965	8.92	3.9	3.4	1.48e-006	1.72e-006	1.59e-006
7	0.75	0.1024	0.957	9.27	2.3	2.9	2.52e-006	1.97e-006	2.22e-006
8	1	0.106	0.950	9.59	3.2	2.7	1.81e-006	2.11e-006	1.95e-006
9	1.5	0.1122	0.938	10.15	2.2	2.2	2.58e-006	2.52e-006	2.55e-006
10	2.25	0.1225	0.918	11.09	4.6	3.7	1.22e-006	1.49e-006	1.34e-006
11	3.25	0.1389	0.886	12.57	4.8	8.8	1.12e-006	6.17e-007	7.96e-007
12	4.75	0.165	0.835	14.93	6.9	5.1	7.53e-007	1.02e-006	8.68e-007
13	7	0.1889	0.789	17.10	3.6	3.9	1.37e-006	1.27e-006	1.32e-006
14	10.3	0.2117	0.744	19.15	3.5	3.1	1.35e-006	1.48e-006	1.41e-006
15	15	0.2343	0.700	21.21	2.1	2.8	2.14e-006	1.61e-006	1.84e-006
16	7	0.2315	0.705	20.95	0.0	0.0	2.70e-004	0.00e+000	2.70e-004
17	3.25	0.227	0.714	20.54	0.5	0.2	9.64e-006	1.79e-005	1.25e-005
18	1.5	0.221	0.726	20.00	1.0	0.0	4.63e-006	0.00e+000	4.63e-006
19	0.75	0.2154	0.737	19.49	2.4	3.3	1.85e-006	1.36e-006	1.57e-006
20	1.5	0.2167	0.734	19.61	0.5	0.0	8.80e-006	0.00e+000	8.80e-006
21	3.25	0.2217	0.724	20.06	0.7	0.0	6.04e-006	0.00e+000	6.04e-006
22	7	0.2286	0.711	20.69	0.5	0.3	9.25e-006	1.61e-005	1.18e-005
23	10.3	0.2343	0.700	21.20	0.9	0.4	4.75e-006	1.22e-005	6.84e-006
24	15	0.2436	0.682	22.04	1.1	1.4	3.78e-006	3.13e-006	3.43e-006
25	22	0.2599	0.650	23.52	1.4	1.3	3.02e-006	3.09e-006	3.05e-006
26	32.3	0.2799	0.611	25.33	1.1	1.5	3.47e-006	2.63e-006	2.99e-006
27	7	0.2717	0.627	24.59	0.0	0.0	1.68e-004	0.00e+000	1.68e-004
28	1	0.2546	0.660	23.04	1.2	0.0	3.41e-006	0.00e+000	3.41e-006
29	0.25	0.2411	0.687	21.82	9.3	9.4	4.49e-007	4.46e-007	4.48e-007

Project: CNR CROSSING BRIDGE	Location: AUBURN	Project No.: 15600.00
Boring No.: BB-ACNR-101	Tested By: Brian Fogg	Checked By:
Sample No.: 5U	Test Date: 7/15/08	Depth: 75-77 FT
Test No.: 210620	Sample Type: Shelby Tube	Elevation:
Description: GREY SILTY CLAY		
Remarks:		

Project: CNR CROSSING BRIDGE Boring No.: BB-ACNR-101 Sample No.: 5U Test No.: 210620

Location: AUBURN Tested By: Brian Fogg Test Date: 7/15/08 Sample Type: Shelby Tube

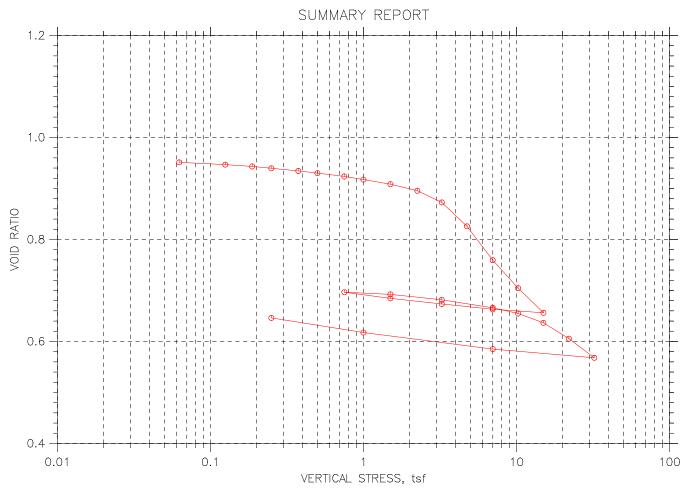
Project No.: 15600.00 Checked By: Depth: 75-77 FT Elevation: ---

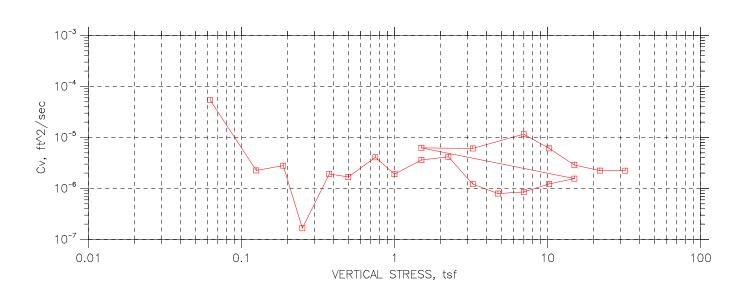
Soil Description: GREY SILTY CLAY Romarks:

Measured Specific Gravity: 2.74 Initial Void Ratio: 0.85 Final Void Ratio: 0.51

Liquid Limit: 22 Plastic Limit: 20 Plasticity Index: 2 Initial Height: 1.03 in Specimen Diameter: 2.48 in

	Before Consolidation		After Consol	idation
	Trimmings	Specimen+Ring	Specimen+Ring	Trimmings
Container ID	9	RING	RING	157
Wt. Container + Wet Soil, gm	181.62	419.68	405.02	206.66
Wt. Container + Dry Soil, gm	150.47	382.75	382.75	184.41
Wt. Container, qm	47.58	262.17	262.17	63.93
Wt. Dry Soil, gm	102.89	120.58	120.58	120.48
Water Content, 8	30.28	30.63	18.47	18.47
Void Ratio		0.85	0.51	
Degree of Saturation, %		98.49	100.07	
Dry Unit Weight, pcf		92.359	113.61	


CONSOLIDATION TEST DATA


Project: CNR CROSSING BRIDGE Boring No.: BB-ACNR-101 Sample No.: 5U Test No.: 210620

Location: AUBURN Tested By: Brian Fogg Test Date: 7/15/08 Sample Type: Shelby Tube

Project No.: 15600.00 Checked By: Depth: 75-77 FT Elevation: ---

	Applied	Final	Void	Strain		Fitting		cient of Con	
	Stress	Displacement	Ratio	at End	Sq.Rt.	Fod	Sq.Rt.	Log	Ave.
	tsf	in		,	min	min	ft^2/sec	ft^2/sec	ft^2/sec
1	0.0625	0.02632	0.805	2.57	7.9	0.0	7.41e-007	0.00e+000	7.41e-007
2	0.125	0.04601	0.769	4.49	174.6	185.5	3.20e-008	3.01e-008	3.10e-008
3	0.188	0.05846	0.746	5.70	55.5	0.0	9.74e-008	0.00e+000	9.74e-008
4	0.25	0.06459	0.735	6.30	47.9	0.0	1.11e-007	0.00e+000	1.11e-007
5	0.375	0.07178	0.722	7.00	15.8	0.0	3.32e-007	0.00e+000	3.32e-007
6	0.5	0.08152	0.705	7.95	19.5	23.3	2.63e-007	2.21e-007	2.40e-007
7	0.75	0.08961	0.690	8.74	13.9	0.0	3.62e-007	0.00e+000	3.62e-007
8	1	0.0982	0.675	9.58	11.4	0.0	4.34e-007	0.00e+000	4.34e-007
9	1.5	0.1113	0.651	10.85	7.0	7.1	6.94e-007	6.84e-007	6.89e-007
10	2.25	0.124	0.628	12.09	4.7	4.7	1.00e-006	9.94e-007	9.99e-007
11	3.25	0.1359	0.607	13.26	4.6	4.1	9.85e-007	1.11e-006	1.04e-006
12	4.75	0.149	0.583	14.53	3.5	3.6	1.27e-006	1.25e-006	1.26e-006
13	7	0.1626	0.558	15.86	3.4	3.2	1.26e-006	1.35e-006	1.30e-006
1.4	10.3	0.1765	0.533	17.21	2.3	2.5	1.84e-006	1.70e-006	1.77e-006
15	15	0.1919	0.505	18.72	1.8	2.1	2.28e-006	1.90e-006	2.07e-006
16	7	0.189	0.511	18.43	0.1	0.0	5.09e-005	0.00e+000	5.09e-005
17	3.25	0.1854	0.517	18.08	0.5	0.2	8.06e-006	2.50e-005	1,22e-005
18	1.5	0.181	0.525	17.65	1.2	0.0	3.45e-006	0.00e+000	3.45e-006
19	0.75	0.1765	0.533	17.21	3.5	0.0	1.15e-006	0.00e+000	1.15e-006
20	1.5	0.178	0.531	17.36	0.5	0.0	8.43e-006	0.00e+000	8.43e-006
21	3.25	0.1817	0.524	17.72	0.8	0.0	5.38e-006	0.00e+000	5.38e-006
22	7	0.1868	0.515	18.22	0.5	0.3	8.80e-006	1.47e-005	1,10e-005
23	10.3	0.191	0.507	18.62	0.4	0.2	9.35e-006	2.21e-005	1.31e-005
24	15	0.1977	0.495	19.27	1.1	0.6	3.53e-006	7.17e-006	4.73e-006
25	22	0.2084	0.476	20.32	1.5	0.0	2.59e-006	0.00e+000	2.59e-006
26	32.3	0.2219	0.451	21.64	0.9	1.1	4.10e-006	3.49e-006	3,77e-006
27	7	0.2157	0.462	21.04	0.0	0.0	1.71e-004	0.00e+000	1.71e-004
28	i	0.2027	0.486	19.76	1.0	0.0	3.79e-006	0.00e+000	3.79e-006
29	0.25	0.1918	0.506	18.70	7.0	6.6	5.59e-007	5.92e-007	5.75e-007
6.5	0.00	0.1310	0.000	20.10		0.0	0.000-001	01000-001	000.00.

Project: CNR CROSSING BRIDGE	Location: AUBURN	Project No.: 15600.00
Boring No.: BB-ACNR-101	Tested By: Brian Fogg	Checked By:
Sample No.: 6U	Test Date: 7/17/08	Depth: 85-87 FT
Test No.: 210621	Sample Type: Shelby Tube	Elevation:
Description: GREY SILTY CLAY		
Remarks:		

Project: CNR CROSSING BRIDGE Boring No.: BB-ACNR-101 Sample No.: 6U Test No.: 210621

Location: AUBURN Tested By: Brian Fogg Test Date: 7/17/08 Sample Type: Shelby Tube

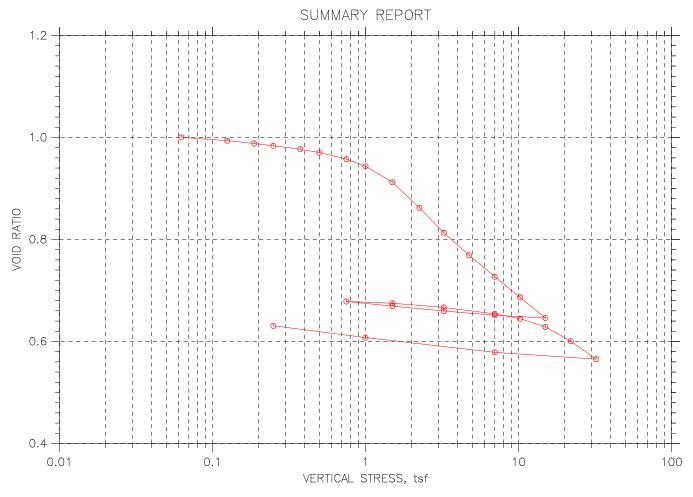
Project No.: 15600.00 Checked By: Depth: 85-87 FT Elevation: ---

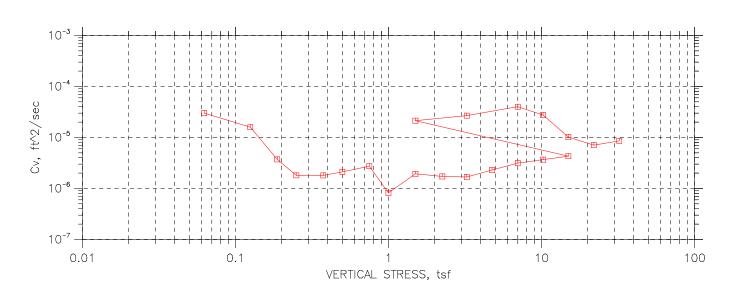
Soil Description: GREY SILTY CLAY

Measured Specific Gravity: 2.73 Initial Void Ratio: 0.96 Final Void Ratio: 0.65

Liquid Limit: 31 Plastic Limit: 22 Plasticity Index: 9 Initial Height: 1.02 in Specimen Diameter: 2.48 in

	Before	Consolidation	After Consol:	idation
	Trimmings	Specimen+Ring	Specimen+Ring	Trimmings
Container ID	162	RING	RING	223
Wt. Container + Wet Soil, qm	212.77	413.47	401.55	195.42
Wt. Container + Dry Soil, gm	175.36	374.83	374.83	168.75
Wt. Container, qm	66.53	262.1	262.1	56.25
Wt. Dry Soil, gm	108.83	112.73	112.73	112.5
Water Content, %	34.37	34.28	23.71	23.71
Void Ratio		0.96	0.65	
Degree of Saturation, %		97.74	100.15	
Dry Unit Weight, pcf		87.064	103.53	


CONSOLIDATION TEST DATA


Project: CNR CROSSING BRIDGE Boring No.: BB-ACNR-101 Sample No.: 6U Test No.: 210621

Location: AUBURN Tested By: Brian Fogg Test Date: 7/17/08 Sample Type: Shelby Tube

Project No.: 15600.00 Checked By: Depth: 85-87 FT Elevation: ---

	Applied	Final	Void	Strain	T50	Fitting	Coeffi	cient of Con	solidation
	Stress	Displacement	Ratio	at End	Sq.Rt.	Log	Sq.Rt.	Log	Ave.
	tsf	in		*	min	min	ft^2/sec	ft^2/sec	ft^2/sec
1	0.0625	0.003247	0.951	0.32	0.1	0.0	5.37e-005	0.00e+000	5.37e-005
2	0.125	0.005603	0.947	0.55	2.8	2.4	2.08e-006	2.46e-006	2.26e-006
3	0.188	0.007458	0.943	0.73	2.0	2.2	2.97e-006	2.65e-006	2.80e-006
4	0.25	0.009327	0.940	0.92	35.1	0.0	1.66e-007	0.00e+000	1.66e-007
5	0.375	0.012	0.934	1.18	3.6	2.4	1.61e-006	2.39e-006	1.92e-006
6	0.5	0.01424	0.930	1.40	4.4	2.5	1.32e-006	2.31e-006	1.68e-006
7	0.75	0.01762	0.924	1.73	1.6	1.2	3.63e-006	4.65e-006	4.08e-006
8	1	0.02079	0.917	2.04	3.0	0.0	1.91e-006	0.00e+000	1.91e-006
9	1.5	0.02556	0.908	2.51	1.6	1.6	3.63e-006	3.60e-006	3.61e-006
10	2.25	0.03213	0.896	3.16	1.6	1.1	3.58e-006	5.05e-006	4.19e-006
11	3.25	0.04408	0.873	4.33	4.5	0.0	1.22e-006	0.00e+000	1.22e-006
12	4.75	0.0684	0.826	6.73	7.0	6.3	7.52e-007	8.40e-007	7.94e-007
13	7	0.1029	0.759	10.12	7.0	4.6	7.09e-007	1.07e-006	8.54e-007
14	10.3	0.1314	0.705	12.92	3.5	4.1	1.33e-006	1.13e-006	1.22e-006
15	15	0.1565	0.656	15.39	2.3	3.2	1.86e-006	1.34e-006	1.56e-006
16	7	0.1529	0.663	15.03	0.1	0.0	7.06e-005	0.00e+000	7.06e-005
17	3.25	0.1475	0.674	14.51	0.5	0.0	9.28e-006	0.00e+000	9.28e-006
18	1.5	0.1418	0.685	13.94	1.0	0.0	4.46e-006	0.00e+000	4.46e-006
19	0.75	0.1356	0.697	13.33	3.5	3.6	1.25e-006	1.23e-006	1.24e-006
20	1.5	0.1377	0.692	13.54	0.7	0.0	6.25e-006	0.00e+000	6.25e-006
21	3.25	0.1433	0.682	14.09	0.7	0.0	6.09e-006	0.00e+000	6.09e-006
22	7	0.1515	0.666	14.89	0.5	0.2	8.29e-006	1.94e-005	1.16e-005
23	10.3	0.1572	0.655	15.46	0.7	0.7	6.05e-006	6.17e-006	6.11e-006
24	15	0.1667	0.637	16.39	1.4	1.5	2.99e-006	2.77e-006	2.87e-006
25	22	0.1829	0.606	17.98	1.8	1.8	2.28e-006	2.20e-006	2.24e-006
26	32.3	0.2024	0.568	19.90	1.6	1.8	2.36e-006	2.11e-006	2.23e-006
27	7	0.1935	0.585	19.02	0.0	0.0	1.04e-004	0.00e+000	1.04e-004
28	1	0.1767	0.617	17.37	1.8	2.2	2.21e-006	1.82e-006	2.00e-006
29	0.25	0.1617	0.646	15.90	7.1	8.8	5.81e-007	4.66e-007	5.17e-007

Project: CNR CROSSING BRIDGE	Location: AUBURN	Project No.: 15600.00
Boring No.: BB-ACNR-102	Tested By: Brian Fogg	Checked By:
Sample No.: 1U	Test Date: 7/17/08	Depth: 19-21 FT
Test No.: 210622	Sample Type: Shelby Tube	Elevation:
Description: GREY SILTY CLAY		
Remarks:		

Project: CNR CROSSING BRIDGE Boring No.: BB-ACNR-102 Sample No.: 1U Test No.: 210622

Location: AUBURN Tested By: Brian Fogg Test Date: 7/17/08 Sample Type: Shelby Tube

Project No.: 15600.00 Checked By: Depth: 19-21 FT Elevation: ---

Soil Description: GREY SILTY CLAY

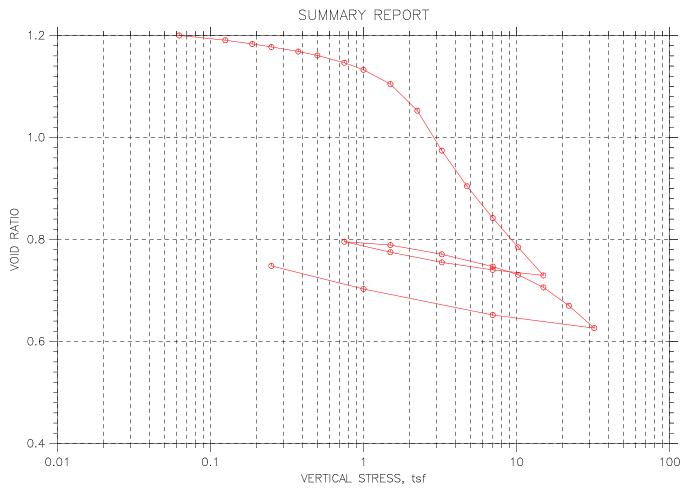
Remarks:

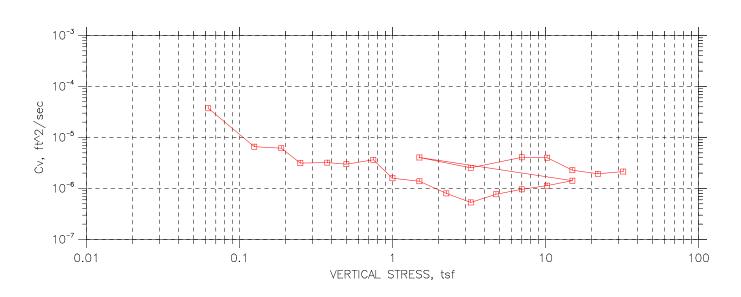
Measured Specific Gravity: 2.63 Initial Void Ratio: 1.01 Final Void Ratio: 0.63

Liquid Limit: NP Plastic Limit: NP Plasticity Index: NP

Initial Height: 1.05 in Specimen Diameter: 2.48 in

	Before Consolidation		After Consol	idation
	Trimmings	Specimen+Ring	Specimen+Ring	Trimmings
Container ID	118	RING	RING	20
Wt. Container + Wet Soil, gm	215.39	411.1	396.83	187.31
Wt. Container + Dry Soil, gm	177.47	370.76	370.76	161.3
Wt. Container, qm	69.54	262.17	262.17	52.95
Wt. Dry Soil, gm	107.93	108.59	108.59	108.35
Water Content, %	35.13	37.15	24.01	24.01
Void Ratio		1.01	0.63	
Degree of Saturation, *		96.40	100.11	
Dry Unit Weight, pcf		81.546	100.69	


CONSOLIDATION TEST DATA


Project: CNR CROSSING BRIDGE Boring No.: BB-ACNR-102 Sample No.: 1U Test No.: 210622

Location: AUBURN Tested By: Brian Fogg Test Date: 7/17/08 Sample Type: Shelby Tube

Project No.: 15600.00 Checked By: Depth: 19-21 FT Elevation: ---

	Applied	Final	Void	Strain		Fitting		cient of Con	
	Stress	Displacement	Ratio	at End	Sq.Rt.	Log	Sq.Rt. ft^2/sec	Loq ft^2/sec	Ave. ft^2/sec
	Cal	111		,	min	min	IC-2/88C	IC-2/90C	IC-2/sec
1	0.0625	0.006796	1.000	0.65	0.2	0.2	2.50e-005	3.76e-005	3.01e-005
2	0.125	0.01027	0.994	0.98	0.5	0.3	1.32e-005	2.00e-005	1.59e-005
3	0.188	0.01309	0.988	1.25	1.6	0.0	3.71e-006	0.00e+000	3.71e-006
4	0.25	0.01546	0.984	1.48	3.4	0.0	1.81e-006	0.00e+000	1.81e-006
5	0.375	0.01895	0.977	1.81	3.3	0.0	1.80e-006	0.00e+000	1.80e-006
6	0.5	0.0223	0.970	2.13	2.8	0.0	2.12e-006	0.00e+000	2.12e-006
7	0.75	0.02902	0.958	2.77	2.2	0.0	2.73e-006	0.00e+000	2.73e-006
8	1	0.0363	0.944	3.47	7.2	0.0	8.19e-007	0.00e+000	8.19e-007
9	1.5	0.05258	0.912	5.03	3.4	2.5	1.67e-006	2.30e-006	1.94e-006
10	2.25	0.07857	0.862	7.51	3.4	3.0	1.61e-006	1.85e-006	1.72e-006
11	3.25	0.104	0.813	9.94	3.5	2.7	1.47e-006	1.96e-006	1.68e-006
12	4.75	0.127	0.769	12.14	2.2	2.1	2.22e-006	2.37e-006	2.29e-006
13	7	0.1488	0.727	14.23	1.5	1.5	3.08e-006	3.21e-006	3.14e-006
1.4	10.3	0.1698	0.687	16.23	1.3	1.1	3.36e-006	4.06e-006	3.68e-006
15	15	0.1909	0.646	18.25	1.3	0.7	3.29e-006	6.16e-006	4.29e-006
16	7	0.188	0.651	17.98	0.0	0.0	5.23e-004	0.00e+000	5.23e-004
17	3.25	0.1838	0.660	17.57	0.1	0.0	5.49e-005	0.00e+000	5.49e-005
18	1.5	0.1788	0.669	17.09	0.2	0.2	1.80e-005	2.03e-005	1.91e-005
19	0.75	0.174	0.678	16.64	0.9	1.0	4.77e-006	4.26e-006	4.50e-006
20	1.5	0.1759	0.675	16.81	0.2	0.2	1.83e-005	2.55e-005	2.13e-005
21	3.25	0.1801	0.667	17.22	0.1	0.2	2.87e-005	2.51e-005	2.68e-005
22	7	0.1867	0.654	17.85	0.1	0.1	4.29e-005	3.76e-005	4.01e-005
23	10.3	0.1916	0.645	18.32	0.2	0.1	2.27e-005	3.49e-005	2.75e-005
24	15	0.2	0.628	19.12	0.7	0.1	6.17e-006	2.91e-005	1.02e-005
25	22	0.2144	0.601	20.50	0.9	0.3	4.61e-006	1.52e-005	7.07e-006
26	32.3	0.2328	0.565	22.25	0.7	0.2	5.69e-006	1.74e-005	8.58e-006
27	7	0.2259	0.579	21.59	0.0	0.0	4.42e-004	0.00e+000	4.42e-004
28	1	0.2108	0.608	20.15	0.5	0.0	8.42e-006	0.00e+000	8.42e-006
29	0.25	0.1989	0.631	19.01	2.5	3.3	1.64e-006	1.21e-006	1.39e-006

Project: CNR CROSSING BRIDGE	Location: AUBURN	Project No.: 15600.00				
Boring No.: BB-ACNR-102	Tested By: Brian Fogg	Checked By:				
Sample No.: 3U	Test Date: 07/14/2008	Depth: 41-43 FT				
Test No.: 210624	Sample Type: Shelby Tube	Elevation:				
Description: GREY SILTY CLAY	Description: GREY SILTY CLAY					
Remarks:	Remarks:					

Project: CNR CROSSING BRIDGE Boring No.: BB-ACNR-102 Sample No.: 3U Test No.: 210624

Location: AUBURN Tested By: Brian Fogg Test Date: 07/14/2008 Sample Type: Shelby Tube

Project No.: 15600.00 Checked By: Depth: 41-43 FT Elevation: ---

Soil Description: GREY SILTY CLAY

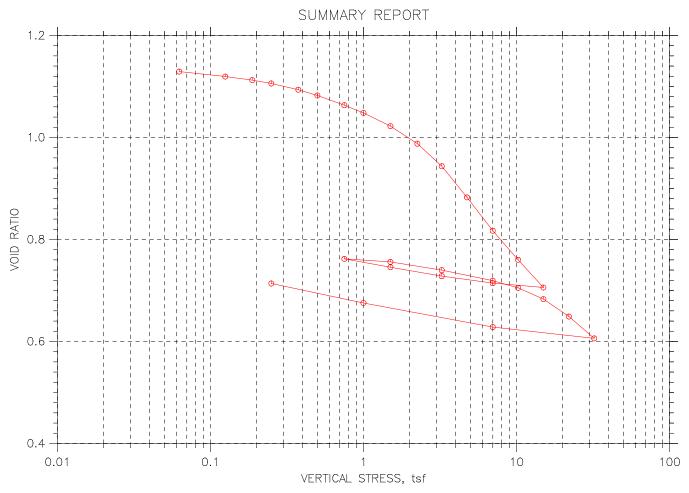
Remarks:

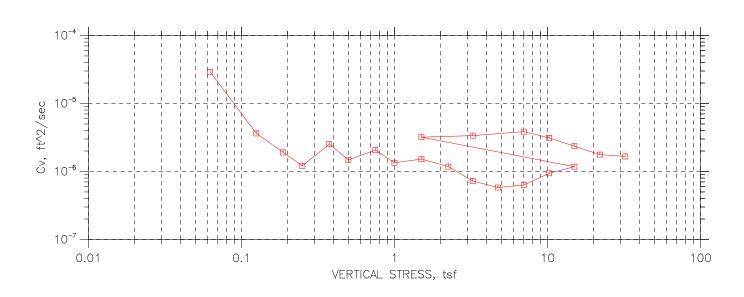
Measured Specific Gravity: 2.77 Initial Void Ratio: 1.21 Final Void Ratio: 0.75

Liquid Limit: 27 Plastic Limit: 19 Plasticity Index: 8

Initial Height: 1.03 in Specimen Diameter: 2.48 in

	Before Consolidation After Consol:		lidation	
	Trimmings	Specimen+Ring	Specimen+Ring	Trimmings
Container ID	1	RING	RING	70
Wt. Container + Wet Soil, gm	183.25	406.73	391.86	192.25
Wt. Container + Dry Soil, gm	147.67	364.25	364.25	164.68
Wt. Container, qm	64.26	262.15	262.15	62.73
Wt. Dry Soil, gm	83.41	102.1	102.1	101.95
Water Content, %	42.66	41.61	27.04	27.04
Void Ratio		1.21	0.75	
Degree of Saturation, %		95.15	100.13	
Dry Unit Weight, pcf		78.203	98.92	


CONSOLIDATION TEST DATA


Project: CNR CROSSING BRIDGE Boring No.: BB-ACNR-102 Sample No.: 3U Test No.: 210624

Location: AUBURN Tested By: Brian Fogg Test Date: 07/14/2008 Sample Type: Shelby Tube Project No.: 15600.00 Checked By: Depth: 41-43 FT Elevation: ---

Soil Description: GREY SILTY CLAY Remarks:

	Applied	Final	Void	Strain		Fitting		cient of Con	
	Stress	Displacement	Ratio	at End	Sq.Rt.	Log	Sq.Rt.	Log	Ave.
	tsf	in		*	min	min	ft^2/sec	ft^2/sec	ft^2/sec
1	0.0625	0.005224	1.200	0.51	0.2	0.2	3.66e-005	3.81e-005	3.73e-005
2	0.125	0.009557	1.191	0.93	0.9	0.0	6.60e-006	0.00e+000	6.60e-006
3	0.188	0.01293	1.183	1.26	1.0	0.0	6.16e-006	0.00e+000	6.16e-006
4	0.25	0.01561	1.178	1.52	2.0	1.7	2.94e-006	3.39e-006	3.14e-006
5	0.375	0.01981	1.169	1.93	1.8	1.8	3.17e-006	3.25e-006	3.21e-006
6	0.5	0.02342	1.161	2.28	2.1	1.8	2.79e-006	3.23e-006	3.00e-006
7	0.75	0.03004	1.146	2.93	1.6	1.5	3.48e-006	3.83e-006	3.65e-006
8	1	0.03645	1.133	3.55	3.5	3.6	1.60e-006	1.57e-006	1.58e-006
9	1.5	0.04949	1.105	4.83	4.6	3.3	1.19e-006	1.65e-006	1.38e-006
10	2.25	0.07361	1.053	7.18	6.9	6.4	7.72e-007	8.29e-007	7.99e-007
11	3.25	0.1099	0.974	10.72	9.1	9.6	5.45e-007	5.18e-007	5.31e-007
12	4.75	0.1423	0.904	13.88	6.9	5.1	6.69e-007	9.04e-007	7.69e-007
13	7	0.1712	0.842	16.70	4.6	4.3	9.31e-007	9.94e-007	9.62e-007
14	10.3	0.1978	0.785	19.28	3.5	3.7	1.17e-006	1.10e-006	1.13e-006
15	15	0.2234	0.729	21.79	2.3	3.0	1.61e-006	1.27e-006	1.42e-006
16	7	0.2184	0.740	21.29	0.2	0.0	1.77e-005	0.00e+000	1.77e-005
17	3.25	0.2116	0.755	20.63	0.7	0.0	5.50e-006	0.00e+000	5.50e-006
18	1.5	0.2023	0.775	19.73	2.2	0.0	1.75e-006	0.00e+000	1.75e-006
19	0.75	0.1928	0.796	18.80	4.7	4.0	8.41e-007	9.82e-007	9.06e-007
20	1.5	0.1958	0.789	19.10	1.0	0.0	4.05e-006	0.00e+000	4.05e-006
20 21	3.25	0.2042	0.771	19.91	1.5	0.0	2.54e-006	0.00e+000	2.54e-006
22	7	0.2154	0.747	21.00	0.9	0.0	4.08e-006	0.00e+000	4.08e-006
23	10.3	0.2228	0.731	21.73	1.1	0.8	3.37e-006	4.93e-006	4.01e-006
24	15	0.2343	0.706	22.85	1.6	1.6	2.29e-006	2.27e-006	2.28e-006
25	22	0.251	0.670	24.48	1.6	2.0	2.22e-006	1.72e-006	1.94e-006
26	32.3	0.2713	0.626	26.46	1.4	1.7	2.39e-006	1.95e-006	2.15e-006
27	7	0.2594	0.652	25.30	0.1	0.0	3.44e-005	1.81e-004	5.78e-005
28	1	0.2358	0.703	22.99	2.0	2.9	1.71e-006	1.19e-006	1.41e-006
29	0.25	0.2148	0.748	20.94	11.8	13.5	3.11e-007	2.71e-007	2.90e-007

Project: CNR CROSSING BRIDGE	Location: AUBURN	Project No.: 15600.00				
Boring No.: BB-ACNR-102	Tested By: Brian Fogg	Checked By:				
Sample No.: 5U	Test Date: 7/17/2008	Depth: 59-61 FT				
Test No.: 210626	Sample Type: Shelby Tube	Elevation:				
Description: GREY SILTY CLAY	Description: GREY SILTY CLAY					
Remarks:						

Project: CNR CROSSING BRIDGE Boring No.: BB-ACNR-102 Sample No.: 5U Test No.: 210626

Location: AUBURN Tested By: Brian Fogg Test Date: 7/17/2008 Sample Type: Shelby Tube

Project No.: 15600.00 Checked By: Depth: 59-61 FT Elevation: ---

Soil Description: GREY SILTY CLAY

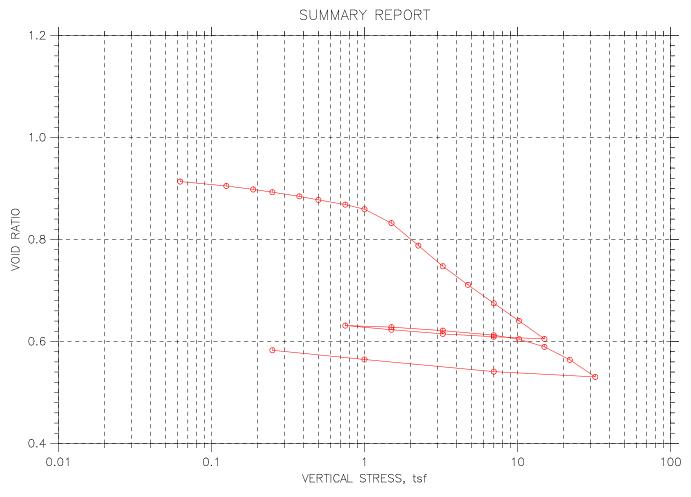
Remarks:

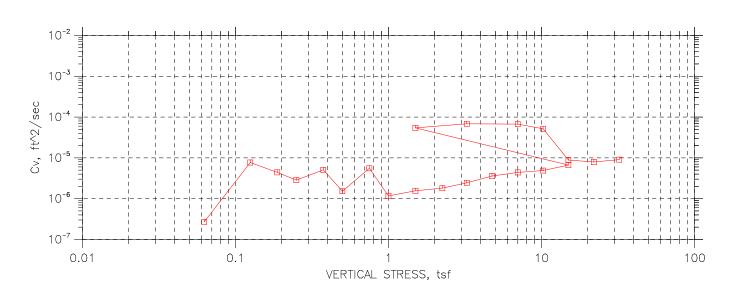
Measured Specific Gravity: 2.76 Initial Void Ratio: 1.14 Final Void Ratio: 0.71

Liquid Limit: 33 Plastic Limit: 22 Plasticity Index: 11

Initial Height: 1.03 in Specimen Diameter: 2.48 in

	Before	fore Consolidation After Consolidation		idation
	Trimmings	Specimen+Ring	Specimen+Ring	Trimmings
Container ID	69	RING	RING	52
Wt. Container + Wet Soil, gm	138.94	408.46	395.03	196.12
Wt. Container + Dry Soil, gm	118.38	367.71	367.71	169.1
Wt. Container, qm	62.45	262.1	262.1	64.64
Wt. Dry Soil, gm	55.93	105.61	105.61	104.46
Water Content, %	36.76	38.58	25.87	25.87
Void Ratio		1.14	0.71	
Degree of Saturation, %		93.21	100.02	
Dry Unit Weight, pcf		80.423	100.54	


CONSOLIDATION TEST DATA


Project: CNR CROSSING BRIDGE Boring No.: BB-ACNR-102 Sample No.: 5U Test No.: 210626

Location: AUBURN Tested By: Brian Fogg Test Date: 7/17/2008 Sample Type: Shelby Tube

Project No.: 15600.00 Checked By: Depth: 59-61 FT Elevation: ---

	Applied	Final	Void	Strain		Fitting		cient of Con	solidation
	Stress	Displacement	Ratio	at End	Sq.Rt.	Log	Sq.Rt.	Log	Ave.
	tsf	in			min	min	ft^2/sec	ft^2/sec	ft^2/sec
1	0.0625	0.00634	1.129	0.61	0.2	0.2	2.43e-005	3.66e-005	2.92e-005
2	0.125	0.01108	1.119	1.07	1.6	0.0	3.63e-006	0.00e+000	3.63e-006
3	0.188	0.01445	1.112	1.40	3.4	2.9	1.77e-006	2.06e-006	1.90e-006
4	0.25	0.01764	1.106	1.71	4.9	0.0	1.21e-006	0.00e+000	1.21e-006
5	0.375	0.02351	1.094	2.28	2.3	2.3	2.56e-006	2.50e-006	2.53e-006
6	0.5	0.02894	1.082	2.81	4.5	3.3	1.27e-006	1.75e-006	1.47e-006
7	0.75	0.0381	1.063	3.69	3.6	1.9	1.59e-006	2.94e-006	2.06e-006
8	1	0.04543	1.048	4.40	4.6	3.7	1.21e-006	1.51e-006	1.34e-006
9	1.5	0.0579	1.022	5.61	3.6	3.6	1.54e-006	1.50e-006	1.52e-006
10	2.25	0.07442	0.988	7.21	5.0	4.1	1.07e-006	1.31e-006	1.18e-006
11	3.25	0.09569	0.944	9.28	7.1	7.0	7.17e-007	7.30e-007	7.23e-007
12	4.75	0.1251	0.883	12.13	9.2	7.5	5.29e-007	6.43e-007	5.80e-007
13	7	0.1567	0.817	15.19	7.0	7.3	6.43e-007	6.23e-007	6.33e-007
14	10.3	0.1841	0.760	17.85	4.8	4.3	8.91e-007	9.94e-007	9.40e-007
15	15	0.2102	0.706	20.38	3.4	3.4	1.18e-006	1.18e-006	1.18e-006
16	7	0.2061	0.714	19.98	0.2	0.0	2.51e-005	0.00e+000	2.51e-005
17	3.25	0.1994	0.728	19.34	0.7	0.0	5.53e-006	0.00e+000	5.53e-006
18	1.5	0.1911	0.746	18.52	1.8	2.4	2.28e-006	1.70e-006	1.95e-006
19	0.75	0.1831	0.762	17.76	4.8	4.3	8.42e-007	9.55e-007	8.95e-007
20	1.5	0.1861	0.756	18.04	1.3	0.0	3.20e-006	0.00e+000	3.20e-006
21	3.25	0.1938	0.740	18.79	1.2	0.0	3.36e-006	0.00e+000	3.36e-006
22	7	0.2038	0.719	19.75	1.0	0.0	3.85e-006	0.00e+000	3.85e-006
23	10.3	0.2106	0.705	20.41	1.2	1.3	3.30e-006	2.96e-006	3.12e-006
24	15	0.2212	0.683	21.44	1.6	1.6	2.36e-006	2.35e-006	2.35e-006
25	22	0.2376	0.649	23.04	2.1	2.1	1.78e-006	1.76e-006	1.77e-006
26	32.3	0.2582	0.606	25.03	1.7	2.5	2.10e-006	1.38e-006	1.66e-006
27	7	0.2476	0.628	24.00	0.1	0.0	2.78e-005	0.00e+000	2.78e-005
28	1	0.2248	0.675	21.80	2.4	2.8	1.51e-006	1.29e-006	1.39e-006
29	0.25	0.2064	0.714	20.01	18.9	0.0	2.01e-007	0.00e+000	2.01e-007

Project: CNR CROSSING BRIDGE	Location: AUBURN	Project No.: 15600.00				
Boring No.: BB-ACNR-103	Tested By: Brian Fogg	Checked By:				
Sample No.: 1U	Test Date: 7/17/08	Depth: 15-17 FT				
Test No.: 210627	Sample Type: Shelby Tube	Elevation:				
Description: GREY SILTY CLAY	Description: GREY SILTY CLAY					
Remarks:						

Project: CNR CROSSING BRIDGE Boring No.: BB-ACNR-103 Sample No.: 1U Test No.: 210627

Soil Description: GREY SILTY CLAY

Remarks:

Measured Specific Gravity: 2.78 Initial Void Ratio: 0.92 Final Void Ratio: 0.58

Location: AUBURN Tested By: Brian Fogg Test Date: 7/17/08 Sample Type: Shelby Tube

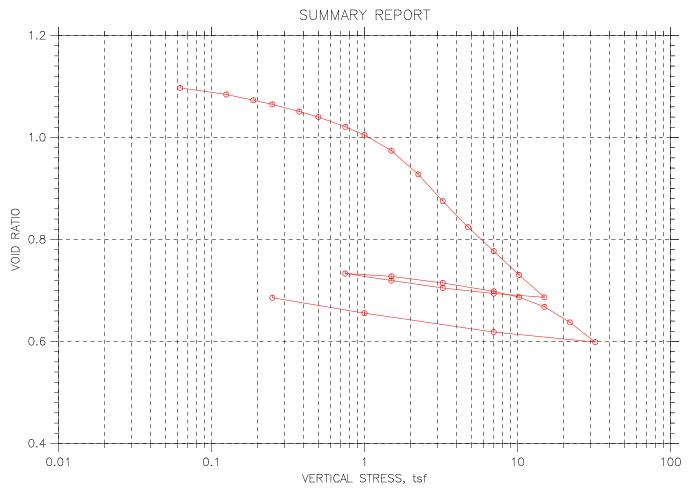
Project No.: 15600.00 Checked By: Depth: 15-17 FT Elevation: ---

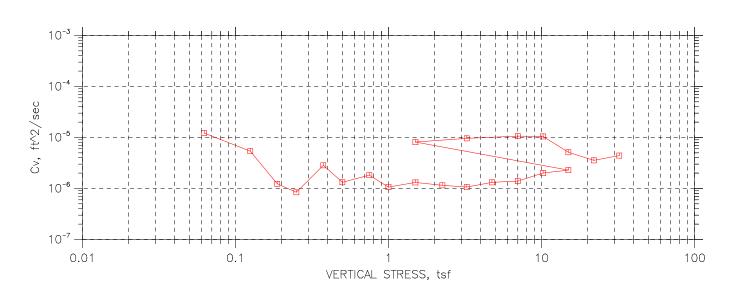
Liquid Limit: 28 Plastic Limit: 21 Plasticity Index: 7

Initial Height: 1.00 in Specimen Diameter: 2.48 in

	Before	Consolidation	After Consol	idation
	Trimmings	Specimen+Ring	Specimen+Ring	Trimmings
Container ID	57	RING	RING	65
Wt. Container + Wet Soil, gm	179.43	415.18	401.77	199.52
Wt. Container + Dry Soil, gm	151.51	377.58	377.58	175.35
Wt. Container, qm	61.53	262.17	262.17	60.04
Wt. Dry Soil, gm	89.98	115.41	115.41	115.31
Water Content, %	31.03	32.58	20.96	20.96
Void Ratio		0.92	0.58	
Degree of Saturation, %		98.63	100.00	
Dry Unit Weight, pcf		90.471	109.65	

CONSOLIDATION TEST DATA


Project: CNR CROSSING BRIDGE Boring No.: BB-ACNR-103 Sample No.: 1U Test No.: 210627


Location: AUBURN Tested By: Brian Fogg Test Date: 7/17/08 Sample Type: Shelby Tube

Project No.: 15600.00 Checked By: Depth: 15-17 FT Elevation: ---

Soil Description: GREY SILTY CLAY Remarks:

	Applied	Final	Void	Strain		Fitting		cient of Con	
	Stress	Displacement	Ratio	at End	Sq.Rt. min	Log	Sq.Rt. ft^2/sec	ft^2/sec	Ave. ft^2/sec
	Cal	111		,	man	Ha.II	10.5/860	10.7/200	10.5/360
1	0.0625	0.002486	0.914	0.25	21.2	0.0	2.70e-007	0.00e+000	2.70e-007
2	0.125	0.007022	0.905	0.70	0.9	0.6	6.38e-006	9.67e-006	7.69e-006
3	0.188	0.0105	0.898	1.05	1.3	0.0	4.42e-006	0.00e+000	4.42e-006
4	0.25	0.01338	0.893	1.34	2.0	0.0	2.85e-006	0.00e+000	2.85e-006
5	0.375	0.01763	0.885	1.76	1.5	0.7	3.67e-006	8.20e-006	5.07e-006
6	0.5	0.02124	0.878	2.12	3.6	0.0	1.52e-006	0.00e+000	1.52e-006
7	0.75	0.02608	0.868	2.60	1.4	0.5	3.85e-006	1.00e-005	5.56e-006
8	1	0.03082	0.859	3.08	4.6	0.0	1.17e-006	0.00e+000	1.17e-006
9	1.5	0.04497	0.832	4.49	3.4	0.0	1.56e-006	0.00e+000	1.56e-006
10	2.25	0.06803	0.788	6.79	3.4	2.3	1.51e-006	2.26e-006	1.81e-006
11	3.25	0.08915	0.748	8.90	2.2	1.8	2.24e-006	2.70e-006	2.44e-006
12	4.75	0.1083	0.711	10.81	1.5	1.1	3.12e-006	4.19e-006	3.58e-006
13	7	0.1271	0.675	12.69	1.3	0.7	3.46e-006	6.04e-006	4.40e-006
1.4	10.3	0.1452	0.640	14.49	1.1	0.7	3.92e-006	6.47e-006	4.88e-006
15	15	0.1636	0.605	16.33	0.9	0.4	4.75e-006	1.11e-005	6.66e-006
16	7	0.1615	0.609	16.11	0.0	0.0	5.93e-004	0.00e+000	5.93e-004
17	3.25	0.1585	0.615	15.82	0.1	0.0	6.57e-005	3.64e-003	1.29e-004
18	1.5	0.1543	0.623	15.40	0.1	0.1	2.99e-005	3.35e-005	3.16e-005
19	0.75	0.15	0.631	14.97	0.5	0.2	8.89e-006	1.88e-005	1.21e-005
20	1.5	0.1516	0.628	15.13	0.1	0.0	5.43e-005	0.00e+000	5.43e-005
21	3.25	0.1551	0.621	15.48	0.1	0.0	6.83e-005	0.00e+000	6.83e-005
22	7	0.1598	0.612	15.95	0.1	0.1	6.62e-005	6.80e-005	6.71e-005
23	10.3	0.164	0.604	16.37	0.1	0.1	3.96e-005	7.46e-005	5.18e-005
24	15	0.1718	0.589	17.15	0.8	0.1	4.95e-006	4.08e-005	8.83e-006
25	22	0.1851	0.564	18.48	0.8	0.2	4.81e-006	2.28e-005	7.94e-006
26	32.3	0.2026	0.531	20.22	0.7	0.1	5.49e-006	2.57e-005	9.04e-006
27	7	0.1972	0.541	19.68	0.0	0.0	4.77e-004	0.00e+000	4.77e-004
28		0.1847	0.565	18.44	0.2	0.0	2.46e-005	0.00e+000	2.46e-005
29	0.25	0.1753	0.583	17.49	1.2	0.0	3.18e-006	0.00e+000	3.18e-006

Project: CNR CROSSING BRIDGE	Location: AUBURN	Project No.: 15600.00
Boring No.: BB-ACNR-103	Tested By: Brian Fogg	Checked By:
Sample No.: 2U	Test Date: 7/21/2008	Depth: 25-27 FT
Test No.: 210628	Sample Type: Shelby Tube	Elevation:
Description: GREY SILTY CLAY		
Remarks:		

Project: CNR CROSSING BRIDGE Boring No.: BB-ACNR-103 Sample No.: 2U Test No.: 210628

Location: AUBURN Tested By: Brian Fogg Test Date: 7/21/2008 Sample Type: Shelby Tube

Project No.: 15600.00 Checked By: Depth: 25-27 FT Elevation: ---

Soil Description: GREY SILTY CLAY

Remarks:

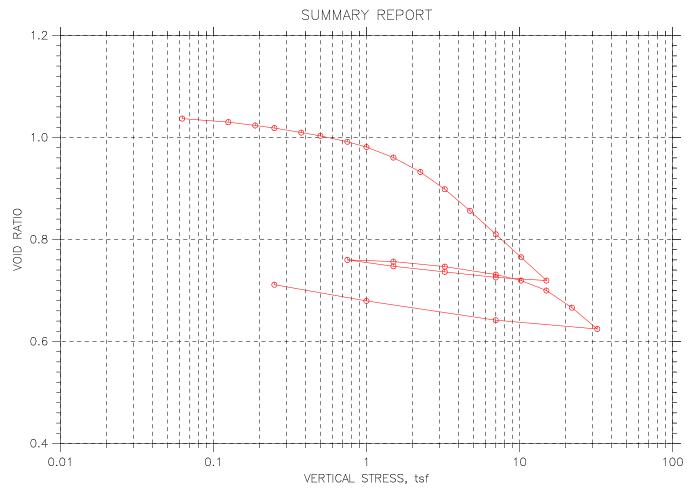
Measured Specific Gravity: 2.76 Initial Void Ratio: 1.16 Final Void Ratio: 0.69

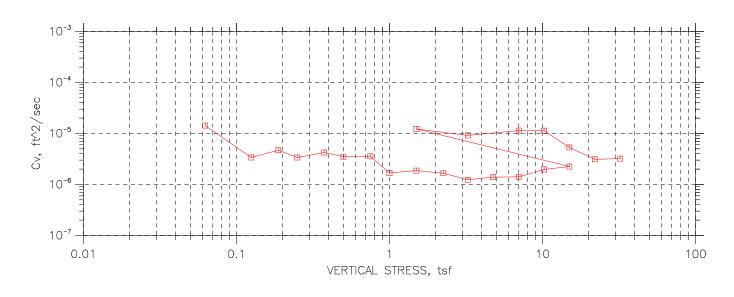
Liquid Limit: 27 Plastic Limit: 23 Plasticity Index: 4

Initial Height: 1.04 in Specimen Diameter: 2.48 in

	Before	Consolidation	After Consol:	idation
	Trimmings	Specimen+Ring	Specimen+Ring	Trimmings
Container ID	218	RING	RING	35
Wt. Container + Wet Soil, gm	264.9	407.49	393.86	196.14
Wt. Container + Dry Soil, gm	217.95	367.61	367.61	170.03
Wt. Container, qm	65.67	262.14	262.14	65.1
Wt. Dry Soil, gm	152.28	105.47	105.47	104.93
Water Content, %	30.83	37.81	24.88	24.88
Void Ratio		1.16	0.69	
Degree of Saturation, %		90.21	100.15	
Dry Unit Weight, pcf		79.892	102.21	

CONSOLIDATION TEST DATA


Project: CNR CROSSING BRIDGE Boring No.: BB-ACNR-103 Sample No.: 2U Test No.: 210628


Location: AUBURN Tested By: Brian Fogg Test Date: 7/21/2008 Sample Type: Shelby Tube

Project No.: 15600.00 Checked By: Depth: 25-27 FT Elevation: ---

Soil Description: GREY SILTY CLAY Remarks:

	Applied	Final	Void	Strain	T50 F1	tting		cient of Con:	
	Stress	Displacement	Ratio	at End	Sq.Rt.	Log	Sq.Rt.	Log	Ave.
	tsf	in		*	min	min	ft^2/sec	ft^2/sec	ft^2/sec
1	0.0625	0.0286	1.097	2.76	0.6	0.4	1.07e-005	1.43e-005	1.22e-005
2	0.125	0.03476	1.084	3.35	1.4	0.8	4.25e-006	7.34e-006	5.38e-006
3	0.188	0.04031	1.073	3.89	4.6	0.0	1.23e-006	0.00e+000	1.23e-006
4	0.25	0.04416	1.065	4.26	6.7	0.0	8.40e-007	0.00e+000	8.40e-007
5	0.375	0.05089	1.051	4.91	2.2	1.7	2.49e-006	3.32e-006	2.84e-006
6	0.5	0.05612	1.040	5.41	3.4	4.9	1.61e-006	1.12e-006	1.32e-006
7	0.75	0.06527	1.021	6.29	3.5	2.4	1.54e-006	2.23e-006	1.82e-006
8	1	0.0729	1.005	7.03	6.7	3.3	7.97e-007	1.60e-006	1.06e-006
9	1.5	0.08777	0.974	8.46	4.5	3.5	1.16e-006	1.50e-006	1.31e-006
10	2.25	0.1102	0.928	10.62	4.6	4.1	1.09e-006	1.22e-006	1.15e-006
11	3.25	0.1354	0.875	13.06	4.6	4.3	1.03e-006	1.10e-006	1.06e-006
1.2	4.75	0.1599	0.824	15.42	3.5	3.4	1.29e-006	1.34e-006	1.32e-006
13	7	0.1825	0.777	17.60	3.5	2.6	1.21e-006	1.64e-006	1.39e-006
1.4	10.3	0.2049	0.731	19.76	2.0	2.0	2.02e-006	1.99e-006	2.01e-006
15	15	0.2261	0.687	21.80	1.6	1.8	2.46e-006	2.13e-006	2.29e-006
16	7	0.2225	0.694	21.46	0.1	0.0	6.01e-005	0.00e+000	6.01e-005
17	3.25	0.2172	0.705	20.95	0.3	0.2	1.43e-005	1.99e-005	1.66e-005
18	1.5	0.2102	0.720	20.27	0.7	0.0	5.43e-006	0.00e+000	5.43e-006
19	0.75	0.2036	0.733	19.63	2.0	0.0	1.95e-006	0.00e+000	1.95e-006
20	1.5	0.2063	0.728	19.89	0.5	0.5	8.52e-006	7.76e-006	8.12e-006
21	3.25	0.2125	0.715	20.49	0.5	0.3	7.65e-006	1.29e-005	9.61e-006
22	7	0.2204	0.698	21.25	0.5	0.3	8.35e-006	1.46e-005	1.06e-005
23	10.3	0.226	0.687	21.79	0.5	0.3	8.15e-006	1.46e-005	1.05e-005
24	15	0.2349	0.668	22.65	0.9	0.6	4.25e-006	6.46e-006	5.13e-006
25	22	0.2496	0.638	24.07	1.1	0.9	3.27e-006	3.90e-006	3.56e-006
26	32.3	0.2683	0.599	25.87	0.9	0.7	3.79e-006	5.31e-006	4.42e-006
27	7	0.2588	0.619	24.95	0.0	0.0	1.76e-004	0.00e+000	1.76e-004
28	i	0.241	0.655	23.24	0.7	0.0	4.82e-006	0.00e+000	4.82e-006
29	0.25	0.2264	0.686	21.84	4.8	4.4	7.71e-007	8.43e-007	8.05e-007

Project: CNR CROSSING BRIDGE	Location: AUBURN	Project No.: 15600.00
Boring No.: BB-ACNR-103	Tested By: Brian Fogg	Checked By:
Sample No.: 3U	Test Date: 7/24/08	Depth: 35-37 FT
Test No.: 210629	Sample Type: Shelby Tube	Elevation:
Description: GREY SILTY CLAY		
Remarks:		

Project: CNR CROSSING BRIDGE Boring No.: BB-ACNR-103 Sample No.: 3U Test No.: 210629

Location: AUBURN Tested By: Brian Fogg Test Date: 7/24/08 Sample Type: Shelby Tube

Project No.: 15600.00 Checked By: Depth: 35-37 FT Elevation: ---

Soil Description: GREY SILTY CLAY

Remarks:

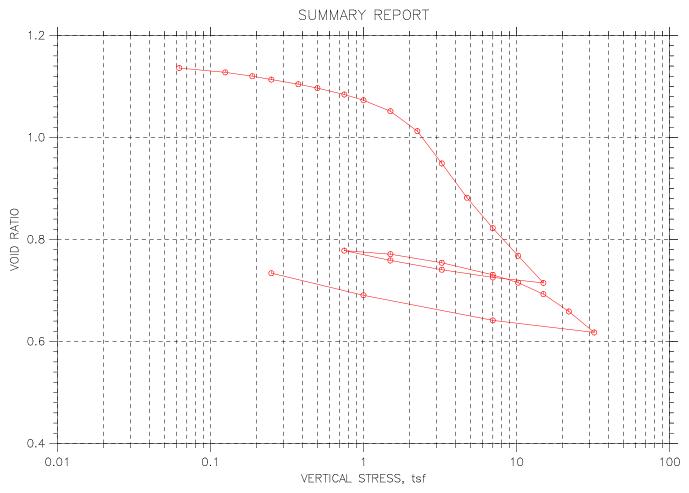
Measured Specific Gravity: 2.80 Initial Void Ratio: 1.09 Final Void Ratio: 0.71

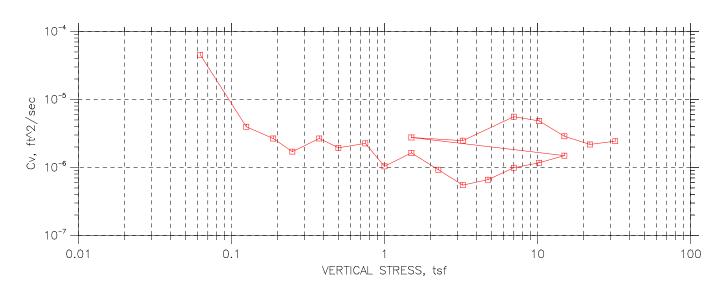
Liquid Limit: 35 Plastic Limit: 21 Plasticity Index: 14

Initial Height: 1.04 in Specimen Diameter: 2.48 in

	Before	Consolidation	After Consol	idation
	Trimmings	Specimen+Ring	Specimen+Ring	Trimmings
Container ID	67	RING	RING	40
Wt. Container + Wet Soil, gm	180.77	408.5	401.35	200.54
Wt. Container + Dry Soil, gm	151.94	373.15	373.15	172.39
Wt. Container, qm	66.91	262.14	262.14	61.56
Wt. Dry Soil, gm	85.03	111.01	111.01	110.83
Water Content, %	33.91	31.84	25.40	25.40
Void Ratio		1.09	0.71	
Degree of Saturation, %		81.54	99.98	
Dry Unit Weight, pcf		83.5	102.14	

CONSOLIDATION TEST DATA


Project: CNR CROSSING BRIDGE Boring No.: BB-ACNR-103 Sample No.: 3U Test No.: 210629


Location: AUBURN Tested By: Brian Fogg Test Date: 7/24/08 Sample Type: Shelby Tube

Project No.: 15600.00 Checked By: Depth: 35-37 FT Elevation: ---

Soil Description: GREY SILTY CLAY Remarks:

	Applied	Final	Void	Strain	T50 Fit			cient of Con:	
	Stress	Displacement	Ratio	at End	Sq.Rt.	Log	Sq.Rt.	Log	Ave.
	tsf	in		*	min	min	ft^2/sec	ft^2/sec	ft^2/sec
1	0.0625	0.02814	1.037	2.69	0.4	0.0	1.43e-005	0.00e+000	1.43e-005
2	0.125	0.03156	1.030	3.02	1.7	0.0	3.38e-006	0.00e+000	3.38e-006
3	0.188	0.03484	1.024	3.34	1.3	1.2	4.38e-006	5.06e-006	4.70e-006
4	0.25	0.03741	1.018	3.58	1.7	1.7	3.38e-006	3.39e-006	3.38e-006
5	0.375	0.04181	1.010	4.00	1.7	1.1	3.45e-006	5.44e-006	4.22e-006
6	0.5	0.04501	1.003	4.31	1.9	1.4	3.07e-006	4.10e-006	3.51e-006
7	0.75	0.05077	0.992	4.86	1.5	1.7	3.73e-006	3.42e-006	3.57e-006
8	1	0.05602	0.981	5.36	3.4	3.3	1.65e-006	1.72e-006	1.69e-006
9	1.5	0.06622	0.961	6.34	3.4	2.5	1.63e-006	2.19e-006	1.87e-006
10	2.25	0.08035	0.932	7.69	3.4	3.1	1.60e-006	1.72e-006	1.66e-006
11	3.25	0.09721	0.899	9.31	4.7	3.7	1.11e-006	1.40e-006	1.24e-006
12	4.75	0.1184	0.856	11.34	3.5	3.7	1.45e-006	1.34e-006	1.39e-006
13	7	0.1413	0.810	13.53	3.4	3.4	1.40e-006	1.42e-006	1.41e-006
14	10.3	0.1637	0.765	15.68	2.4	2.3	1.93e-006	2.01e-006	1.97e-006
15	15	0.1866	0.719	17.86	1.8	2.1	2.42e-006	2.10e-006	2.25e-006
16	7	0.1835	0.726	17.57	0.0	0.0	2.63e-004	0.00e+000	2.63e-004
17	3.25	0.1781	0.736	17.05	0.5	0.2	9.33e-006	2.06e-005	1.28e-005
18	1.5	0.1726	0.747	16.53	1.0	0.0	4.11e-006	0.00e+000	4.11e-006
19	0.75	0.1664	0.760	15.93	3.3	3.1	1.32e-006	1.40e-006	1.35e-006
20	1.5	0.168	0.757	16.08	0.5	0.2	9.10e-006	1.86e-005	1,22e-005
21	3.25	0.1729	0.747	16.55	0.5	0.0	9.15e-006	0.00e+000	9.15e-006
22	7	0.1807	0.731	17.30	0.5	0.3	9.18e-006	1.50e-005	1.14e-005
23	10.3	0.1865	0.719	17.86	0.5	0.3	9.07e-006	1.51e-005	1.13e-005
	15	0.1963	0.700	18.80	0.9	0.7	4.60e-006	6.31e-006	5,32e-006
24 25	22	0.2131	0.666	20.40	1.5	1.1	2.62e-006	3.83e-006	3.11e-006
26	32.3	0.2339	0.624	22.40	1.2	1.2	3.34e-006	3.09e-006	3.21e-006
27	7	0.2254	0.642	21.58	0.0	0.0	1.50e-004	0.00e+000	1.50e-004
28	i	0.2065	0.679	19.77	1.2	0.0	3.20e-006	0.00e+000	3.20e-006
29	0.25	0.1906	0.711	18.25	9.4	9.4	4.34e-007	4.34e-007	4.34e-007
	0.00								

Project: CNR CROSSING BRIDGE	Location: AUBURN	Project No.: 15600.00
Boring No.: BB-ACNR-103	Tested By: Brian Fogg	Checked By:
Sample No.: 4U	Test Date: 7/28/08	Depth: 45-47 FT
Test No.: 210630	Sample Type: Shelby Tube	Elevation:
Description: GREY SILTY CLAY		
Remarks:		

Project: CNR CROSSING BRIDGE Boring No.: BB-ACNR-103 Sample No.: 4U Test No.: 210630

Location: AUBURN Tested By: Brian Fogg Test Date: 7/28/08 Sample Type: Shelby Tube

Project No.: 15600.00 Checked By: Depth: 45-47 FT Elevation: ---

Soil Description: GREY SILTY CLAY

Remarks:

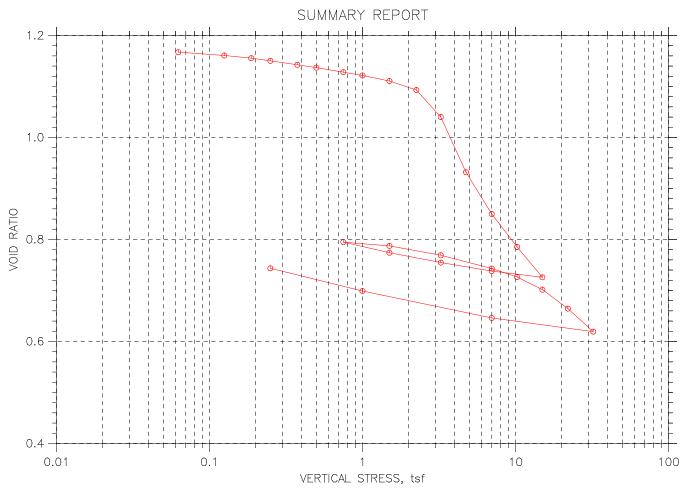
Measured Specific Gravity: 2.76 Initial Void Ratio: 1.14 Final Void Ratio: 0.73

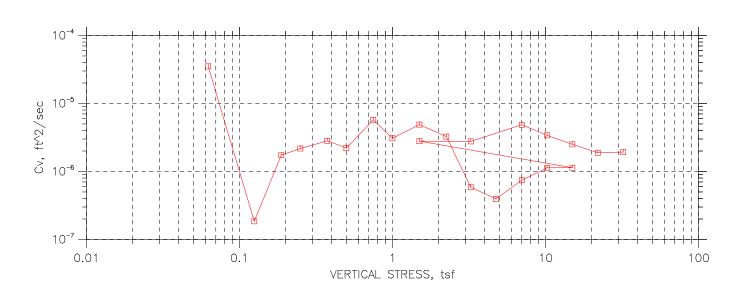
Liquid Limit: 37 Plastic Limit: 27 Plasticity Index: 10

Initial Height: 1.02 in Specimen Diameter: 2.48 in

	Before C	onsolidation Specimen+Ring	After Consol Specimen+Ring	idation Trimmings
		op-coamon realing	opeomic rang	
Container ID	128	RING	RING	35
Wt. Container + Wet Soil, gm	185.95	408.05	394.34	196.43
Wt. Container + Dry Soil, gm	150.83	366.56	366.56	168.82
Wt. Container, qm	61.27	262.19	262.19	65.07
Wt. Dry Soil, gm	89.56	104.37	104.37	103.75
Water Content, %	39.21	39.75	26.61	26.61
Void Ratio		1.14	0.73	
Degree of Saturation, %		95.83	100.09	
Dry Unit Weight, pcf		80.337	99.375	

CONSOLIDATION TEST DATA


Project: CNR CROSSING BRIDGE Boring No.: BB-ACNR-103 Sample No.: 4U Test No.: 210630


Location: AUBURN Tested By: Brian Fogg Test Date: 7/28/08 Sample Type: Shelby Tube

Project No.: 15600.00 Checked By: Depth: 45-47 FT Elevation: ---

Soil Description: GREY SILTY CLAY Remarks:

	Applied	Final	Void	Strain	T50	Fitting	Coeffi	cient of Con	solidation
	Stress	Displacement	Ratio	at End	Sq.Rt.	Log	Sq.Rt.	Log	Ave.
	tsf	in		*	min	min	ft^2/sec	ft^2/sec	ft^2/sec
1	0.0625	0.004109	1.136	0.40	0.1	0.1	4.55e-005	4.55e-005	4.55e-005
2	0.125	0.008138	1.128	0.80	1.5	0.0	3.97e-006	0.00e+000	3.97e-006
3	0.188	0.01172	1.120	1.15	2.1	2.3	2.81e-006	2.53e-006	2.66e-006
4	0.25	0.01485	1.114	1.46	3.6	3.2	1.61e-006	1.83e-006	1.71e-006
5	0.375	0.01915	1.104	1.88	1.9	2.4	3.03e-006	2.38e-006	2.67e-006
6	0.5	0.02286	1.097	2.24	3.4	2.5	1.68e-006	2.31e-006	1.95e-006
7	0.75	0.02877	1.084	2.82	2.2	2.8	2.58e-006	2.01e-006	2.26e-006
8	1	0.03417	1.073	3.35	7.0	3.7	7.92e-007	1.50e-006	1.04e-006
9	1.5	0.04442	1.051	4.35	3.3	3.4	1.67e-006	1.60e-006	1.64e-006
10	2.25	0.06301	1.012	6.17	7.0	4.6	7.67e-007	1.17e-006	9.27e-007
11	3.25	0.09305	0.949	9.12	9.2	9.3	5.53e-007	5.47e-007	5.50e-007
1.2	4.75	0.1251	0.882	12.26	6.9	7.4	6.83e-007	6.41e-007	6.61e-007
1.3	7	0.1534	0.822	15.03	4.6	4.3	9.61e-007	1.02e-006	9.90e-007
1.4	10.3	0.1792	0.768	17.56	3.5	3.6	1.20e-006	1.14e-006	1.17e-006
15	15	0.2046	0.715	20.05	2.3	2.9	1.67e-006	1.35e-006	1.49e-006
16	7	0.1994	0.726	19.54	0.1	0.0	3.13e-005	0.00e+000	3.13e-005
17	3.25	0.1922	0.741	18.84	0.5	0.0	7.81e-006	0.00e+000	7.81e-006
18	1.5	0.1836	0.759	17.99	2.2	0.0	1.84e-006	0.00e+000	1.84e-006
19	0.75	0.1744	0.778	17.09	4.7	4.5	8.68e-007	8.96e-007	8.81e-007
20	1.5	0.1777	0.771	17.42	1.4	1.6	2.91e-006	2.63e-006	2.76e-006
21	3.25	0.1858	0.754	18.20	1.6	0.0	2.48e-006	0.00e+000	2.48e-006
22	7	0.197	0.731	19.31	0.7	0.0	5.58e-006	0.00e+000	5.58e-006
23	10.3	0.2043	0.715	20.02	0.9	0.7	4.37e-006	5.39e-006	4.83e-006
24	15	0.215	0.693	21.07	1.4	1.3	2.78e-006	2.97e-006	2.87e-006
25	22	0.2312	0.659	22.66	1.6	1.7	2.27e-006	2.09e-006	2.18e-006
26	32.3	0.2508	0.618	24.57	1.2	1.6	2.86e-006	2.12e-006	2.44e-006
27	7	0.2395	0.641	23.47	0.2	0.0	2.13e-005	0.00e+000	2.13e-005
28	1	0.2161	0.691	21.18	2.1	2.7	1.73e-006	1.31e-006	1.49e-006
29	0.25	0.1955	0.734	19.16	11.7	0.0	3.24e-007	0.00e+000	3.24e-007

Project: CNR CROSSING BRIDGE	Location: AUBURN	Project No.: 15600.00
Boring No.: BB-ACNR-103	Tested By: KLD	Checked By:
Sample No.: 5U	Test Date: 8/5/2008	Depth: 55'-57'
Test No.: 210631	Sample Type: SHELBY TUBE	Elevation:
Description: GREY SILTY CLAY		
Remarks:		

Project: CNR CROSSING BRIDGE Boring No.: BB-ACNR-103 Sample No.: 5U Test No.: 210631

Location: AUBURN Tested By: KLD Test Date: 8/5/2008 Sample Type: SHELBY TUBE

Project No.: 15600.00 Checked By: Depth: 55'-57' Elevation: ---

Soil Description: GREY SILTY CLAY

Remarks:

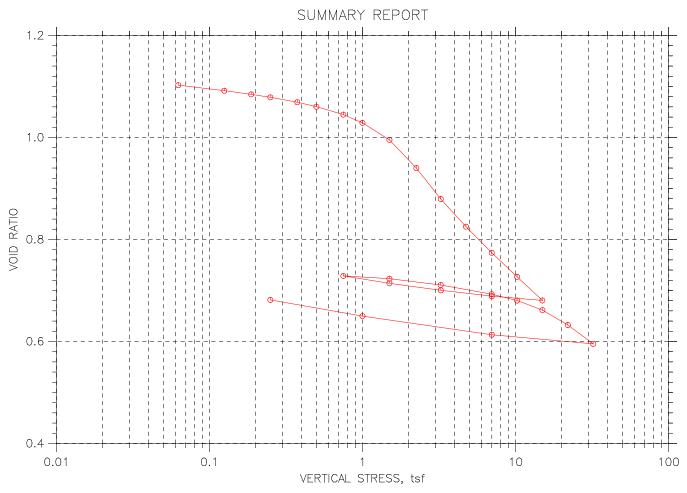
Measured Specific Gravity: 2.77 Initial Void Ratio: 1.19 Final Void Ratio: 0.74

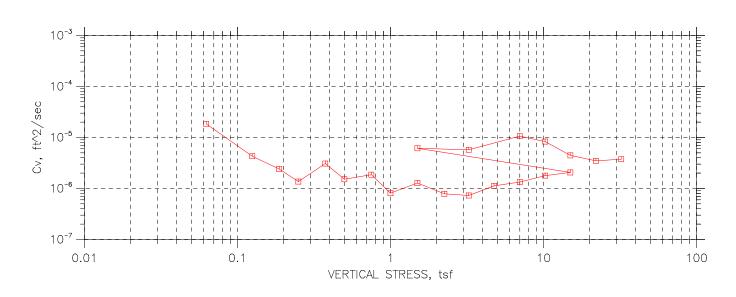
Liquid Limit: 35 Plastic Limit: 23 Plasticity Index: 12

Initial Height: 1.03 in Specimen Diameter: 2.48 in

	Before Con	solidation	After Consol	idation
	Trimmings	Specimen+Ring	Specimen+Ring	Trimmings
Container ID	142	RING	RING	12
Wt. Container + Wet Soil, gm	192.74	407.83	393.45	199.84
Wt. Container + Dry Soil, gm	157.83	365.68	365.68	172.12
Wt. Container, qm	62.45	262.28	262.28	68.9
Wt. Dry Soil, gm	95.38	103.4	103.4	103.22
Water Content, %	36.60	40.76	26.86	26.86
Void Ratio		1.19	0.74	
Degree of Saturation, %		95.16	100.06	
Dry Unit Weight, pcf		79.084	99.185	

CONSOLIDATION TEST DATA


Project: CNR CROSSING BRIDGE Boring No.: BB-ACNR-103 Sample No.: 5U Test No.: 210631


Location: AUBURN Tested By: KLD Test Date: 8/5/2008 Sample Type: SHELBY TUBE

Project No.: 15600.00 Checked By: Depth: 55'-57' Elevation: ---

Soil Description: GREY SILTY CLAY Remarks:

	Applied	Final	Void	Strain		Fitting		cient of Con	
	Stress	Displacement	Ratio	at End	Sq.Rt.	Fod	Sq.Rt.	Log	Ave.
	tsf	in		,	min	min	ft^2/sec	ft^2/sec	ft^2/sec
1	0.0625	0.009077	1.167	0.88	0.2	0.0	3.51e-005	0.00e+000	3.51e-005
2	0.125	0.01214	1.161	1.18	31.9	0.0	1.85e-007	0.00e+000	1.85e-007
3	0.188	0.01461	1.155	1.42	3.5	3.2	1.65e-006	1.82e-006	1.73e-006
4	0.25	0.01708	1.150	1.66	3.3	2.1	1.79e-006	2.79e-006	2.18e-006
5	0.375	0.02067	1.143	2.01	1.8	2.4	3.30e-006	2.46e-006	2.82e-006
6	0.5	0.02331	1.137	2.27	2.3	2.9	2.46e-006	2.00e-006	2.21e-006
7	0.75	0.0275	1.128	2.68	0.9	1.1	6.50e-006	5.12e-006	5.72e-006
8	1	0.03057	1.122	2.98	1.6	2.1	3.50e-006	2.74e-006	3.07e-006
9	1.5	0.03565	1.111	3.47	1.1	1.3	5.32e-006	4.51e-006	4.88e-006
10	2.25	0.04395	1.093	4.28	2.0	1.4	2.75e-006	4.01e-006	3.26e-006
11	3.25	0.06877	1.040	6.70	9.2	0.0	5.87e-007	0.00e+000	5.87e-007
12	4.75	0.1196	0.932	11.65	11.3	13.9	4.40e-007	3.59e-007	3.95e-007
1.3	7	0.1582	0.850	15.40	6.9	5.2	6.51e-007	8.64e-007	7.42e-007
1.4	10.3	0.1884	0.785	18.35	3.5	3.8	1.19e-006	1.08e-006	1.13e-006
15	15	0.2165	0.726	21.08	3.4	3.4	1.13e-006	1.15e-006	1.14e-006
16	7	0.2107	0.738	20.52	0.2	0.0	2.28e-005	0.00e+000	2.28e-005
17	3.25	0.2028	0.755	19.75	0.7	0.0	5.27e-006	0.00e+000	5.27e-006
18	1.5	0.1937	0.774	18.86	2.0	2.3	2.01e-006	1.68e-006	1.83e-006
19	0.75	0.184	0.795	17.92	4.6	4.1	8.66e-007	9.71e-007	9.15e-007
20	1.5	0.1875	0.787	18.26	1.4	0.0	2.79e-006	0.00e+000	2.79e-006
21	3.25	0.1961	0.769	19.09	1.4	0.0	2.77e-006	0.00e+000	2.77e-006
22	7	0.2084	0.743	20.29	0.8	0.0	4.86e-006	0.00e+000	4.86e-006
23	10.3	0.2161	0.726	21.04	1.0	1.3	3.97e-006	2.98e-006	3.40e-006
24	15	0.2278	0.702	22.18	1.4	1.6	2.65e-006	2.37e-006	2.50e-006
25	22	0.2453	0.664	23.88	1.7	2.1	2.14e-006	1.69e-006	1.88e-006
26	32.3	0.2664	0.619	25.94	1.4	2.1	2.37e-006	1.63e-006	1.93e-006
27	7	0.2539	0.646	24.72	0.1	0.0	2.42e-005	0.00e+000	2.42e-005
28	1	0.229	0.699	22.30	2.0	2.8	1.75e-006	1.28e-006	1.48e-006
29	0.25	0.2081	0.743	20.27	11.8	0.0	3.17e-007	0.00e+000	3.17e-007

Project: CNR CROSSING BRIDGE	Location: AUBURN	Project No.: 15600.00				
Boring No.: BB-ACNR-104	Tested By: KLD	Checked By:				
Sample No.: 1U	Test Date: 8/12/08	Depth: 34-36'				
Test No.: 210632	Sample Type: SHELBY TUBE	Elevation:				
Description: GREY SILTY CLAY						
Remarks:						

Project: CNR CROSSING BRIDGE Boring No.: BB-ACNR-104 Sample No.: 1U Test No.: 210632

Location: AUBURN Tested By: KLD Test Date: 8/12/08 Sample Type: SHELBY TUBE

Project No.: 15600.00 Checked By: Depth: 34-36' Elevation: ---

Soil Description: GREY SILTY CLAY

Remarks:

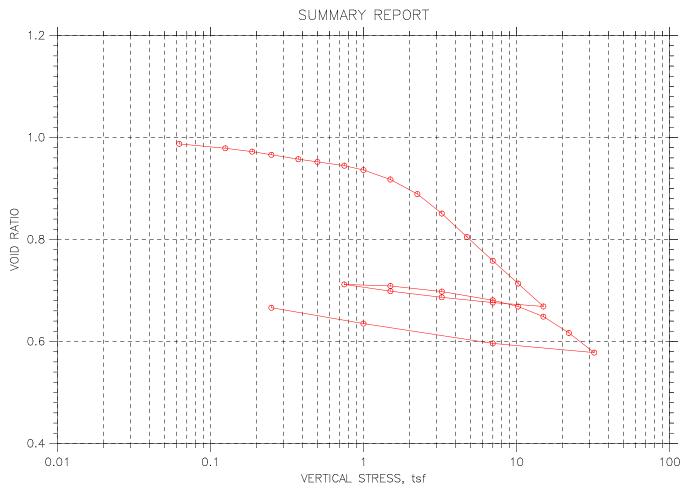
Measured Specific Gravity: 2.70 Initial Void Ratio: 1.12 Final Void Ratio: 0.68

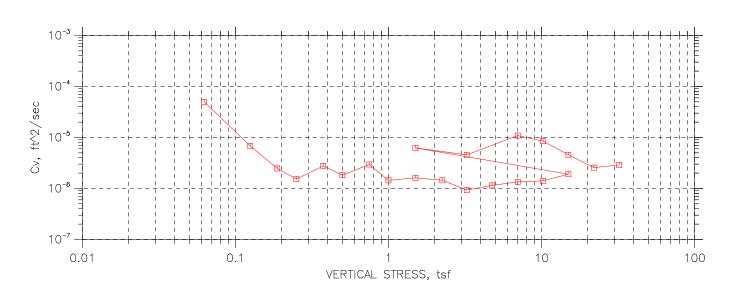
Liquid Limit: 30 Plastic Limit: 22 Plasticity Index: 8

Initial Height: 1.04 in Specimen Diameter: 2.48 in

	Before	Consolidation	After Consol	idation
	Trimmings	Specimen+Ring	Specimen+Ring	Trimmings
Container ID	26	RING	RING	4.5
Wt. Container + Wet Soil, gm	167.15	408.54	394.02	195.54
Wt. Container + Dry Soil, gm	137.51	367.43	367.43	169.04
Wt. Container, qm	61.28	262.18	262.18	64.13
Wt. Dry Soil, gm	76.23	105.25	105.25	104.91
Water Content, 8	38.88	39.06	25.26	25.26
Void Ratio		1.12	0.68	
Degree of Saturation, %		94.47	100.08	
Dry Unit Weight, pcf		79.648	100.24	

CONSOLIDATION TEST DATA


Project: CNR CROSSING BRIDGE Boring No.: BB-ACNR-104 Sample No.: 1U Test No.: 210632


Location: AUBURN Tested By: KLD Test Date: 8/12/08 Sample Type: SHELBY TUBE

Project No.: 15600.00 Checked By: Depth: 34-36' Elevation: ---

Soil Description: GREY SILTY CLAY Remarks:

	Applied	Final	Void	Strain		Fitting	Coeffi	cient of Con	solidation
	Stress	Displacement	Ratio	at End	Sq.Rt.	Log	Sq.Rt.	Log	Ave.
	tsf	in		*	min	min	ft^2/sec	ft^2/sec	ft^2/sec
1	0.0625	0.006745	1.103	0.65	0.5	0.2	1.28e-005	3.36e-005	1.85e-005
ŝ	0.125	0.01204	1.092	1.16	1.4	0.0	4.28e-006	0.00e+000	4.28e-006
2	0.188	0.01557	1.085	1.50	2.2	2.7	2.68e-006	2.19e-006	2.41e-006
ă	0.25	0.0184	1.079	1.77	4.4	0.0	1.37e-006	0.00e+000	1.37e-006
6	0.375	0.02311	1.069	2.23	1.9	1.9	3.07e-006	3.08e-006	3.08e-006
ě	0.5	0.02742	1.060	2.64	4.6	3.1	1.27e-006	1.87e-006	1.51e-006
7	0.75	0.03506	1.045	3.38	3.3	2.9	1.75e-006	1.99e-006	1.86e-006
8	0.75	0.03300	1.029	4.14	7.0	0.0	8.09e-007	0.00e+000	8.09e-007
9	1.5	0.05932	0.995	5.72	4.7	4.0	1.19e-006	1.37e-006	1.28e-006
10	2.25	0.08648	0.940	8.33	6.8	6.7	7.79e-007	7.94e-007	7.87e-007
11	3.25	0.1162	0.879	11.20	6.8	6.9	7.32e-007	7.26e-007	7.29e-007
12	4.75	0.1428	0.825	13.76	4.6	3.8	1.02e-006	1.25e-007	1.13e-006
	4.75								
13		0.1679	0.774	16.18	3.6	3.1	1.25e-006	1.43e-006	1.34e-006
14	10.3	0.1911	0.727	18.41	2.2	2.5	1.88e-006	1.70e-006	1.79e-006
15	15	0.2138	0.680	20.60	2.0	1.9	2.03e-006	2.10e-006	2.06e-006
16		0.2096	0.689	20.20	0.0	0.0	1.10e-004	0.00e+000	1.10e-004
17	3.25	0.204	0.700	19.65	0.2	0.2	1.67e-005	1.90e-005	1.78e-005
18	1.5	0.1973	0.714	19.01	1.0	0.0	4.20e-006	0.00e+000	4.20e-006
19	0.75	0.1901	0.729	18.32	2.4	2.9	1.69e-006	1.41e-006	1.54e-006
20	1.5	0.1928	0.723	18.57	0.7	0.6	5.67e-006	6.71e-006	6.14e-006
21	3.25	0.1989	0.711	19.17	0.7	0.0	5.73e-006	0.00e+000	5.73e-006
22	7	0.2078	0.693	20.02	0.5	0.3	8.31e-006	1.47e-005	1.06e-005
23	10.3	0.2139	0.680	20.60	0.7	0.3	5.74e-006	1.51e-005	8.31e-006
24	15	0.2231	0.661	21.49	1.1	0.6	3.52e-006	6.05e-006	4.45e-006
25	22	0.2374	0.632	22.87	1.1	1.0	3.32e-006	3.66e-006	3.48e-006
26	32.3	0.2555	0.595	24.62	0.9	1.0	3.91e-006	3.59e-006	3.75e-006
27	7	0.2467	0.613	23.77	0.0	0.0	1.84e-004	0.00e+000	1.84e-004
28	1	0.2288	0.650	22.05	1.0	0.0	3.74e-006	0.00e+000	3.74e-006
29	0.25	0.2132	0.681	20.54	6.9	9.1	5.55e-007	4.21e-007	4.78e-007

Project: CNR CROSSING BRIDGE	Location: AUBURN	Project No.: 15600.00				
Boring No.: BB-ACNR-104	Tested By: BRUCE BURRI	Checked By:				
Sample No.: 2U	Test Date: 08/14/08	Depth: 44'-46'				
Test No.: 210633	Sample Type: SHELBY TUBE	Elevation:				
Description: GREY SILTY CLAY						
Remarks:						

Project: CNR CROSSING BRIDGE Boring No.: BB-ACNR-104 Sample No.: 2U Test No.: 210633

Location: AUBURN Tested By: BRUCE BURRI Test Date: 08/14/08 Sample Type: SHELBY TUBE

Project No.: 15600.00 Checked By: Depth: 44'-46' Elevation: ---

Soil Description: GREY SILTY CLAY

Remarks:

Measured Specific Gravity: 2.69 Initial Void Ratio: 0.99 Final Void Ratio: 0.67

Liquid Limit: 36 Plastic Limit: 24 Plasticity Index: 12

Initial Height: 1.03 in Specimen Diameter: 2.48 in

	Before	Consolidation	After Consol	idation
	Trimmings	Specimen+Ring	Specimen+Ring	Trimmings
Container ID	140	RING	RING	216
Wt. Container + Wet Soil, gm	218.67	408.59	400.1	200.02
Wt. Container + Dry Soil, gm	178.56	372.73	372.73	172.69
Wt. Container, qm	62.76	262.23	262.23	62.36
Wt. Dry Soil, gm	115.8	110.5	110.5	110.33
Water Content, %	34.64	32.45	24.77	24.77
Void Ratio		0.99	0.67	
Degree of Saturation, %		87.84	100.02	
Dry Unit Weight, pcf		84.225	100.79	

CONSOLIDATION TEST DATA

Project: CNR CROSSING BRIDGE Boring No.: BB-ACNR-104 Sample No.: 2U Test No.: 210633

Location: AUBURN Tested By: BRUCE BURRI Test Date: 08/14/08 Sample Type: SHELBY TUBE

Project No.: 15600.00 Checked By: Depth: 44'-46' Elevation: ---

Soil Description: GREY SILTY CLAY Remarks:

	Applied	Final	Void	Strain		Fitting		cient of Con	
	Stress	Displacement	Ratio	at End	Sq.Rt.	Log	Sq.Rt.	Log	Ave.
	tsf	in		*	min	min	ft^2/sec	ft^2/sec	ft^2/sec
	0.0505	0.000010	0.007	0.22			4 70- 005	5.23e-005	4 00- 005
- ±	0.0625	0.003348 0.007783	0.987 0.979	0.32 0.76	0.1	0.1	4.78e-005 6.79e-006	0.00e+000	4.99e-005 6.79e-006
- 2	0.125								
3	0.188	0.01116 0.01435	0.972	1.08	1.9	2.9 3.3	3.09e-006	2.06e-006 1.81e-006	2.47e-006
4				1.39	4.5		1.32e-006		1.53e-006
5	0.375	0.0188	0.957	1.82	2.4	1.9	2.46e-006	3.15e-006	2.77e-006
6	0.5	0.02154	0.952	2.09	3.6	2.8	1.62e-006	2.10e-006	1.83e-006
7	0.75	0.02537	0.945	2.46	1.9	2.1	3.09e-006	2.81e-006	2.94e-006
8	1	0.02981	0.936	2.89	4.7	3.3	1.23e-006	1.75e-006	1.44e-006
9	1.5	0.0394	0.918	3.82	3.6	3.4	1.58e-006	1.66e-006	1.62e-006
10	2.25	0.05419	0.889	5.26	3.5	4.1	1.56e-006	1.35e-006	1.45e-006
11	3.25	0.07389	0.851	7.17	6.8	4.7	7.87e-007	1.14e-006	9.30e-007
12	4.75	0.09765	0.805	9.48	4.6	4.2	1.10e-006	1.20e-006	1.15e-006
13	7	0.1218	0.758	11.82	3.5	3.7	1.39e-006	1.30e-006	1.35e-006
14	10.3	0.1448	0.714	14.05	3.4	3.1	1.34e-006	1.50e-006	1.41e-006
15	15	0.1681	0.669	16.31	2.0	2.5	2.13e-006	1.72e-006	1.90e-006
16	7	0.1642	0.676	15.93	0.1	0.0	8.17e-005	0.00e+000	8.17e-005
17	3.25	0.1588	0.687	15.41	0.5	0.2	9.13e-006	1.76e-005	1.20e-005
18	1.5	0.1526	0.699	14.81	1.2	1.4	3.63e-006	3.11e-006	3.35e-006
19	0.75	0.1457	0.712	14.14	3.5	4.1	1.27e-006	1.09e-006	1.17e-006
20	1.5	0.1473	0.709	14.29	0.7	0.0	6.25e-006	0.00e+000	6.25e-006
21	3.25	0.153	0.698	14.84	1.0	0.0	4.56e-006	0.00e+000	4.56e-006
22	7	0.1618	0.681	15.70	0.5	0.3	8.78e-006	1.43e-005	1.09e-005
23	10.3	0.1681	0.669	16.31	0.7	0.3	6.14e-006	1.36e-005	8.46e-006
24	15	0.1784	0.649	17.31	1.1	0.7	3.79e-006	5.80e-006	4.59e-006
2.5	22	0.1949	0.617	18.91	1.6	1.6	2.60e-006	2.52e-006	2.56e-006
26	32.3	0.2148	0.578	20.85	1.4	1.3	2.83e-006	2.97e-006	2.90e-006
27	7	0.2055	0.596	19.94	0.0	0.0	1.18e-004	0.00e+000	1.18e-004
28	í	0.1854	0.635	17.99	1.7	0.0	2.36e-006	0.00e+000	2.36e-006
29	0.25	0.1693	0.666	16.43	9.3	0.0	4.48e-007	0.00e+000	4.48e-007
	0.25	0.1033	0.000	10.40	5.5	0.0	4.406-007	0.0001000	4.106-001

Appendix C

Calculations

By: Kate Maguire July 2008

Checked by: <u>LK 10-1-2008</u>

Definition of Units:

$$psf := \frac{lbf}{ft^2} \qquad pcf := \frac{lbf}{ft^3} \qquad ksf := \frac{kip}{ft^2} \qquad tsf := g \cdot \left(\frac{ton}{ft^2}\right) \quad kip := 1000 \cdot lbf$$

LIQUIDITY INDEX (LI):

natural water content - Plastic Limit
Liquidity Index = ----Liquid Limit -Plastic Limit

wc is close to LL Soil is normally consolidated

wc is close to PL Soil is some-to-heavily over consolidated

wc is intermediate Soil is over consolidated

wc is greater than LL Soil is on the verge of being a viscous liquid when remolded

Sample	Soil	WC	LL	PL	PI	LI	1
BB-ACNR-102 3D A	Silt	32.9	27	22	5	2.18	viscous liquid when remolded
BB-ACNR-104 7D	Silt	30.7	25	22	3	2.90	viscous liquid when remolded
BB-ACNR-101 2U	Silt	30.6	22	19	3	3.87	viscous liquid when remolded
BB-ACNR-101 9D	Clayey Silt	32.4	28	22	6	1.73	viscous liquid when remolded
BB-ACNR-101 3U	Clayey Silt	32.8	30	19	11	1.25	viscous liquid when remolded
BB-ACNR-101 10D	Clayey Silt	30.9	30	22	8	1.11	normally consolidated
BB-ACNR-101 4U	Clayey Silt	38.0	35	24	11	1.27	viscous liquid when remolded
BB-ACNR-101 11D	Clayey Silt	34.4	31	12	19	1.18	viscous liquid when remolded
BB-ACNR-101 5U	Silt	26.4	22	20	2	3.20	viscous liquid when remolded
BB-ACNR-101 6U	Clayey Silt	35.2	31	22	9	1.47	viscous liquid when remolded
BB-ACNR-1023DB	Silt	33.5	25	20	5	2.70	viscous liquid when remolded
BB-ACNR-102 1U	Silt	30.2	NP	NP	NP	NP	Non-Plastic
BB-ACNR-1024D	Silt	31.5	27	20	7	1.64	viscous liquid when remolded
BB-ACNR-102 2U	Silt	29.8	34	23	11	0.62	over consolidated
BB-ACNR-102 6D	Clayey Silt	35.4	35	27	8	1.05	normally consolidated
BB-ACNR-1023U	Silty Clay	38.4	27	19	8	2.43	viscous liquid when remolded
BB-ACNR-1024U	Clayey Silt	30.7	26	19	7	1.67	viscous liquid when remolded
BB-ACNR-1028D	Clayey Silt	30.6	29	20	9	1.18	viscous liquid when remolded
BB-ACNR-1025U	Clayey Silt	36.8	33	22	11	1.35	viscous liquid when remolded
BB-ACNR-1031U	Silt	34.3	28	21	7	1.90	viscous liquid when remolded
BB-ACNR-1034D	Silt	33.2	36	22	14	0.80	over consolidated
BB-ACNR-103 2U	Silt	29.0	27	23	4	1.50	viscous liquid when remolded
BB-ACNR-1033U	Silt	34.3	35	21	14	0.95	normally consolidated
BB-ACNR-103 6D	Clayey Silt	36.8	36	22	14	1.06	normally consolidated
BB-ACNR-1034U	Silt	40.8	37	27	10	1.38	viscous liquid when remolded
BB-ACNR-1035U	Clayey Silt	40.2	35	23	12	1.43	viscous liquid when remolded
BB-ACNR-104 1U	Clayey Silt	36.7	30	22	8	1.84	viscous liquid when remolded
BB-ACNR-1048D	Clayey Silt	31.9	31	19	12	1.08	normally consolidated
BB-ACNR-1042U	Silty Clay	36.9	36	24	12	1.08	normally consolidated
BB-ACNR-104 9D	Silty Clay	40.9	39	25	14	1.14	viscous liquid when remolded
BB-ACNR-1043U	Silt	29.5	25	20	5	1.90	viscous liquid when remolded

CONSOLIDATION TEST RESULTS

BB-ACNR-101 Sample 2U

Determine in-situ over burden stress:

Sample depth = 45.0 ft below ground surface

Groundwater table at 17.0 ft below ground surface

Unit weight of water = 62.4pcf

Initial void ratio $e_0 := 0.81$

Clay is overlain by:

17.0 ft of fill at 125 pcf 5.8 ft of sand at 120 pcf 16.7 ft of silt at 115 pcf and 5.5 ft of clay at 115 pcf

$$\begin{split} \sigma'_{vo} \coloneqq 17 \cdot \mathrm{ft} \cdot 125 \cdot \mathrm{pcf} \ + \ 5.8 \cdot \mathrm{ft} \cdot (120 - 62.4) \cdot \mathrm{pcf} \ + \ 22.2 \cdot \mathrm{ft} \cdot (115 - 62.4) \cdot \mathrm{pcf} \\ \sigma'_{vo} = 3627 \cdot \mathrm{psf} \quad \text{Or} \quad \sigma'_{vo} = 1.813 \cdot \mathrm{tsf} \end{split}$$

Maximum past pressure from consolidation curve Casagrande construction: $\sigma_{p}' := 3.2 \cdot tsf$

Determine OCR:

$$OCR := \frac{\sigma'_p}{\sigma'_{vo}}$$
 $OCR = 1.7646$ over consolidated

$$OCR = 1.7646$$

Determine Cc:

from consolidation curve and lab results:

$$p_1 := 10.3 \cdot tsf$$
 $e_1 := 0.584$ $p_2 := 32.3 \cdot tsf$ $e_2 := 0.527$

$$p_2 := 32.3 \cdot tsf$$

$$e_2 := 0.527$$

$$C_c := \frac{e_1 - e_2}{\log\left(\frac{p_2}{p_1}\right)}$$

$$C_c = 0.1148$$

$$C_c = 0.1148$$

Determine C'c:

from consolidation curve and lab results:

$$\varepsilon_1 \coloneqq \frac{12.74}{100} \qquad \qquad \varepsilon_2 \coloneqq \frac{15.88}{100} \qquad \text{strain is given in percent}$$

$$C'_c \coloneqq \frac{\varepsilon_2 - \varepsilon_1}{\log \left(\frac{p_2}{p_1}\right)} \qquad \qquad C'_c = 0.0633 \quad \text{or:} \qquad C'c \coloneqq \frac{C_c}{1 + e_0} \qquad \qquad C'c = 0.0634$$

Determine Cr:

$$p_1 := 7 \cdot tsf$$
 $e_1 := 0.569$ $p_2 := 0.75 \cdot tsf$ $e_2 := 0.579$

$$C_r := \frac{e_1 - e_2}{\log\left(\frac{p_2}{p_1}\right)}$$

$$C_r = 0.0103$$

BB-ACNR-101 Sample 3U

Determine in-situ over burden stress:

Sample depth = 55.0 ft below ground surface

Groundwater table at 17.0 ft below ground surface

Unit weight of water = 62.4pcf

Initial void ratio $e_0 := 0.99$

Clay is overlain by:

17 ft of fill at 125 pcf 5.8 ft of sand at 120 pcf 16.7 ft silt at 115 pcf and 15.5 ft of clay at 115 pcf

$$\begin{split} \sigma'_{vo} \coloneqq 17 \cdot \text{ft} \cdot 125 \cdot \text{pcf} \ + \ 5.8 \cdot \text{ft} \cdot (120 - 62.4) \cdot \text{pcf} \ + \ 32.2 \cdot \text{ft} \cdot (115 - 62.4) \cdot \text{pcf} \\ \sigma'_{vo} = 4153 \cdot \text{psf} \quad \text{or} \quad \sigma'_{vo} = 2.076 \cdot \text{tsf} \end{split}$$

Maximum past pressure from consolidation curve Casagrande construction: $\sigma'_{n} := 3.7 \cdot tsf$

Determine OCR:

$$OCR := \frac{\sigma'_p}{\sigma'_{vo}}$$
 $OCR = 1.7819$ over consolidated

$$OCR = 1.7819$$

Determine Cc:

from consolidation curve and lab results:

$$p_1 := 4.75 \cdot tsf$$
 $e_1 := 0.857$ $p_2 := 7 \cdot tsf$ $e_2 := 0.788$

$$p_2 := 7 \cdot ts$$

$$e_2 := 0.788$$

$$C_c := \frac{e_1 - e_2}{\log\left(\frac{p_2}{p_1}\right)}$$
 $C_c = 0.4097$

$$C_c = 0.4097$$

Determine C'c:

from consolidation curve and lab results:

$$\varepsilon_1 \coloneqq \frac{6.88}{100}$$
 $\varepsilon_2 \coloneqq \frac{10.36}{100}$ strain is given in percent

$$\varepsilon_1 \coloneqq \frac{6.88}{100} \qquad \qquad \varepsilon_2 \coloneqq \frac{10.36}{100} \qquad \text{strain is given in percent}$$

$$C'_c \coloneqq \frac{\varepsilon_2 - \varepsilon_1}{\log \left(\frac{p_2}{p_1}\right)} \qquad \qquad C'_c = 0.2066 \quad \text{or:} \qquad C'c \coloneqq \frac{C_c}{1 + e_0} \qquad \qquad C'c = 0.2059$$

Determine Cr:

$$p_1 := 0.75 \cdot tsf$$
 $e_1 := 0.722$ $p_2 := 7 \cdot tsf$ $e_2 := 0.690$

$$C_r := \frac{e_1 - e_2}{\log\left(\frac{p_2}{p_1}\right)}$$

$$C_r = 0.033$$

BB-ACNR-101 Sample 4U

Determine in-situ over burden stress:

Sample depth = 65.0 ft below ground surface

Groundwater table at 17.0 ft below ground surface

Unit weight of water = 62.4pcf

Initial void ratio $e_0 := 1.16$

Clay is overlain by:

17 ft of fill at 125 pcf

5.8 ft of sand at 120 pcf

16.7 ft silt at 115 pcf and

25.5 ft of clay at 115 pcf

$$\begin{split} \sigma'_{vo} \coloneqq 17 \cdot ft \cdot 125 \cdot pcf \ + \ 5.8 \cdot ft \cdot (120 - 62.4) \cdot pcf \ + \ 42.2 \cdot ft \cdot (115 - 62.4) \cdot pcf \\ \sigma'_{vo} = 4679 \cdot psf \ \text{ or } \quad \sigma'_{vo} = 2.339 \cdot tsf \end{split}$$

Maximum past pressure from consolidation curve Casagrande construction: $\sigma'_{p} := 2.8 \cdot tsf$

Determine OCR:

$$OCR := \frac{\sigma'_p}{\sigma'_{vo}} \qquad OCR = 1.1969$$

$$OCR = 1.1969$$

over consolidated

Determine Cc:

from consolidation curve and lab results:

$$p_1 := 3.25 \cdot tsf \quad e_1 := 0.886$$

$$p_2 := 15 \cdot tsf$$
 $e_2 := 0.700$

$$C_c := \frac{e_1 - e_2}{\log\left(\frac{p_2}{p_1}\right)}$$

$$C_c = 0.28$$

$$C_c = 0.28$$

Determine C'c:

from consolidation curve and lab results:

$$\varepsilon_1 \coloneqq \frac{12.57}{100} \qquad \varepsilon_2 \coloneqq \frac{21.21}{100} \qquad \text{strain is given in percent}$$

$$C'_c \coloneqq \frac{\varepsilon_2 - \varepsilon_1}{\log\left(\frac{p_2}{p_1}\right)} \qquad C'_c = 0.1301 \quad \text{or:} \qquad C'_c \coloneqq \frac{C_c}{1 + e_0} \qquad C'_c = 0.1296$$

Determine Cr:

$$p_1 := 0.75 \cdot tsf$$
 $e_1 := 0.737$ $p_2 := 7 \cdot tsf$ $e_2 := 0.711$

$$C_r := \frac{e_1 - e_2}{\log\left(\frac{p_2}{p_1}\right)}$$

$$C_r = 0.0268$$

BB-ACNR-101 Sample 5U

Determine in-situ over burden stress:

Sample depth = 75.0 ft below ground surface

Groundwater table at 17.0 ft below ground surface

Unit weight of water = 62.4pcf

Initial void ratio $e_0 := 0.85$

Clay is overlain by:

17 ft of Fill at 125 pcf

5.8 ft of sand at 120 pcf

16.7 ft of silt at 115 pcf and

35.5 ft of clay at 115 pcf

$$\sigma'_{vo} := 17 \cdot ft \cdot 125 \cdot pcf \ + \ 5.8 \cdot ft \cdot (120 - 62.4) \cdot pcf \ + \ 52.2 \cdot ft \cdot (115 - 62.4) \cdot pcf$$

$$\sigma'_{vo} = 5205 \cdot psf$$
 or $\sigma'_{vo} = 2.602 \cdot tsf$

Maximum past pressure from consolidation curve Casagrande construction: $\sigma'_{p} := 1.1 \cdot tsf$

Determine OCR:

$$OCR := \frac{\sigma'_p}{\sigma'_{vo}} \qquad OCR = 0.4227$$

$$OCR = 0.4227$$

under consolidated

Determine Cc:

from consolidation curve and lab results:

$$p_1 := 3.25 \cdot tsf \quad e_1 := 0.607$$

$$p_2 := 15 \cdot tsf$$
 $e_2 := 0.505$

$$C_c := \frac{e_1 - e_2}{\log\left(\frac{p_2}{p_1}\right)}$$
 $C_c = 0.1536$

$$C_c = 0.1536$$

Determine C'c:

from consolidation curve and lab results:

$$\varepsilon_1 \coloneqq \frac{13.26}{100} \qquad \varepsilon_2 \coloneqq \frac{18.72}{100}$$

strain is given in percent

$$C'_c \coloneqq \frac{\varepsilon_2 - \varepsilon_1}{\log \left(\frac{p_2}{p_1}\right)} \qquad \qquad C'_c = 0.0822 \quad \text{or:} \qquad C'c \coloneqq \frac{C_c}{1 + e_0} \qquad \qquad C'c = 0.083$$

$$C'_{c} = 0.0822$$
 or

$$C'c := \frac{C_c}{1 + e_0}$$

$$C'c = 0.083$$

Determine Cr:

$$p_1 := 0.75 \cdot tsf$$
 $e_1 := 0.533$ $p_2 := 7 \cdot tsf$ $e_2 := 0.515$

$$p_2 := 7 \cdot tsf$$

$$e_2 := 0.515$$

$$C_r := \frac{e_1 - e_2}{\log\left(\frac{p_2}{p_1}\right)}$$

$$C_r = 0.0186$$

$$C_r = 0.0186$$

BB-ACNR-101 Sample 6U

Determine in-situ over burden stress:

Sample depth = 85.0 ft below ground surface

Groundwater table at 17.0 ft below ground surface

Unit weight of water = 62.4pcf

Initial void ratio $e_0 := 0.96$

Clay is overlain by:

17.0 ft of fill at 125 pcf 5.8 ft of sand at 120 pcf 16.7 ft silt at 115 pcf and 45.5 ft of clay at 115 pcf

$$\sigma'_{vo} := 17 \cdot \text{ft} \cdot 125 \cdot \text{pcf} + 5.8 \cdot \text{ft} \cdot (120 - 62.4) \cdot \text{pcf} + 62.2 \cdot \text{ft} \cdot (115 - 62.4) \cdot \text{pcf}$$

$$\sigma'_{vo} = 5731 \cdot psf \text{ or } \sigma'_{vo} = 2.865 \cdot tsf$$

Maximum past pressure from consolidation curve Casagrande construction: $\sigma'_{n} := 3.8 \cdot tsf$

Determine OCR:

$$OCR := \frac{\sigma'_p}{\sigma'_{vo}}$$
 $OCR = 1.3262$ over consolidated

$$OCR = 1.3262$$

Determine Cc:

from consolidation curve and lab results:

$$p_1 := 4.75 \cdot tsf \quad e_1 := 0.826$$

$$p_2 := 10.3 \cdot tsf \quad e_2 := 0.705$$

$$C_c := \frac{e_1 - e_2}{\log\left(\frac{p_2}{p_1}\right)}$$

$$C_c = 0.36$$

$$C_c = 0.36$$

Determine C'c:

from consolidation curve and lab results:

$$\varepsilon_1 \coloneqq \frac{6.73}{100} \qquad \varepsilon_2 \coloneqq \frac{12.92}{100}$$

strain is given in percent

$$C'_c := \frac{\varepsilon_2 - \varepsilon_1}{log\left(\frac{p_2}{p_1}\right)} \qquad \qquad C'_c = 0.1841 \quad \text{or:} \qquad \quad C'c := \frac{C_c}{1 + e_0} \qquad \qquad C'c = 0.1837$$

$$C'c := \frac{C_c}{1 + e_0}$$

Determine Cr:

$$p_1 := 0.75 \cdot tsf$$
 $e_1 := 0.697$

$$p_2 := 7 \cdot tsf$$
 $e_2 := 0.666$

$$e_2 := 0.666$$

$$C_r := \frac{e_1 - e_2}{\log\left(\frac{p_2}{p_1}\right)}$$

$$C_r = 0.032$$

$$C_r = 0.032$$

BB-ACNR-102 Sample 1U

Determine in-situ over burden stress:

Sample depth = 19.0 ft below ground surface

Groundwater table at 12.0 ft below ground surface

Unit weight of water = 62.4pcf

Initial void ratio $e_0 := 1.01$

Clay is overlain by:

12.0 ft of fill at 125 pcf 3.0 ft of silt at 115 pcf and 4.0 ft of clay at 115 pcf

$$\begin{split} \sigma'_{vo} \coloneqq 12 \cdot \mathrm{ft} \cdot 125 \cdot \mathrm{pcf} \ + \ 7 \cdot \mathrm{ft} \cdot (115 - 62.4) \cdot \mathrm{pcf} \\ \\ \sigma'_{vo} = 1868 \cdot \mathrm{psf} \ \text{Or} \quad \sigma'_{vo} = 0.934 \cdot \mathrm{tsf} \end{split}$$

Maximum past pressure from consolidation curve Casagrande construction: $\sigma_p' := 1.5 \cdot tsf$

Determine OCR:

$$OCR := \frac{\sigma'_p}{\sigma'_{vo}} \qquad OCR = 1.6058$$

$$OCR = 1.6058$$

over consolidated

Determine Cc:

from consolidation curve and lab results:

$$p_1 := 2.25 \cdot tsf \quad e_1 := 0.862$$

$$p_2 := 7.0 \cdot tsf$$
 $e_2 := 0.727$

$$C_c := \frac{e_1 - e_2}{\log\left(\frac{p_2}{p_1}\right)}$$
 $C_c = 0.2739$

$$C_c = 0.2739$$

Determine C'c:

from consolidation curve and lab results:

$$\varepsilon_1 := \frac{7.51}{100} \qquad \varepsilon_2 := \frac{14.23}{100} \qquad \text{strain is given in percent}$$

$$C'_c := \frac{\varepsilon_2 - \varepsilon_1}{\log\left(\frac{p_2}{p_1}\right)} \qquad C'_c = 0.1363 \quad \text{or:} \qquad C'c := \frac{C_c}{1 + e_0} \qquad C'c = 0.1363$$

Determine Cr:

$$p_1 := 0.75 \cdot tsf$$
 $e_1 := 0.678$ $p_2 := 7 \cdot tsf$ $e_2 := 0.654$

$$C_r := \frac{e_1 - e_2}{\log\left(\frac{p_2}{p_1}\right)}$$

$$C_r = 0.0247$$

BB-ACNR-102 Sample 3U

Determine in-situ over burden stress:

Sample depth = 41.0 ft below ground surface

Groundwater table at 12.0 ft below ground surface

Unit weight of water = 62.4pcf

Initial void ratio $e_0 := 1.21$

Clay is overlain by:

12.0 ft of fill at 125 pcf 3.0 ft of silt at 115 pcf and 26.0 ft of clay at 115 pcf

$$\sigma'_{vo} := 12 \cdot ft \cdot 125 \cdot pcf + 29 \cdot ft \cdot (115 - 62.4) \cdot pcf$$

$$\sigma'_{vo} = 3025 \cdot psf$$
 or $\sigma'_{vo} = 1.513 \cdot tsf$

Maximum past pressure from consolidation curve Casagrande construction: $\sigma_p' := 1.8 \cdot tsf$

Determine OCR:

$$OCR := \frac{\sigma'_p}{\sigma'_{NO}}$$
 $OCR = 1.1899$ over consolidated

Determine Cc:

from consolidation curve and lab results:

$$p_1 := 2.25 \cdot tsf \quad e_1 := 1.053$$

$$p_2 := 4.75 \cdot tsf \quad e_2 := 0.904$$

$$C_c := \frac{e_1 - e_2}{\log\left(\frac{p_2}{p_1}\right)}$$
 $C_c = 0.4592$

$$C_c = 0.4592$$

Determine C'c:

from consolidation curve and lab results:

$$\varepsilon_1 \coloneqq \frac{7.18}{100} \qquad \varepsilon_2 \coloneqq \frac{13.88}{100}$$

strain is given in percent

$$C'_{c} := \frac{\varepsilon_{2} - \varepsilon_{1}}{\log\left(\frac{p_{2}}{p_{1}}\right)} \qquad \qquad C'_{c} = 0.2065 \quad \text{or:} \qquad C'c := \frac{C_{c}}{1 + e_{0}} \qquad \qquad C'c = 0.2078$$

$$C'_c = 0.2065$$
 or:

$$C'c := \frac{C_c}{1 + e_0}$$

$$C'c = 0.2078$$

Determine Cr:

$$p_1 := 0.75 \cdot tsf$$
 $e_1 := 0.796$ $p_2 := 7 \cdot tsf$ $e_2 := 0.747$

$$C_r := \frac{e_1 - e_2}{\log\left(\frac{p_2}{p_1}\right)}$$

$$C_r = 0.0505$$

BB-ACNR-102 Sample 5U

Determine in-situ over burden stress:

Sample depth = 59.0 ft below ground surface

Groundwater table at 12.0 ft below ground surface

Unit weight of water = 62.4pcf

Initial void ratio $e_0 := 1.14$

Clay is overlain by:

12.0 ft of fill at 125 pcf 3.0 ft of silt at 115 pcf and 44.0 ft of clay at 115 pcf

$$\begin{split} \sigma'_{vo} \coloneqq 12 \cdot \mathrm{ft} \cdot 125 \cdot \mathrm{pcf} \ + \ 47 \cdot \mathrm{ft} \cdot (115 - 62.4) \cdot \mathrm{pcf} \\ \\ \sigma'_{vo} = 3972 \cdot \mathrm{psf} \ \text{Or} \quad \sigma'_{vo} = 1.986 \cdot \mathrm{tsf} \end{split}$$

Maximum past pressure from consolidation curve Casagrande construction: $\sigma_p' := 2.6 \cdot tsf$

Determine OCR:

$$OCR := \frac{\sigma'_p}{\sigma'_{vo}}$$
 $OCR = 1.3091$ over consolidated

$$OCR = 1.3091$$

Determine Cc:

from consolidation curve and lab results:

$$p_1 := 3.25 \cdot tsf \quad e_1 := 0.944$$

$$p_2 := 7.0 \cdot tsf$$
 $e_2 := 0.817$

$$C_c := \frac{e_1 - e_2}{\log\left(\frac{p_2}{p_1}\right)}$$
 $C_c = 0.3811$

$$C_c = 0.3811$$

Determine C'c:

from consolidation curve and lab results:

$$\varepsilon_1 \coloneqq \frac{9.28}{100} \qquad \varepsilon_2 \coloneqq \frac{15.19}{100} \qquad \text{strain is given in percent}$$

$$C'_c \coloneqq \frac{\varepsilon_2 - \varepsilon_1}{\log \left(\frac{p_2}{p_1}\right)} \qquad C'_c = 0.1774 \quad \text{or:} \qquad C'c \coloneqq \frac{C_c}{1 + \varepsilon_0} \qquad C'c = 0.1781$$

Determine Cr:

$$p_1 := 0.75 \cdot tsf$$
 $e_1 := 0.762$ $p_2 := 7 \cdot tsf$ $e_2 := 0.719$
$$C_r := \frac{e_1 - e_2}{\log\left(\frac{p_2}{p_1}\right)}$$
 $C_r = 0.0443$

BB-ACNR-103 Sample 1U

Determine in-situ over burden stress:

Sample depth = 15.0 ft below ground surface

Groundwater table at 14.0 ft below ground surface

Unit weight of water = 62.4pcf

Initial void ratio $e_0 := 0.92$

Clay is overlain by:

14.0 ft of fill at 125 pcf and 1.0 ft of clay at 115 pcf

$$\begin{split} \sigma'_{vo} \coloneqq 14 \cdot ft \cdot 125 \cdot pcf \ + \ 1 \cdot ft \cdot (115 - 62.4) \cdot pcf \\ \sigma'_{vo} = 1803 \cdot psf \ \text{ or } \quad \sigma'_{vo} = 0.901 \cdot tsf \end{split}$$

 $\mbox{Maximum past pressure from consolidation curve Casagrande construction:} \quad \sigma_p' := 1.1 \cdot tsf$

Determine OCR:

$$OCR := \frac{\sigma'_p}{\sigma'_{vo}} \qquad OCR = 1.2205$$

$$OCR = 1.2205$$

over consolidated

Determine Cc:

from consolidation curve and lab results:

$$p_1 := 1.5 \cdot tsf$$
 $e_1 := 0.832$

$$p_2 := 3.25 \cdot tsf \quad e_2 := 0.748$$

$$C_c := \frac{e_1 - e_2}{\log\left(\frac{p_2}{p_1}\right)}$$

$$C_c = 0.2502$$

$$C_c = 0.2502$$

Determine C'c:

from consolidation curve and lab results:

$$\varepsilon_1 \coloneqq \frac{4.49}{100} \qquad \varepsilon_2 \coloneqq \frac{8.90}{100} \qquad \text{strain is given in percent}$$

$$C'_c \coloneqq \frac{\varepsilon_2 - \varepsilon_1}{\log \left(\frac{p_2}{p_1}\right)} \qquad C'_c = 0.1313 \quad \text{or:} \qquad C'_c \coloneqq \frac{C_c}{1 + e_0} \qquad C'_c = 0.1303$$

Determine Cr:

$$p_1 := 0.75 \cdot tsf$$
 $e_1 := 0.631$ $p_2 := 7 \cdot tsf$ $e_2 := 0.612$ $e_1 - e_2$

$$C_r := \frac{e_1 - e_2}{\log\left(\frac{p_2}{p_1}\right)}$$

$$C_r = 0.0196$$

BB-ACNR-103 Sample 2U

Determine in-situ over burden stress:

Sample depth = 25.0 ft below ground surface

Groundwater table at 14.0 ft below ground surface

Unit weight of water = 62.4pcf

Initial void ratio $e_0 := 1.16$

Clay is overlain by:

14.0 ft of fill at 125 pcf and 11.0 ft of clay at 115 pcf

$$\begin{split} \sigma'_{vo} \coloneqq 14 \cdot \mathrm{ft} \cdot 125 \cdot \mathrm{pcf} \ + \ 11 \cdot \mathrm{ft} \cdot (115 - 62.4) \cdot \mathrm{pcf} \\ \sigma'_{vo} = 2329 \cdot \mathrm{psf} \ \text{ or } \quad \sigma'_{vo} = 1.164 \cdot \mathrm{tsf} \end{split}$$

Maximum past pressure from consolidation curve Casagrande construction: $\sigma_{p}' := 1.2 \cdot tsf$

Determine OCR:

$$OCR := \frac{\sigma'_p}{\sigma'_{vo}}$$

$$OCR = 1.0307$$

 $OCR := \frac{\sigma'_p}{\sigma'}$ OCR = 1.0307 Normally consolidated

Determine Cc:

from consolidation curve and lab results:

$$p_1 := 2.25 \cdot tsf \quad e_1 := 0.928$$

$$p_2 := 7.0 \cdot tsf$$
 $e_2 := 0.777$

$$C_c := \frac{e_1 - e_2}{\log\left(\frac{p_2}{p_1}\right)}$$

$$C_c = 0.3063$$

$$C_c = 0.3063$$

Determine C'c:

from consolidation curve and lab results:

$$\varepsilon_1 := \frac{10.62}{100} \qquad \varepsilon_2 := \frac{17.60}{100} \qquad \text{strain is given in percent}$$

$$C'_c := \frac{\varepsilon_2 - \varepsilon_1}{\log\left(\frac{p_2}{p_1}\right)} \qquad C'_c = 0.1416 \quad \text{or:} \qquad C'c := \frac{C_c}{1 + e_0} \qquad C'c = 0.1418$$

Determine Cr:

$$p_1 := 0.75 \cdot tsf$$
 $e_1 := 0.733$ $p_2 := 7 \cdot tsf$ $e_2 := 0.698$

$$C_r := \frac{e_1 - e_2}{\log\left(\frac{p_2}{p_1}\right)}$$

$$C_r = 0.0361$$

BB-ACNR-103 Sample 3U

Determine in-situ over burden stress:

Sample depth = 35.0 ft below ground surface

Groundwater table at 14.0 ft below ground surface

Unit weight of water = 62.4pcf

Initial void ratio $e_0 := 1.09$

Clay is overlain by:

14.0 ft of fill at 125 pcf and 21.0 ft of clay at 115 pcf

$$\begin{split} \sigma'_{vo} \coloneqq 14 \cdot \mathrm{ft} \cdot 125 \cdot \mathrm{pcf} \ + \ 21 \cdot \mathrm{ft} \cdot (115 - 62.4) \cdot \mathrm{pcf} \\ \sigma'_{vo} = 2855 \cdot \mathrm{psf} \ \text{ or } \quad \sigma'_{vo} = 1.427 \cdot \mathrm{tsf} \end{split}$$

Maximum past pressure from consolidation curve Casagrande construction: $\sigma_p' := 2.1 \cdot tsf$

Determine OCR:

$$OCR := \frac{\sigma'_p}{\sigma'_{vo}}$$
 $OCR = 1.4713$ over consolidated

$$OCR = 1.4713$$

Determine Cc:

from consolidation curve and lab results:

$$p_1 := 4.75 \cdot tsf \quad e_1 := 0.856$$

$$p_2 := 15.0 \cdot tsf \quad e_2 := 0.719$$

$$C_c := \frac{e_1 - e_2}{\log\left(\frac{p_2}{p_1}\right)}$$
 $C_c = 0.2743$

$$C_c = 0.2743$$

Determine C'c:

from consolidation curve and lab results:

$$\varepsilon_1 := \frac{11.34}{100} \qquad \varepsilon_2 := \frac{17.86}{100} \qquad \text{strain is given in percent}$$

$$C'_c := \frac{\varepsilon_2 - \varepsilon_1}{\log\left(\frac{p_2}{p_1}\right)} \qquad C'_c = 0.1306 \quad \text{or:} \qquad C'c := \frac{C_c}{1 + e_0} \qquad C'c = 0.1313$$

Determine Cr:

$$p_1 := 0.75 \cdot tsf$$
 $e_1 := 0.760$ $p_2 := 7 \cdot tsf$ $e_2 := 0.731$

$$C_r := \frac{e_1 - e_2}{\log\left(\frac{p_2}{p_1}\right)}$$

$$C_r = 0.0299$$

BB-ACNR-103 Sample 4U

Determine in-situ over burden stress:

Sample depth = 45.0 ft below ground surface

Groundwater table at 14.0 ft below ground surface

Unit weight of water = 62.4pcf

Initial void ratio $e_0 := 1.14$

Clay is overlain by:

14.0 ft of fill at 125 pcf and 31.0 ft of clay at 115 pcf

$$\begin{split} \sigma'_{vo} \coloneqq 14 \cdot \mathrm{ft} \cdot 125 \cdot \mathrm{pcf} \ + \ & 31 \cdot \mathrm{ft} \cdot (115 - 62.4) \cdot \mathrm{pcf} \\ \\ \sigma'_{vo} = 3381 \cdot \mathrm{psf} \ \text{Or} \quad \sigma'_{vo} = 1.69 \cdot \mathrm{tsf} \end{split}$$

Maximum past pressure from consolidation curve Casagrande construction: $\sigma_p' := 1.9 \cdot tsf$

Determine OCR:

$$OCR := \frac{\sigma'_p}{\sigma'_{vo}} \qquad OCR = 1.1241$$

$$OCR = 1.1241$$

over consolidated

Determine Cc:

from consolidation curve and lab results:

$$p_1 := 2.25 \cdot tsf \quad e_1 := 1.012$$

$$p_2 := 7.0 \cdot tsf$$
 $e_2 := 0.822$

$$C_c := \frac{e_1 - e_2}{\log\left(\frac{p_2}{p_1}\right)}$$

$$C_c = 0.3855$$

$$C_c = 0.3855$$

Determine C'c:

from consolidation curve and lab results:

$$\varepsilon_1 \coloneqq \frac{6.17}{100} \qquad \varepsilon_2 \coloneqq \frac{15.03}{100} \qquad \text{strain is given in percent}$$

$$C'_c \coloneqq \frac{\varepsilon_2 - \varepsilon_1}{\log \left(\frac{p_2}{p_1}\right)} \qquad C'_c = 0.1797 \quad \text{or:} \qquad C'c \coloneqq \frac{C_c}{1 + e_0} \qquad C'c = 0.1801$$

Determine Cr:

$$p_1 := 1.5 \cdot tsf$$
 $e_1 := 0.771$ $p_2 := 7 \cdot tsf$ $e_2 := 0.731$

$$C_r := \frac{e_1 - e_2}{\log\left(\frac{p_2}{p_1}\right)}$$

$$C_r = 0.0598$$

BB-ACNR-103 Sample 5U

Determine in-situ over burden stress:

Sample depth = 55.0 ft below ground surface

Groundwater table at 14.0 ft below ground surface

Unit weight of water = 62.4pcf

Initial void ratio $e_0 := 1.19$

Clay is overlain by:

14.0 ft of fill at 125 pcf and

41.0 ft of clay at 115 pcf

$$\begin{split} \sigma'_{vo} \coloneqq 14 \cdot \mathrm{ft} \cdot 125 \cdot \mathrm{pcf} \ + \ 41 \cdot \mathrm{ft} \cdot (115 - 62.4) \cdot \mathrm{pcf} \\ \\ \sigma'_{vo} = 3907 \cdot \mathrm{psf} \ \text{ or } \quad \sigma'_{vo} = 1.953 \cdot \mathrm{tsf} \end{split}$$

Maximum past pressure from consolidation curve Casagrande construction: $\sigma_p' := 2.8 \cdot tsf$

Determine OCR:

$$OCR := \frac{\sigma'_p}{\sigma'_{vo}} \qquad OCR = 1.4335$$

$$OCR = 1.4335$$

over consolidated

Determine Cc:

from consolidation curve and lab results:

$$p_1 := 3.25 \cdot tsf \quad e_1 := 1.04$$

$$p_2 := 7.0 \cdot tsf$$
 $e_2 := 0.850$

$$C_c := \frac{e_1 - e_2}{\log\left(\frac{p_2}{p_1}\right)}$$

$$C_c = 0.5702$$

$$C_c = 0.5702$$

Determine C'c:

from consolidation curve and lab results:

$$\varepsilon_1 \coloneqq \frac{6.7}{100} \qquad \varepsilon_2 \coloneqq \frac{15.4}{100} \qquad \text{strain is given in percent}$$

$$C'_c \coloneqq \frac{\varepsilon_2 - \varepsilon_1}{\log \left(\frac{p_2}{p_1}\right)} \qquad C'_c = 0.2611 \quad \text{or:} \qquad C'c \coloneqq \frac{C_c}{1 + e_0} \qquad C'c = 0.2604$$

Determine Cr:

$$p_1 := 1.5 \cdot tsf$$
 $e_1 := 0.787$ $p_2 := 7 \cdot tsf$ $e_2 := 0.743$

$$C_r := \frac{e_1 - e_2}{\log\left(\frac{p_2}{p_1}\right)}$$

$$C_r = 0.0658$$

BB-ACNR-104 Sample 1U

Determine in-situ over burden stress:

Sample depth = 34.0 ft below ground surface

Groundwater table at 18.0 ft below ground surface

Unit weight of water = 62.4pcf

Initial void ratio $e_0 := 1.12$

Clay is overlain by:

18.0 ft of fill at 125 pcf 15.4 ft sand at 120 pcf and 0.6 ft of clay at 115 pcf

$$\begin{split} \sigma'_{vo} \coloneqq 18 \cdot \mathrm{ft} \cdot 125 \cdot \mathrm{pcf} \ + \ 15.4 \cdot \mathrm{ft} \cdot (120 - 62.4) \cdot \mathrm{pcf} \ + \ 0.6 \cdot \mathrm{ft} \cdot (115 - 62.4) \cdot \mathrm{pcf} \\ \sigma'_{vo} = 3169 \cdot \mathrm{psf} \ \text{ or } \quad \sigma'_{vo} = 1.584 \cdot \mathrm{tsf} \end{split}$$

Maximum past pressure from consolidation curve Casagrande construction: $\sigma_p' := 1.8 \cdot tsf$

Determine OCR:

$$OCR := \frac{\sigma'_p}{\sigma'_{vo}}$$
 $OCR = 1.1361$ over consolidated

$$OCR = 1.136$$

Determine Cc:

from consolidation curve and lab results:

$$p_1 := 2.25 \cdot tsf \quad e_1 := 0.940$$

$$p_2 := 3.25 \cdot tsf \quad e_2 := 0.879$$

$$C_c := \frac{e_1 - e_2}{\log\left(\frac{p_2}{p_1}\right)}$$
 $C_c = 0.382$

$$C_c = 0.382$$

Determine C'c:

from consolidation curve and lab results:

$$\varepsilon_1 := \frac{8.33}{100} \qquad \varepsilon_2 := \frac{11.20}{100} \qquad \text{strain is given in percent}$$

$$C'_c := \frac{\varepsilon_2 - \varepsilon_1}{\log\left(\frac{p_2}{p_1}\right)} \qquad C'_c = 0.1797 \quad \text{or:} \qquad C'_c := \frac{C_c}{1 + e_0} \qquad C'_c = 0.1802$$

Determine Cr:

$$p_1 := 1.5 \cdot tsf$$
 $e_1 := 0.723$ $p_2 := 7 \cdot tsf$ $e_2 := 0.693$
$$C_r := \frac{e_1 - e_2}{\log\left(\frac{p_2}{p_1}\right)}$$
 $C_r = 0.0448$

BB-ACNR-104 Sample 2U

Determine in-situ over burden stress:

Sample depth = 44.0 ft below ground surface

Groundwater table at 18.0 ft below ground surface

Unit weight of water = 62.4pcf

Initial void ratio $e_0 := 0.99$

Clay is overlain by:

18.0 ft of fill at 125 pcf

15.4 ft sand at 120 pcf and

10.6 ft of clay at 115 pcf

$$\begin{split} \sigma'_{vo} \coloneqq 18 \cdot ft \cdot 125 \cdot pcf \ + \ 15.4 \cdot ft \cdot (120 - 62.4) \cdot pcf \ + \ 10.6 \cdot ft \cdot (115 - 62.4) \cdot pcf \\ \sigma'_{vo} = 3695 \cdot psf \ \text{ or } \ \sigma'_{vo} = 1.847 \cdot tsf \end{split}$$

Maximum past pressure from consolidation curve Casagrande construction: $\sigma_p' := 2.6 \cdot tsf$

Determine OCR:

$$OCR := \frac{\sigma'_p}{\sigma'_{yo}}$$
 $OCR = 1.4075$ over consolidated

$$OCR = 1.4075$$

Determine Cc:

from consolidation curve and lab results:

$$p_1 := 3.25 \cdot tsf \quad e_1 := 0.851$$

$$p_2 := 15.0 \cdot tsf \quad e_2 := 0.669$$

$$C_c := \frac{e_1 - e_2}{\log\left(\frac{p_2}{p_1}\right)}$$
 $C_c = 0.274$

$$C_c = 0.274$$

Determine C'c:

from consolidation curve and lab results:

$$\varepsilon_1 \coloneqq \frac{7.17}{100} \qquad \varepsilon_2 \coloneqq \frac{16.31}{100} \qquad \text{strain is given in percent}$$

$$C'_c \coloneqq \frac{\varepsilon_2 - \varepsilon_1}{\log \left(\frac{p_2}{p_c}\right)} \qquad C'_c = 0.1376 \quad \text{or:} \qquad C'_c \coloneqq \frac{C_c}{1 + e_0} \qquad C'_c = 0.1377$$

Determine Cr:

$$p_1 := 1.5 \cdot tsf$$
 $e_1 := 0.709$ $p_2 := 7 \cdot tsf$ $e_2 := 0.681$

$$C_r := \frac{e_1 - e_2}{\log\left(\frac{p_2}{p_1}\right)}$$
 $C_r = 0.0419$

By: Kate Maguire July 2008

Checked by: <u>LK 10-1-2008</u>

Abutment Foundations: Integral driven H-piles

Axial Structural Resistance of H-piles

Ref: AASHTO LRFD Bridge Design Specifications 4th Edition 2007

Look at the following piles:

HP 12 x 53

HP 14 x 73 Note: All matrices set up in this order

HP 14 x 89

HP 14 x 117

H-pile Steel area: $A_s := \begin{pmatrix} 15.5 \\ 21.4 \\ 26.1 \\ 34.4 \end{pmatrix} \cdot in^2$ yield strength: $F_y := 50 \cdot ksi$

Nominal Compressive Resistance $P_n = 0.66^{\lambda *} F_v * A_s$: eq. 6.9.4.1-1

Where λ =normalized column slenderness factor

$$\lambda = (KI/r_s \pi) 2^* F_v / E$$
 eq. 6.9.4.1-3

 $\lambda := 0$ as I unbraced length is 0

$$P_{n} \coloneqq 0.66^{\lambda} \cdot F_{y} \cdot A_{s} \qquad P_{n} = \begin{pmatrix} 775 \\ 1070 \\ 1305 \\ 1720 \end{pmatrix} \cdot \text{kip} \qquad \begin{array}{l} \text{HP 12 x 53} \\ \text{HP 14 x 73} \\ \text{HP 14 x 89} \\ \text{HP 14 x 117} \end{array}$$

STRENGTH LIMIT STATE:

Factored Resistance:

Strength Limit State Axial Resistance factor for piles in compression under good driving conditions:

From Article 6.5.4.2 $\phi_c := 0.6$

Factored Compressive Resistance:

eq. 6.9.2.1-1
$$P_f := \varphi_c \cdot P_n$$

$$P_f = \begin{pmatrix} 465 \\ 642 \\ 783 \\ 1032 \end{pmatrix} \cdot kip$$

$$HP 12 x 53 \\ HP 14 x 73 \\ HP 14 x 89 \\ HP 14 x 117$$
 Strength Limit State

Checked by: <u>LK 10-1-2008</u>

SERVICE/EXTREME LIMIT STATES:

Service and Extreme Limit States Axial Resistance

Nominal Compressive Resistance $P_n = 0.66^{\lambda *} F_v^* A_s$: eq. 6.9.4.1-1

Where λ =normalized column slenderness factor

$$\lambda = (KI/r_s \pi) 2 F_v = eq. 6.9.4.1-3$$

 $\lambda := 0$ as I unbraced length is 0

$$P_{n} \coloneqq 0.66^{\lambda} \cdot F_{y} \cdot A_{s} \qquad P_{n} = \begin{pmatrix} 775 \\ 1070 \\ 1305 \\ 1720 \end{pmatrix} \cdot \begin{array}{l} \text{HP 12 x 53} \\ \text{HP 14 x 73} \\ \text{HP 14 x 89} \\ \text{HP 14 x 117} \\ \end{array}$$

Resistance Factors for Service and Extreme Limit States ϕ = 1.0 LRFD 10.5.5.1 and 10.5.8.3

$$\phi := 1.0$$

Factored Compressive Resistance for Service and Extreme Limit States:

eq. 6.9.2.1-1
$$P_f := \phi \cdot P_n$$

$$P_f = \begin{pmatrix} 775 \\ 1070 \\ 1305 \\ 1720 \end{pmatrix} \cdot kip$$

$$HP 12 x 53 \\ HP 14 x 73 \\ HP 14 x 89 \\ HP 14 x 117$$
 Service/Extreme Limit States

By: Kate Maguire July 2008

Checked by: LK 10-1-2008

Geotechnical Resistance

Assume piles will be end bearing on bedrock driven through overlying sand and silty clay.

Bedrock Type:

Granite RQD ranges from 28 to 77%.

Use RQD = 50% and ϕ = 34 to 40 deg (Tomlinson 4th Ed. pg 139)

Axial Geotechnical Resistance of H-piles

Ref: AASHTO LRFD Bridge Design Specifications 4th Edition 2007

Look at these piles:

HP 12 x 53

HP 14 x 73

Note: All matrices set up in this order

HP 14 x 89

HP 14 x 117

Steel area:

$$A_s = \begin{pmatrix} 15.5 \\ 21.4 \\ 26.1 \\ 34.4 \end{pmatrix} \cdot \text{in}^2$$
 Pile depth:
$$d := \begin{pmatrix} 11.78 \\ 13.61 \\ 13.83 \\ 14.21 \end{pmatrix} \cdot \text{ir}^2$$

Pile width: 12.045

14.695 14.885

Calculate pile box area:

ate pile box area:
$$A_{box} := \overrightarrow{(d \cdot b)} \qquad A_{box} = \begin{pmatrix} 141.8901 \\ 198.5018 \\ 203.2318 \\ 211.5159 \end{pmatrix} \cdot \text{in}^2$$

End bearing resistance of piles on bedrock - LRFD code specifies Canadian Geotech Method 1985 (LRFD Table 10.5.5.2.3-1) Canadian Foundation Manual 4th Edition (2006) Section 18.6.3.3.

Average compressive strength of rock core from AASHTO Standard Spec for Highway Bridges 17 Ed. Table 4.4.8.1.2B pg 64

 $q_{\mbox{\tiny II}}$ for granite compressive strength ranges from 2100 to 49000 psi

use
$$\sigma_{cG} := 30000 \cdot psi$$

Checked by: LK 10-1-2008

Determine K_{sp}: From Canadian Foundation Manual 4th Edition (2006) Section 9.2

Spacing of discontinuities: $c := 36 \cdot in$ Assumed based on rock core

 $\delta := \frac{1}{64} \cdot in$ Aperture of discontinuities: joints are tight

Footing width, b:

$$b = \begin{pmatrix} 12.045 \\ 14.585 \\ 14.695 \\ 14.885 \end{pmatrix} \cdot \text{in} \qquad \begin{array}{l} \text{HP 12 x 53} \\ \text{HP 14 x 73} \\ \text{HP 14 x 89} \\ \text{HP 14 x 117} \\ \end{array}$$

$$K_{sp} := \frac{3 + \frac{c}{b}}{10 \cdot \left(1 + 300 \cdot \frac{\delta}{c}\right)^{0.5}}$$

$$K_{sp} := \frac{3 + \frac{c}{b}}{10 \cdot \left(1 + 300 \cdot \frac{\delta}{c}\right)^{0.5}}$$

$$K_{sp} = \begin{pmatrix} 0.5633 \\ 0.5144 \\ 0.5126 \\ 0.5097 \end{pmatrix}$$

$$K_{sp} \text{ includes a factor of safety of 3}$$

Length of rock socket, L_s : $L_s := 0 \cdot in$

$$L_s := 0 \cdot in$$
 Pile is end bearing on rock

Diameter of socket, B_s:

$$B_s := 1 \cdot ft$$

depth factor, d_f:
$$d_f \coloneqq 1 + 0.4 \Biggl(\frac{L_s}{B_s}\Biggr) \qquad \qquad d_f = 1 \qquad \text{ should be < or = 3}$$

$$d_f = 1$$

$$q_a \coloneqq \sigma_{cG} \cdot K_{sp} \cdot d_f$$

$$q_{a} = \begin{pmatrix} 2434 \\ 2222 \\ 2215 \\ 2202 \end{pmatrix} \cdot ksf$$

Nominal Geotechnical Tip Resistance, R_n:

Multiply by 3 to take out FS=3 on $K_{\rm sp}$

$$R_{p} := \overrightarrow{\left(3q_{a} \cdot A_{s}\right)} \qquad \qquad R_{p} = \begin{pmatrix} 786 \\ 991 \\ 1204 \\ 1578 \end{pmatrix} \cdot \text{kip} \qquad \begin{array}{l} \text{HP 12 x 53} \\ \text{HP 14 x 73} \\ \text{HP 14 x 89} \\ \text{HP 14 x 117} \\ \end{array}$$

STRENGTH LIMIT STATE:

Factored Geotechnical Resistance at Strength Limit State:

Resistance factor, end bearing on rock (Canadian Geotech. Society, 1985 method):

Nominal resistance of Single Pile in Axial Compression - $\varphi_{stat} := 0.45$ LRFD Table 10.5.5.2.3-1 Static Analysis Methods, φ_{stat}

 $R_f := \varphi_{stat} \cdot R_p$

 $R_{f} = \begin{pmatrix} 354 \\ 446 \\ 542 \\ 710 \end{pmatrix} \cdot kip$

HP 12 x 53 HP 14 x 73 Strength Limit State HP 14 x 89 HP 14 x 117

SERVICE/EXTREME LIMIT STATES:

Factored Geotechnical Resistance at the Service/Extreme Limit States:

Resistance Factors for Service and Extreme Limit States ϕ = 1.0 LRFD 10.5.5.1 and 10.5.8.3

$$\phi := 1.0$$

$$R_{fse} := \phi \cdot R_p$$

$$R_{fse} = \begin{pmatrix} 786 \\ 991 \\ 1204 \\ 1578 \end{pmatrix} \cdot kip$$

By: Kate Maguire July 2008

Checked by: <u>LK 10-1-2008</u>

DRIVABILITY ANALYSIS Ref: LRFD Article 10.7.8

For steel piles in compression or tension σ_{dr} = 0.9 x ϕ_{da} x f_v (eq. 10.7.8-1)

 $f_v \coloneqq \, 50 \cdot k_{Si} \quad \text{ yield strength of steel} \,$

resistance factor from LRFD Table 10.5.5.2.3-1

 $\phi_{da} := 1.0$ Pile Drivability Analysis, Steel piles

 $\sigma_{dr} \coloneqq 0.9 \cdot \varphi_{da} \cdot f_v \qquad \qquad \sigma_{dr} = 45 \cdot ksi \qquad \qquad \text{driving stresses in pile cannot exceed 45 ksi}$

Compute Resistance that can be achieved in a drivability analysis:

The resistance that must be achieved in a drivability analysis will be the maximum applied pile axial load (must be less than the the factored geotechnical resistance from above as this governs) divided by the appropriate resistance factor for wave equation analysis and dynamic test which will be required for construction.

Table 10.5.5.2.3-1 pg 10-38 gives resistance factor for dynamic test, ϕ_{dvn} :

$$\phi_{dvn} := 0.65$$

Table 10.5.5.2.3-3 requires no less than 3 to 4 piles dynamically tested for a site with low to medium site variability. There will probably only be 4 to 5 piles total at each abutment. Only 1 or 2 piles will be tested - one per abutment will be requested. Therefore, reduce the ϕ by 20%

$$\phi_{dyn.reduced} := 0.65 \cdot 0.8$$

$$\phi_{\text{dyn.reduced}} = 0.52$$

Pile Size = 12×53 Assume Contractor will use a Delmag D 19-42 hammer to install 12×53 piles

17-Sep-2008 /ersion 2003	RLWEAP (TM)	GF	State of Maine Dept. Of Transportation Auburn CNR Crossing Bridge		
Energy kips-ft	Stroke feet	Blow Count blows/in	Maximum Tension Stress ksi	Maximum Compression Stress ksi	Ultimate Capacity kips
21.39 22.17 22.95 23.00 23.11 22.91 22.97 22.97 23.19 23.43	7.89 8.19 8.50 8.52 8.55 8.49 8.50 8.52 8.59 8.70	4.5 7.2 11.9 12.6 13.3 14.6 15.6 16.8 25.0 78.8	4.47 5.49 6.57 6.67 6.78 6.83 6.93 7.00 7.41 7.86	33.60 35.41 36.68 36.75 36.84 36.65 36.69 36.73 36.89 37.04	300.0 350.0 400.0 405.0 410.0 415.0 420.0 425.0 450.0 500.0

DELMAG D 19-42

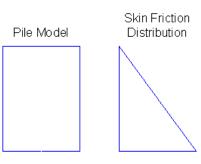
Limit blow count to 15 blows per inch

Strength Limit State:

 $R_{dr_12x53_factored} \coloneqq 418 \cdot kip \cdot \varphi_{dyn.reduced}$

 $R_{dr_12x53_{factored}} = 217 \cdot kip$

Service and Extreme Limit States: $\phi := 1.0$


 $R_{dr_{12x53}_servext} := 418 \cdot kip$

Efficiency	0.800
Helmet	3.20 kips
Hammer Cushion	109975 kips/in
Skin Quake	0.100 in
Toe Quake	0.100 in
Skin Damping	0.200 sec/ft
Toe Damping	0.150 sec/ft
Pile Length	95.00 ft
Pile Penetration	95.00 ft
Pile Top Area	15.50 in2

By: Kate Maguire

Checked by: <u>LK 10-1-2008</u>

July 2008

Res. Shaft = 10 % (Proportional)

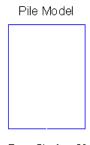
Pile Size = 14 x 73 Assume Contractor will use a Delmag D 36-32 hammer to install 14 x 73 piles

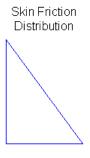
	State of Maine Dept. Of Transportation Auburn CNR Crossing Bridge			17 LWEAP (TM) Ve	7-Sep-2008 ersion 2003	
Ultimate Capacity kips	Maximum Compression Stress ksi	Maximum Tension Stress ksi	Blow Count blows/in	Stroke feet	Energy kips-ft	
475.0 500.0 550.0 600.0 650.0	34.14 34.49 35.20 35.89 36.01 36.01	4.20 4.39 4.73 4.96 5.10 5.13	3.2 3.7 5.0 6.9 10.3 13.8	7.72 7.85 8.05 8.32 8.41 8.49	46.73 47.31 48.31 49.57 49.99 50.22	
685.0 690.0 695.0 700.0	36.01 35.97 35.99 36.00	5.14 5.14 5.13 5.15	14.5 15.5 16.4 17.3	8.49 8.50 8.52 8.52	50.28 50.23 50.34 50.44	

DELMAG D 36-32

Limit blow count to 15 blows per inch

Strength Limit State:


$$R_{dr_14x73_factored} \coloneqq 688 \cdot kip \cdot \varphi_{dyn.reduced}$$


$$R_{dr_14x73_factored} = 358 \cdot kip$$

Service and Extreme Limit States: $\phi := 1.0$

$$R_{dr_14x73_servext} := 688 \cdot kip$$

Efficiency	0.800	
Helmet Hammer Cushion	3.20 109975	
Skin Quake Toe Quake Skin Damping Toe Damping	0.100 0.100 0.200 0.150	in sec/ft
Pile Length Pile Penetration Pile Top Area	95.00 95.00 21.40	ft

By: Kate Maguire

Checked by: <u>LK 10-1-2008</u>

July 2008

Res. Shaft = 20 % (Proportional)

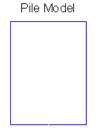
Pile Size = 14×89 Assume Contractor will use a Delmag D 36-32 hammer to install 14×89 piles

	State of Maine Dept. Of Transportation Auburn CNR Crossing Bridge			17 LWEAP (TM) Ve	7-Sep-2008 ersion 2003	
Ultimate Capacity kips	Maximum Compression Stress ksi	Maximum Tension Stress ksi	Blow Count blows/in	Stroke feet	Energy kips-ft	
475.0 500.0 600.0 650.0 700.0 750.0 800.0 815.0 825.0	37.42 38.35 41.40 42.66 43.11 43.60 44.00 44.08 44.12 44.17	4.00 4.15 4.71 5.18 5.63 6.01 6.27 6.35 6.38 6.41	2.7 3.0 4.7 5.8 7.6 10.2 13.7 15.1	7.71 7.84 8.34 8.61 8.70 8.86 8.98 9.01 9.02 9.04	45.10 45.79 48.28 49.77 50.22 50.85 51.49 51.62 51.70 51.77	\supset

Limit	blow count	to 15 blows	ner inch
	DIOW COULI	10 13 DIOWS	Dei Inch

Strength Limit State:

 $R_{dr_14x89_factored} \coloneqq \, 815 \cdot kip \cdot \varphi_{dyn.reduced}$


 $R_{dr_14x89_{factored}} = 424 \cdot kip$

Service and Extreme Limit States: $\phi := 1.0$

 $R_{dr_14x89_servext} := 815 \cdot kip$

DELMAG D 36-32

Helmet 3.20 kips Hammer Cushion 109975 kips/in Skin Quake 0.100 in Toe Quake 0.100 in Skin Damping 0.200 sec/ft Toe Damping 0.150 sec/ft Pile Length 95.00 ft Pile Penetration 95.00 ft Pile Top Area 26.10 in2	Efficiency	0.800	
Toe Quake 0.100 in Skin Damping 0.200 sec/ft Toe Damping 0.150 sec/ft Pile Length 95.00 ft Pile Penetration 95.00 ft			
Pile Penetration 95.00 ft	Toe Quake Skin Damping	0.100 0.200	in sec/ft
	Pile Penetration	95.00	ft

Res. Shaft = 10 % (Proportional) Skin Friction

By: Kate Maguire

July 2008 Checked by: <u>LK 10-1-2008</u>

By: Kate Maguire July 2008

Checked by: LK 10-1-2008

Pile Size = 14 x 117 Assume Contractor will use a Delmag D 46-32 hammer to install 14 x 117 piles

	7-Sep-2008 'ersion 2003	RLWEAP (TM)	GF	State of Maine Dept. Of Transportation Auburn CNR Crossing Bridge		
	Energy kips-ft	Stroke feet	Blow Count blows/in	Maximum Tension Stress ksi	Maximum Compression Stress ksi	Ultimate Capacity kips
\supset	63.97 64.33 64.51 64.54 64.77 64.77 64.88 64.70 64.92 64.84	9.61 9.65 9.69 9.73 9.75 9.77 9.78 9.79 9.80	9.4 10.4 11.7 13.3 13.9 14.8 15.1 15.7 16.4 17.5	2.30 2.29 2.23 2.15 2.15 2.10 2.09 2.06 2.05 2.00	38.72 38.74 38.67 38.56 38.56 38.51 38.43 38.43 38.43	925.0 950.0 975.0 1000.0 1010.0 1020.0 1025.0 1030.0 1040.0 1050.0

Limit blow count to 15 blows per inch

Strength Limit State:

 $R_{dr_14x117_factored} := 1025 \cdot kip \cdot \varphi_{dyn.reduced}$

 $R_{dr_14x117_factored} = 533 \cdot kip$

Service and Extreme Limit States: $\phi := 1.0$

 $R_{dr_14x117_servext} := 1025 \cdot kip$

DELMAG D 46-32

Efficiency

Επιciency	0.800	
Helmet Hammer Cushion	3.20 109975	
Skin Quake Toe Quake Skin Damping Toe Damping	0.100 0.100 0.200 0.150	in sec/ft
Pile Length Pile Penetration Pile Top Area	95.00 95.00 34.40	ft

0000

Res. Shaft = 20 % (Proportional)

Pipe Pile Pier Bent

Calculate Depth to Fixity for pipe piles:

Soil conditions:

15 ft of fill sand

50 ft of soft clay (Su=500 psf)

30 ft of sand with cobbles and boulders

over bedrock

Consider Pile sizes:

24 in diameter 1/2 in wall

26 in diameter 1/2 in wall

28 in diameter 1/2 in wall

30 in diameter 1/2 in wall

24 in diameter 5/8 in wall

26 in diameter 5/8 in wall

28 in diameter 5/8 in wall

30 in diameter 5/8 in wall

Piles will not be exposed to water therefore no corrosion is applied. Bridge is a railroad crossing therefore no scour is considered.

Diameter of piles: Pipe pile wall thickness:

$$dia_{steel} := \begin{pmatrix} 24 \\ 26 \\ 28 \\ 30 \end{pmatrix} \cdot in \qquad wall_t := \begin{pmatrix} \frac{1}{2} \\ \frac{5}{8} \end{pmatrix} \cdot in$$

$$dia_{conccore_0.5} \coloneqq dia_{steel} - 2 \cdot \frac{1}{2} \cdot in$$

$$dia_{conccore_0.5} = \begin{pmatrix} 23 \\ 25 \\ 27 \\ 20 \end{pmatrix} \cdot in$$

 $S_u := 500 \cdot psf$

Diameter concrete core for 1/2"

$$dia_{conccore_0.625} := dia_{steel} - 2 \cdot \frac{5}{8} \cdot in$$

$$dia_{conccore_0.625} \coloneqq dia_{steel} - 2 \cdot \frac{5}{8} \cdot in$$

$$dia_{conccore_0.625} = \begin{pmatrix} 22.75 \\ 24.75 \\ 26.75 \\ 28.75 \end{pmatrix} \cdot in \quad \text{Diameter concrete core for 5/8"}$$

$$A_{0.5} \coloneqq \pi \cdot \left(\frac{\text{dia}_{\text{steel}}}{2}\right)^2 - \pi \cdot \left(\frac{\text{dia}_{\text{conccore_0.5}}}{2}\right)^2 \qquad A_{0.5} = \begin{pmatrix} 36.9 \\ 40.1 \\ 43.2 \\ 46.3 \end{pmatrix} \cdot \text{in}^2 \qquad \text{STEEL AREA FOR 1/2" PILES}$$

$$A_{0.625} := \pi \cdot \left(\frac{dia_{steel}}{2}\right)^2 - \pi \cdot \left(\frac{dia_{conccore_0.625}}{2}\right)^2 \\ A_{0.625} = \begin{pmatrix} 45.9 \\ 49.8 \\ 53.8 \\ 57.7 \end{pmatrix} \cdot in^2 \quad \text{STEEL AREA FOR 5/8" PILES}$$

Transformed pile properties of 1/2 inch wall pile:

unit weight of concrete: wc := 0.15 in kips per cubic foot

compressive strength of concrete: $f_c := 4.45$ in ksi

 $\text{Modulus of elasticity of concrete:} \qquad \quad E_c \coloneqq 33000 \cdot wc^{1.5} \cdot \sqrt{f_c} \cdot 1000 \cdot psi \qquad \quad E_c = 4044 \cdot ksi$

Steel modulus: $E_{\text{steel}} := 29000 \cdot ksi$

 $n := \frac{E_{steel}}{E_c} \hspace{1cm} \text{MaineDOT Structural engineers routinely use:} \\ n := 7.6$

Moment of inertia of concrete core:

$$I_{c_{-0.5}} := \frac{\pi \cdot dia_{conccore_{-0.5}}^{4}}{64} \qquad I_{c_{-0.5}} = \begin{pmatrix} 0.662\\0.925\\1.258\\1.674 \end{pmatrix} ft^{4}$$

Moment of inertia of steel pipe: $I_{s_0.5} \coloneqq \frac{\pi \cdot \overline{\left(\operatorname{dia}_{steel}^{4} - \operatorname{dia}_{conccore_0.5}^{4}\right)}}{64} \qquad I_{s_0.5} = \begin{pmatrix} 0.123 \\ 0.157 \\ 0.197 \\ 0.243 \end{pmatrix} \text{ft}^4$

Composite Moment of Inertia: $I_{t_{-0.5}} := \overline{\left(\frac{I_{c_{-0.5}}}{n} + I_{s_{-0.5}}\right)} \qquad I_{t_{-0.5}} = \begin{bmatrix} 0.21 \\ 0.279 \\ 0.363 \\ 0.463 \end{bmatrix} \text{ft}^4$

Checked by: LK 10-1-2008

$$A_{conc_0.5} := \pi \cdot \frac{dia_{conccore_0.5}^{2}}{4}$$

$$A_{\text{conc_0.5}} := \pi \cdot \frac{\text{dia}_{\text{conccore_0.5}}^{2}}{4}$$

$$A_{\text{conc_0.5}} = \begin{pmatrix} 415.48 \\ 490.87 \\ 572.56 \\ 660.52 \end{pmatrix} \cdot \text{in}^{2}$$
onc 0.5

$$A_{t_0.5} \coloneqq A_{0.5} + \frac{A_{conc_0.5}}{n}$$

$$A_{t_0.5} := A_{0.5} + \frac{A_{conc_0.5}}{n}$$

$$A_{t_0.5} = \begin{pmatrix} 0.636 \\ 0.727 \\ 0.823 \\ 0.925 \end{pmatrix} \cdot ft^{2}$$

LRFD Eq.10.7.3.13.4-1 for fixity in feet: $1.4*(E_pI_w/E_s)^{0.25}$ (in clays)

 E_p in ksi

I,, in ft⁴

Es 0.465*S_{...} (Su must be in ksf, results E_s in ksi)

Use same equation in NCHRP#343 pg 61:

 $L_{eq}=L_u+1.4R$ where:

L_{eq} = equivalent free standing length of pile

L_u = unsupported length of pile extending above ground

for clays: $R = (E_p * I_p / E_s)^{0.25}$

Average from Field Vanes:

 $S_n = 500 \cdot psf$

Soil modulus of clay:

 $E_{\text{soil}} := 67 \cdot S_{\text{u}}$

 $E_{soil} = 33.5 \cdot ksf$

R parameter:

$$R_{0.5} := \left(\frac{E_{steel} \cdot I_{t_0.5}}{E_{soil}}\right)^{0.25} \qquad \qquad R_{0.5} = \begin{pmatrix} 12.72\\13.65\\14.58 \end{pmatrix} ft$$

$$R_{0.5} = \begin{pmatrix} 12.72 \\ 13.65 \\ 14.58 \\ 15.5 \end{pmatrix} \text{ft}$$

Depth of Fixity:

$$D_{\text{fix}_0.5} := 1.4 \cdot R_{0.5}$$

$$D_{\text{fix}_0.5} = \begin{pmatrix} 18\\19\\20\\22 \end{pmatrix} \text{ ft}$$
 Depth to fixity for 1/2" wall pipe piles

Check with LRFD Eq. 10.7.3.13.4-1

$$E_{\text{steel}} = 29000 \cdot \text{ksi}$$

$$E_{soil} = 0.2326 \cdot ksi$$

$$I_{t_{-0.5}} = \begin{pmatrix} 0.2101 \\ 0.2787 \\ 0.3625 \\ 0.4635 \end{pmatrix} ft^4$$

$$I_{\underline{t}_{0.5}} = \begin{pmatrix} 0.2101 \\ 0.2787 \\ 0.3625 \\ 0.4635 \end{pmatrix} \text{ft}^{4} \qquad \text{Check} := 1.4 \cdot \left(\frac{29000 \cdot I_{\underline{t}_{0.5}}}{0.2326} \right)^{0.25} \qquad \text{Check} = \begin{pmatrix} 17.81 \\ 19.12 \\ 20.41 \end{pmatrix} \text{ft}$$

Check =
$$\begin{pmatrix} 17.81 \\ 19.12 \\ 20.41 \\ 21.71 \end{pmatrix}$$
 ft

Transformed pile properties of 5/8 inch wall pile:

$$S_{ij} = 500 \cdot psf$$

$$n = 7.6$$

Diameter of concrete core:

$$dia_{conccore_0.625} = \begin{pmatrix} 22.75 \\ 24.75 \\ 26.75 \\ 28.75 \end{pmatrix}$$
. Diameter concrete core for 5/8" thick wall

Diameter of steel pipe

$$dia_{steel} = \begin{pmatrix} 24 \\ 26 \\ 28 \\ 30 \end{pmatrix} \cdot in$$

Moment of inertia of concrete core:

$$I_{c_0.625} := \frac{\pi \cdot dia_{conccore_0.625}}{64} \qquad I_{c_0.625} = \begin{pmatrix} 0.634 \\ 0.888 \\ 1.212 \\ 1.617 \end{pmatrix} ft^4$$

Moment of inertia of steel pipe:

$$I_{s_0.625} := \frac{\pi \cdot \overline{\left(dia_{steel}^{4} - dia_{conccore_0.625}\right)}}{64} \qquad I_{s_0.625} = \begin{pmatrix} 0.151\\0.194\\0.243\\0.3 \end{pmatrix} ft^{4}$$

Composite Moment of Inertia:

$$I_{t_{-0.625}} := \frac{I_{c_{-0.625}}}{n} + I_{s_{-0.625}} \qquad I_{t_{-0.625}} = \begin{pmatrix} 0.235 \\ 0.31 \\ 0.402 \\ 0.513 \end{pmatrix} ft^{4}$$

Transformed Area:

$$A_{conc_0.625} := \pi \cdot \frac{dia_{conccore_0.625}^{2}}{4}$$

$$A_{conc_0.625} = \begin{pmatrix} 406.49 \\ 481.11 \\ 562 \\ 649.18 \end{pmatrix} \cdot in^{2}$$

$$A_{conc_0.625} = \begin{pmatrix} 0.69 \\ 0.796 \\ 0.796 \end{pmatrix}$$

$$A_{t_0.625} := A_{0.625} + \frac{A_{conc_0.625}}{n}$$

$$A_{t_0.625} = \begin{pmatrix} 0.69 \\ 0.786 \\ 0.887 \\ 0.994 \end{pmatrix} \cdot ft^{2}$$

Checked by: LK 10-1-2008

LRFD Eq.10.7.3.13.4-1 for fixity in feet: $1.4*(E_pI_w/E_s)^{0.25}$ (in clays)

E_n in ksi

I_w in ft⁴

Es 0.465*S_{II} (Su must be in ksf, results E_s in ksi)

Use same equation in NCHRP#343 pg 61:

$$L_{eq} = L_u + 1.4R$$
 where:

L_{eq} = equivalent free standing length of pile

L_{II} = unsupported length of pile extending above ground

for clays: $R=(E_p*I_p/E_s)^{0.25}$

Average from Field Vanes:

$$S_u = 500 \cdot psf$$

Soil modulus of clay:

$$E_{soil} := 67 \cdot S_u$$

$$E_{\text{mail}} = 33.5 \cdot \text{ksf}$$

$$E_{soil} = 33.5 \cdot ksf$$
 $E_{soil} = 0.2326 \cdot ksi$

R parameter:

$$R_{0.625} := \left(\frac{E_{steel} \cdot I_{t_0.625}}{E_{soil}}\right)^{0.25} \qquad R_{0.625} = \begin{pmatrix} 13.08\\14.03\\14.97 \end{pmatrix} ft$$

$$R_{0.625} = \begin{pmatrix} 13.08 \\ 14.03 \\ 14.97 \\ 15.9 \end{pmatrix} \text{ft}$$

Depth of Fixity:

$$D_{\text{fix}_0.625} := 1.4 \cdot R_{0.625}$$

$$D_{\text{fix}_0.625} = \begin{pmatrix} 18 \\ 20 \\ 21 \\ 22 \end{pmatrix} \text{ft}$$

Depth to fixity for 5/8" wall

Check with LRFD Eq. 10.7.3.13.4-1 $E_{steel} = 29000 \cdot ksi$

$$F_{-} = 29000 \cdot ksi$$

$$E_{\text{soil}} = 0.2326 \cdot \text{ksi}$$

$$\mathbf{I}_{t_0.625} = \begin{pmatrix} 0.2347 \\ 0.3104 \\ 0.4024 \\ 0.513 \end{pmatrix} \mathbf{ft}^4$$

$$I_{t_0.625} = \begin{pmatrix} 0.2347 \\ 0.3104 \\ 0.4024 \\ 0.513 \end{pmatrix} ft^4 \qquad \text{Check} := 1.4 \cdot \left(\frac{29000 \cdot I_{t_0.625}}{0.2326} \right)^{0.25} \qquad \qquad \text{Check} = \begin{pmatrix} 18.31 \\ 19.64 \\ 20.95 \end{pmatrix} ft$$

$$Check = \begin{pmatrix} 18.31 \\ 19.64 \\ 20.95 \\ 22.26 \end{pmatrix} ft$$

Nominal Axial Structural Resistance of pipe piles

Ref: AASHTO LRFD Bridge Design Specifications 4th Edition 2007

Pier - Pipe Pile driven to bedrock, assume driven through cohesive soils to bedrock (refusal)

Axial pile resistance may be controlled by structural resistance if piles are driven to bedrock. Check concurrent axial loading and moments with LRFD Equation 6.9.2.2-1 or 6.9.2.2-2 Use LRFD Equation 6.9.5.1-1 or 6.9.5.1-2 to compute the nominal compressive structural resistance for pipe pile sections.

λ in Equation 6.9.5.1-2 has to be computed for the pipe piles since they have an unbraced length.

Yield strength of steel shell: $F_v := 45 \cdot ksi$

Compressive strength of concrete core: $f_c := 4000 \cdot psi$

Yield strength of longitudinal reinforcement: $F_{vr} := 60 \cdot ksi$

Compute λ per 6.9.5.1-3 for composite members:

Effective length factor per LRFD Article 4.6.2.5:

Use case (c) in table C4.6.2.5-1

K := 1.0 Because piles are fixed at the end

Exposed length of pile:

Bottom of pile cap to track level is approximately 20 ft at Pier 1

$$L_{ex} := 20 \cdot ft$$

Unbraced length of column:

$$L_{UB_0.5} := L_{ex} + D_{fix_0.5}$$

$$L_{UB_0.5} = \begin{pmatrix} 37.81 \\ 39.11 \\ 40.41 \\ 41.71 \end{pmatrix} ft$$

$$L_{UB_0.625} := L_{ex} + D_{fix_0.625} \qquad L_{UB_0.625} = \begin{pmatrix} 38.31 \\ 39.64 \\ 40.95 \\ 42.26 \end{pmatrix} ft$$

Longitudinal reinforcement:

Assume longitudinal reinforcement of 12 - #8 bars (1-inch) bars equally spaced for all pile sections.

$$A_r := 12 \cdot \frac{\pi \cdot (1 \cdot in)^2}{4} \qquad A_r = 9.42 \cdot in^2$$

Composite Column Constant per Table 6.9.5.1.1

for tube filled sections:

$$C1 := 1.0$$

$$C2 := 0.85$$

$$C3 := 0.40$$

Variable Fe:

$$F_{e_0.5} := F_y + C1 \cdot F_{yr} \cdot \frac{A_r}{A_{0.5}} + C2 \cdot f_c \cdot \frac{A_{conc_0.5}}{A_{0.5}}$$

$$F_{e_0.5} = \begin{pmatrix} 98.59 \\ 100.78 \\ 103.16 \\ 105.67 \end{pmatrix} \cdot ksi \qquad \qquad \text{for 1/2" walls}$$

$$F_{e_0.625} \coloneqq F_y + C1 \cdot F_{yr} \cdot \frac{A_r}{A_{0.625}} + C2 \cdot f_c \cdot \frac{A_{conc_0.625}}{A_{0.625}} \qquad \qquad F_{e_0.625} = \begin{bmatrix} 89.18 \\ 91.07 \end{bmatrix} \cdot \text{ksi} \qquad \qquad \text{for 5/8" walls}$$

$$F_{e_0.625} = \begin{pmatrix} 87.43 \\ 89.18 \\ 91.07 \\ 93.07 \end{pmatrix} \cdot \text{ksi} \qquad \text{for 5/8" wall}$$

Radius of gyration of both sets of steel sections:

$$r_{s_0.5} := \sqrt{\frac{I_{s_0.5}}{A_{0.5}}}$$

$$r_{s_0.5} := \sqrt{\frac{I_{s_0.5}}{A_{0.5}}} \qquad \qquad r_{s_0.5} = \begin{pmatrix} 0.6925 \\ 0.7514 \\ 0.8104 \\ 0.8693 \end{pmatrix} \text{ft} \qquad \qquad \text{for 1/2" walls}$$

$$r_{s_0.625} \coloneqq \sqrt{\frac{I_{s_0.625}}{A_{0.625}}}$$

$$r_{s_0.625} := \sqrt{\frac{I_{s_0.625}}{A_{0.625}}} \qquad \qquad r_{s_0.625} = \begin{pmatrix} 0.6889 \\ 0.7478 \\ 0.8068 \\ 0.8657 \end{pmatrix} \text{ft} \qquad \qquad \text{for 5/8" walls}$$

E_e term:

$$E_{e_0.5} := E_{steel} \cdot \left(1 + \frac{C3}{n} \cdot \frac{\overrightarrow{A_{conc_0.5}}}{A_{0.5}} \right)$$

$$E_{e_0.5} := E_{steel} \cdot \left(1 + \frac{C3}{n} \cdot \frac{\overrightarrow{A}_{conc_0.5}}{A_{0.5}}\right) \qquad \qquad E_{e_0.5} = \begin{pmatrix} 46179 \\ 47705 \\ 49231 \\ 50756 \end{pmatrix} \cdot ksi \qquad \text{for 1/2" walls}$$

$$E_{e_0.625} := E_{steel} \cdot \left(1 + \frac{C3}{n} \cdot \frac{\overrightarrow{A_{conc_0.625}}}{A_{0.625}} \right)$$

$$E_{e_0.625} \coloneqq E_{steel} \cdot \left(1 + \frac{C3}{n} \cdot \frac{\overrightarrow{A_{conc_0.625}}}{\overrightarrow{A_{0.625}}}\right) \qquad E_{e_0.625} = \begin{pmatrix} 42518 \\ 43738 \\ 44959 \\ 46179 \end{pmatrix} \cdot \text{ksi} \qquad \text{for 5/8" walls}$$

Checked by: <u>LK 10-1-2008</u>

Lamda (λ) term for composite members LRFD Eq. 6.9.5.1-3

$$\lambda_{0.5} \coloneqq \boxed{\left(\frac{K \cdot L_{UB_0.5}}{r_{s_0.5} \cdot \pi}\right)^2 \cdot \frac{F_{e_0.5}}{E_{e_0.5}}} \qquad \qquad \lambda_{0.5} = \begin{pmatrix} 0.6448 \\ 0.58 \\ 0.528 \\ 0.4855 \end{pmatrix} \qquad \text{for 1/2" walls}$$

$$\lambda_{0.625} \coloneqq \overline{\left[\left(\frac{\text{K} \cdot \text{L}_{\text{UB_0.625}}}{\text{r}_{\text{s_0.625}} \cdot \pi} \right)^2 \cdot \frac{\text{F}_{\text{e_0.625}}}{\text{E}_{\text{e_0.625}}} \right]} \qquad \lambda_{0.625} = \begin{pmatrix} 0.6443 \\ 0.5803 \\ 0.5289 \\ 0.4867 \end{pmatrix} \quad \text{for 5/8" walls}$$

Lamda (λ) term for non composite members LRFD Eq. 6.9.4.1-3

$$\lambda_{0.5_tip} \coloneqq \boxed{ \left(\frac{K \cdot L_{UB_0.5}}{r_{s_0.5} \cdot \pi} \right)^2 \cdot \frac{F_y}{E_{steel}} } \qquad \qquad \lambda_{0.5_tip} = \begin{pmatrix} 0.4687 \\ 0.426 \\ 0.391 \\ 0.3619 \end{pmatrix} \qquad \text{for 1/2" walls}$$

$$\lambda_{0.625_tip} \coloneqq \overline{\left[\left(\frac{K \cdot L_{UB_0.625}}{r_{s_0.625} \cdot \pi} \right)^2 \cdot \frac{F_y}{E_{steel}} \right]} \qquad \qquad \lambda_{0.625_tip} = \begin{pmatrix} 0.4862 \\ 0.4416 \\ 0.4051 \\ 0.3747 \end{pmatrix} \quad \text{for 5/8" walls}$$

Nominal Axial Structural Resistance of 1/2-inch wall

Since λ <2.25 use LRFD Eq. 6.9.5.1-1

$$P_{n_0.5} := \overbrace{\left(0.66^{\lambda_{0.5}} \cdot F_{e_0.5} \cdot A_{0.5}\right)} \qquad P_{n_0.5} = \begin{pmatrix} 2784 \\ 3172 \\ 3578 \\ 4002 \end{pmatrix} \cdot \text{kip}$$

At the bottom of open-ended piles, or closed ended piles where the conical tip or closed tip experiences breeching, the nominal compressive resistance is a function of only the steel pipe.

$$P_{n_0.5tip} \coloneqq \overbrace{\left(0.66^{\lambda_{0.5_tip}} \cdot F_y \cdot A_{0.5}\right)} \\ P_{n_0.5tip} = \underbrace{\left(\begin{matrix} 1367\\1510\\1652\\1794 \end{matrix}\right)}_{} \cdot kip \\ \text{for 1/2" walls} \\$$

Nominal Axial Structural Resistance of 5/8-inch wall

Since λ <2.25 use LRFD Eq. 6.9.5.1-1

$$P_{n_0.625} := \overbrace{\left(0.66^{\lambda_{0.625}} \cdot F_{e_0.625} \cdot A_{0.625}\right)} \qquad P_{n_0.625} = \left(\begin{array}{c} 3070 \\ 3491 \\ 3929 \\ 4385 \end{array}\right) \cdot \text{kip}$$

At the bottom of open-ended piles, or closed ended piles where the conical tip or closed tip experiences breeching, the nominal compressive resistance is a function of only the steel pipe.

$$P_{n_0.625tip} := \overbrace{\left(0.66^{\lambda_{0.625_tip}} \cdot F_y \cdot A_{0.625}\right)} \\ P_{n_0.625tip} = \underbrace{\left(\begin{matrix} 1688 \\ 1866 \\ 2044 \\ 2221 \end{matrix}\right)}_{} \cdot \text{kip} \\ \text{for 5/8" walls}$$

Factored Axial Structural Resistance of a single Pipe Pile:

Strength limit state resistance factor for pipe piles in compression, no damage anticipated - LRFD 6.5.4.2

$$\phi_c := 0.7$$

Factored Structural Resistance (Pr):

$$\begin{split} P_{r_0.5} &\coloneqq \varphi_c \cdot P_{n_0.5} \\ P_{r_0.5} &\coloneqq \varphi_c \cdot P_{n_0.5} \\ \end{split} \qquad \qquad P_{r_0.5} &= \begin{pmatrix} 1949 \\ 2221 \\ 2505 \\ 2801 \end{pmatrix} \cdot \text{ kip } \qquad \text{for 1/2" walls} \\ P_{r_0.625} &\coloneqq \varphi_c \cdot P_{n_0.625} \\ \end{split} \qquad \qquad P_{r_0.625} &= \begin{pmatrix} 2149 \\ 2444 \\ 2751 \\ \end{pmatrix} \cdot \text{ kip } \qquad \text{for 5/8" walls} \end{split}$$

Factored Structural Resistance (Pr) for the lower portion of open-ended piles or breached close-ended piles is a function of only the steel shell.

$$P_{r_0.5tip} := \varphi_c \cdot P_{n_0.5tip}$$

$$P_{r_0.5tip} = \begin{pmatrix} 957 \\ 1057 \\ 1157 \\ 1256 \end{pmatrix} \cdot \text{kip} \quad \text{for 1/2" walls} \quad \text{USE THESE} \quad \text{FOR STRENGTH} \quad \text{LIMIT STATE} \quad \text{FACTORED} \quad \text{STRUCTURAL} \quad \text{RESISTANCE} \quad \text{RESISTANCE}$$

Service and Extreme Limit States Axial Structural Resistance

Resistance Factors for Service and Extreme Limit States $\phi = 1.0$ LRFD 10.5.5.1 and 10.5.8.3

$$\phi := 1.0$$

Factored Compressive Resistance for Service and Extreme Limit States:

$$P_{_0.5tipf} := \varphi \cdot P_{n_0.5tip} \qquad P_{_0.5tipf} = \begin{pmatrix} 1367 \\ 1510 \\ 1652 \\ 1794 \end{pmatrix} \cdot \text{kip} \qquad \text{for 1/2" walls} \qquad \begin{array}{l} \text{USE THESE} \\ \text{FOR SERVICE} \\ \text{AND EXTREME} \\ \text{LIMIT STATE} \\ \text{FACTORED} \\ \text{STRUCTURAL} \\ \text{RESISTANCE} \\ \end{array}$$

COMPUTE GEOTECHNICAL RESISTANCE OF PIPE PILES

Pipe pile capacity based on steel shell end bearing on bedrock - driven through soft glaciomarine silt clay deposit.

Pipe piles evaluated:

24 in diameter 1/2 in wall

26 in diameter 1/2 in wall

28 in diameter 1/2 in wall

30 in diameter 1/2 in wall

24 in diameter 5/8 in wall

26 in diameter 5/8 in wall

28 in diameter 5/8 in wall

30 in diameter 5/8 in wall

RQD of bedrock in pier locations ranged from: 45 to 65%.

Bedrock is identified as: GRANITE

Uniaxial Compressive Strength of GRANITE from AASHTO Standard Spec for

Highway Bridges 17th Ed. Table 4.4.8.1.2B pg 64

Granite 2100 - 49000 psi Use 20000 psi

 $Q_{uc} := 30000 \cdot psi$

Reference: Pile Design and Construction

Practice, M.J. Tomlinson, Fourth Edition pg 139

Friction angle = 34 to 40 degrees

 $\varphi_1 \coloneqq 34 \cdot deg$

Piles will not be exposed to water therefore no corrosion is applied. Bridge is a railroad crossing therefore no scour is considered.

Diameter of piles: Pipe pile wall thickness:

$$dia_{steel} := \begin{pmatrix} 24 \\ 26 \\ 28 \\ 30 \end{pmatrix} \cdot in \qquad wall_{t} := \begin{pmatrix} \frac{1}{2} \\ \frac{5}{8} \end{pmatrix} \cdot in$$

$$A_{0.5} \coloneqq \pi \cdot \left(\frac{\text{dia}_{steel}}{2}\right)^2 - \pi \cdot \left(\frac{\text{dia}_{conccore_0.5}}{2}\right)^2 \qquad A_{0.5} = \begin{pmatrix} 36.9 \\ 40.1 \\ 43.2 \\ 46.3 \end{pmatrix} \cdot \text{in}^2 \qquad \textbf{STEEL AREA FOR 1/2" PILES}$$

$$A_{0.625} \coloneqq \pi \cdot \left(\frac{dia_{steel}}{2}\right)^2 - \pi \cdot \left(\frac{dia_{conccore_0.625}}{2}\right)^2 \\ A_{0.625} = \begin{pmatrix} 45.9 \\ 49.8 \\ 53.8 \\ 57.7 \end{pmatrix} \cdot in^2 \quad \text{STEEL AREA FOR 5/8" PILES}$$

Checked by: <u>LK 10-1-2008</u>

LRFD Code specifies Canadian Geotechnical Society Method 1985 for resistance determination of end bearing piles on bedrock. (LRFD Table 10.5.5.2.3-1) Use Canadian Foundation Manual 4th Edition 2006 Section 18.6.3.3.

From Canadian Foundation Manual 4th Edition (2006) Section 9.2 Determine K_{sn}:

Spacing of discontinuities: Assumed based on rock core $c := 24 \cdot in$

 $\delta := \frac{1}{32} \cdot in \qquad \text{ joints are tight}$ Aperture of discontinuities:

Footing width, b:

$$b := dia_{steel} \qquad \qquad b = \begin{pmatrix} 24 \\ 26 \\ 28 \\ 30 \end{pmatrix} \cdot in$$

$$K_{sp} \coloneqq \frac{3 + \frac{c}{b}}{10 \cdot \left(1 + 300 \cdot \frac{\delta}{c}\right)^{0.5}} \qquad K_{sp} = \begin{pmatrix} 0.3392 \\ 0.3327 \\ 0.3271 \\ 0.3222 \end{pmatrix} \qquad K_{sp} \text{ includes a factor of safety of 3}$$

 Length of rock socket, L_s :
$$L_s \coloneqq 0 \cdot \text{in} \qquad \text{Pile is end bearing on rock}$$

 Diameter of socket, B_s :
$$B_s \coloneqq 0 \cdot \text{ft}$$

Pile is end bearing on rock

$$B_s := 0 \cdot ft$$

depth factor, d_f:
$$d_f \coloneqq 1 + 0.4 \left(\frac{L_s}{B_s}\right) \qquad \qquad d_f = 1 \qquad \text{ should be < or = 3} \qquad \text{OK}$$

$$q_{aA} \coloneqq Q_{uc} \cdot K_{sp} \cdot d_f$$

$$q_{aA} = \begin{pmatrix} 1465 \\ 1437 \\ 1413 \\ 1392 \end{pmatrix} \cdot ksf$$

Nominal Geotechnical Tip Resistance, R_n:

Multiply by 3 to take out FS=3 on K_{sp}

$$R_{pA0.5} := \overline{\left(3q_{aA} \cdot A_{0.5}\right)} \qquad \qquad R_{pA0.5} = \begin{pmatrix} 1127\\1199\\1272\\1344 \end{pmatrix} \cdot \text{kip} \qquad \qquad \text{for 1/2" walls}$$

$$R_{pA0.625} := \overline{\left(3q_{aA} \cdot A_{0.625}\right)} \qquad R_{pA0.625} = \begin{pmatrix} 1401\\1492\\1582\\1673 \end{pmatrix} \cdot \text{kip} \qquad \text{for 5/8" walls}$$

STRENGTH LIMIT STATE:

Factored Geotechnical Resistance at Strength Limit State:

Resistance factor, end bearing on rock (Canadian Geotech. Society, 1985 method):

Nominal resistance of Single Pile in Axial Compression - Static Analysis Methods, ϕ_{stat}

 $\phi_{stat} := 0.45$

LRFD Table 10.5.5.2.3-1

 $R_{f0.5} \coloneqq \, \varphi_{stat} \cdot R_{pA0.5}$

 $R_{f0.5} = \begin{pmatrix} 507 \\ 540 \\ 572 \\ 605 \end{pmatrix} \cdot \text{kip}$

Strength Limit State for 1/2" walls

 $R_{f0.625} \coloneqq \varphi_{stat} \cdot R_{pA0.625}$

$$R_{f0.625} = \begin{pmatrix} 631\\ 671\\ 712\\ 753 \end{pmatrix} \cdot \text{kip}$$

Strength Limit State for 5/8" walls

SERVICE/EXTREME LIMIT STATES:

Factored Geotechnical Resistance at the Service/Extreme Limit States:

Resistance Factors for Service and Extreme Limit States $\phi = 1.0$ LRFD 10.5.5.1 and 10.5.8.3

$$\phi := 1.0$$

$$R_{fse0.5} \coloneqq \varphi \cdot R_{pA0.5}$$

$$R_{fse0.5} = \begin{pmatrix} 1127 \\ 1199 \\ 1272 \\ 1344 \end{pmatrix} \cdot kip$$

$$R_{fse0.625} := \varphi \cdot R_{pA0.625}$$

$$R_{\text{fse0.625}} = \begin{pmatrix} 1401 \\ 1492 \\ 1582 \\ 1673 \end{pmatrix} \cdot \text{kip}$$

Service/Extreme Limit States for 5/8" walls

Checked by: LK 10-1-2008

DRIVABILITY ANALYSIS Ref: LRFD Article 10.7.8

For steel piles in compression or tension $\sigma_{dr} = 0.9 \text{ x } \phi_{da} \text{ x } f_{v} \text{ (eq. 10.7.8-1)}$

 $f_v \coloneqq \, 45 \cdot k_{Si} \quad \text{ yield strength of steel}$

resistance factor from LRFD Table 10.5.5.2.3-1 $\phi_{da} := 1.0$

Pile Drivability Analysis, Steel piles

 $\sigma_{dr} := 0.9 \cdot \phi_{da} \cdot f_v$ $\sigma_{\rm dr} = 40.5 \cdot \rm ksi$ driving stresses in pile cannot exceed 40 ksi

Compute Resistance that can be achieved in a drivability analysis:

The resistance that must be achieved in a drivability analysis will be the maximum applied pile axial load (must be less than the the factored geotechnical resistance from above as this governs) divided by the appropriate resistance factor for wave equation analysis and dynamic test which will be required for construction.

Table 10.5.5.2.3-1 pg 10-38 gives resistance factor for dynamic test, ϕ_{dvn} :

$$\phi_{dyn} := 0.65$$

Table 10.5.5.2.3-3 requires no less than 3 to 4 piles dynamically tested for a site with low to medium site variability. There will probably only be 4 to 5 piles per pile bent pier. Only 1 or 2 piles will be tested one per pier will be requested. Therefore, reduce the $_{\varphi}$ by 20%

 $\phi_{dvn.reduced} := 0.65 \cdot 0.8$

 $\phi_{dyn.reduced} = 0.52$

Checked by: <u>LK 10-1-2008</u>

Assume Contractor will use a Delmag D 36-32 hammer on the third fuel setting to install: 24-in Dia. pile with 1/2-in wall thickness

Pile Size = 24"D x 1/2"W

	State of Maine Dept. Of Transportation			18	3-Sep-2008
	Auburn CNR Crossing Bridge Pipe Pile			LWEAP (TM) Ve	ersion 2003
Ultimate Capacity kips	Maximum Compression Stress ksi	Maximum Tension Stress ksi	Blow Count blows/in	Stroke feet	Energy kips-ft
850.0	38.16	5.11	11.4	7.83	40.00
875.0	38.56	5.21	12.8	7.87	40.13
900.0	38.93	5.29	14.1	7.90	40.28
905.0	39.00	5.30	14.3	7.90	40.34
910.0	39.08	5.32	14.6	7.91	40.35
916.0	39.13	5.33	15.1	7.91	40.28
920.0	39.18	5.34	15.3	7.92	40.33
925.0	39.24	5.36	15.6	7.93	40.36
950.0	39.55	5.43	17.3	7.95	40.45
975.0	39.80	5.55	19.4	7.96	40.55

	_			
I imit h	NOW COUR	nt to 15	s hlows	ner inch

Strength Limit State:

 $R_{dr_24x0.5_factored} := 916 \cdot kip \cdot \phi_{dyn.reduced}$

 $R_{dr_{24x0.5_{factored}}} = 476 \cdot kip$

Service and Extreme Limit States: $\phi := 1.0$

 $R_{dr_24x0.5_servext} := 916 \cdot kip$

DELMAG D 36-32

Efficiency	0.800
Helmet	3.20 kips
Hammer Cushion	109975 kips/in
Skin Quake	0.100 in
Toe Quake	0.040 in
Skin Damping	0.200 sec/ft
Toe Damping	0.150 sec/ft
Pile Length	115.00 ft
Pile Penetration	95.00 ft
Pile Top Area	36.90 in2
Pile Model	Skin Friction Distribution

Checked by: <u>LK 10-1-2008</u>

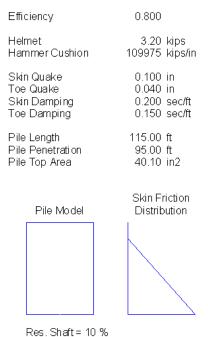
Assume Contractor will use a Delmag D 36-32 hammer on the third fuel setting to install: 26-in Dia. pile with 1/2-in wall thickness

Pile Size = 26"D x 1/2"W

State of Maine Dept. Of Transportation Auburn CNR Crossing Bridge Pipe Pile			GR	18 LWEAP (TM) Ve	3-Sep-2008 ersion 2003	
Ultimate Capacity kips	Maximum Compression Stress ksi	Maximum Tension Stress ksi	Blow Count blows/in	Stroke feet	Energy kips-ft	
910.0 920.0 930.0 940.0 950.0 955.0 970.0 980.0 990.0	37.59 37.71 37.87 38.00 38.13 38.19 38.39 38.50 38.63 38.71	4.84 4.88 4.94 4.99 5.04 5.06 5.14 5.17 5.22 5.25	12.8 13.3 13.7 14.2 14.7 15.0 15.9 16.6 17.1 17.9	7.89 7.90 7.91 7.92 7.93 7.94 7.95 7.96 7.97 7.98	39.22 39.19 39.28 39.39 39.36 39.46 39.46 39.56 39.56)

Limit to blow count to 15 blows per inch

DELMAG D 36-32


Strength Limit State:

$$R_{dr_26x0.5_factored} := 955 \cdot kip \cdot \phi_{dyn.reduced}$$

$$R_{dr_26x0.5_factored} = 497 \cdot kip$$

Service and Extreme Limit States: $\phi := 1.0$

$$R_{dr_{26x0.5_servext}} := 955 \cdot kip$$

Checked by: <u>LK 10-1-2008</u>

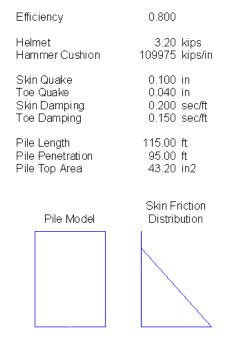
Assume Contractor will use a Delmag D 36-32 hammer on the highest fuel setting to install: 28-in Dia. pile with 1/2-in wall thickness

Pile Size = 28"D x 1/2"W

State of Maine Dept. Of Transportation 18-Sep-2 Auburn CNR Crossing Bridge Pipe Pile GRLWEAP (TM) Version 2			3-Sep-2008 ersion 2003		
Ultimate Capacity kips	Maximum Compression Stress ksi	Maximum Tension Stress ksi	Blow Count blows/in	Stroke feet	Energy kips-ft
950.0 960.0 970.0 980.0 990.0 995.0 1000.0 1010.0 1020.0	39.25 39.44 39.41 39.52 39.63 39.75 39.82 39.92 40.04 40.20	4.83 4.88 4.95 5.00 5.03 5.04 5.08 5.11 5.16	10.0 10.3 10.8 11.2 11.6 11.7 11.9 12.3 12.6	8.82 8.85 8.78 8.79 8.80 8.81 8.81 8.82 8.83	45.51 45.57 45.28 45.27 45.24 45.28 45.34 45.33 45.45

MAAC	D 26 22
JVI AU2	D 36-32

Limit driving stress to 40 ksi


Strength Limit State:

 $R_{dr_28x0.5_factored} \coloneqq 1020 \cdot kip \cdot \varphi_{dyn.reduced}$

 $R_{dr_{28x0.5_{factored}}} = 530 \cdot kip$

Service and Extreme Limit States: $\phi := 1.0$

 $R_{dr_{28x0.5_servext}} := 1020 \cdot kip$

Res. Shaft = 10 % (Proportional)

Checked by: <u>LK 10-1-2008</u>

Assume Contractor will use a Delmag D 36-32 hammer on the highest fuel setting to install: 30-in Dia. pile with 1/2-in wall thickness

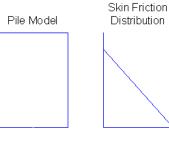
Pile Size = 30"D x 1/2"W

18-Sep-2008 Version 2003	State of Maine Dept. Of Transportation 18-Sep- Auburn CNR Crossing Bridge Pipe Pile GRLWEAP (TM) Version				
Energy kips-ft	Stroke feet	Blow Count blows/in	Maximum Tension Stress ksi	Maximum Compression Stress ksi	Ultimate Capacity kips
44.45 44.49 44.53 44.60 44.65 45.03 44.76 44.69 44.74	8.82 8.83 8.85 8.86 8.96 8.88 8.89	11.8 12.2 12.5 12.9 13.2 18.8 14.0 14.5 15.0	4.72 4.75 4.76 4.79 4.81 4.75 4.83 4.84 4.84	38.83 38.96 39.10 39.25 39.38 40.54 39.60 39.70 39.82	1030.0 1040.0 1050.0 1060.0 1070.0 1180.0 1090.0 1100.0 1110.0

Limit to blow count to 15 blows per inch

Strength Limit State:

 $R_{dr_30x0.5_factored} \coloneqq 1110 \cdot kip \cdot \varphi_{dyn.reduced}$


 $R_{dr_30x0.5_factored} = 577 \cdot kip$

Service and Extreme Limit States:

 $R_{dr_30x0.5_servext} := 1110 \cdot kip$

DELMAG D 36-32

Efficiency	0.800	
Helmet Hammer Cushion	3.20 109975	
Skin Quake Toe Quake Skin Damping Toe Damping	0.100 0.040 0.200 0.150	in sec/ft
Pile Length Pile Penetration Pile Top Area	115.00 95.00 46.30	ft

Res. Shaft = 10 % (Proportional)

 $\phi := 1.0$

Checked by: <u>LK 10-1-2008</u>

Assume Contractor will use a Delmag D 36-32 hammer on the highest fuel setting to install: 24-in Dia. pile with 5/8-in wall thickness

Pile Size = 24"D x 5/8"W

State of Maine Dept. Of Transportation Auburn CNR Crossing Bridge Pipe Pile			GR	18 LWEAP (TM) Ve	3-Sep-2008 ersion 2003	
Ultimate Capacity kips	Maximum Compression Stress ksi	Maximum Tension Stress ksi	Blow Count blows/in	Stroke feet	Energy kips-ft	
1050.0 1060.0 1070.0 1080.0 1090.0 1100.0 1106.0 1110.0 1120.0	39.27 39.42 39.51 39.62 39.77 39.89 39.92 39.95 40.09 40.20	4.83 4.85 4.87 4.89 4.89 4.90 4.91 4.91 4.91 4.90	12.7 13.0 13.5 13.9 14.3 14.7 15.0 15.3 15.7	8.85 8.86 8.87 8.88 8.89 8.89 8.90 8.91	44.67 44.75 44.67 44.73 44.80 44.86 44.85 44.87 44.93)

Limit to blow count to 15
blows per inch

DELMAG D 36-32

Hammer Cushion

Efficiency

Skin Quake Toe Quake

Skin Damping

Pile Penetration

Pile Top Area

Toe Damping

Pile Length

Helmet

Strong	ath	l imit	State:
Suem	นแเ		State.

$$R_{dr_24x0.625_factored} := \, 1106 \cdot kip \cdot \varphi_{dyn.reduced}$$

 $R_{dr_{24x0.625_{factored}}} = 575 \cdot kip$

 $R_{dr_24x0.625_servext} := 1106 \cdot kip$

Service and Extreme Limit States:

 $\phi := 1.0$

Skin Friction Distribution

0.800

3.20 kips

109975 kips/in

0.200 sec/ft

0.150 sec/ft

0.100 in

0.040 in

115.00 ft

95.00 ft

45.90 in2

File Iviodei

Assume Contractor will use a Delmag D 36-32 hammer on the highest fuel setting to install: 26-in Dia. pile with 5/8-in wall thickness

Pile Size = 26"D x 5/8"W

State of Maine Dept. Of Transportation Auburn CNR Crossing Bridge Pipe Pile GRLWEAP (TM)				3-Sep-2008 ersion 2003		
Ultimate Capacity kips	Maximum Compression Stress ksi	Maximum Tension Stress ksi	Blow Count blows/in	Stroke feet	Energy kips-ft	
1080.0 1090.0 1100.0 1110.0 1120.0 1130.0 1140.0 1150.0 1160.0	38.14 38.21 38.39 38.48 38.59 38.69 38.81 38.92 39.03 39.17	4.27 4.27 4.26 4.25 4.23 4.22 4.20 4.18 4.18 4.17	12.3 12.7 13.0 13.4 13.8 14.2 14.6 15.0	8.87 8.88 8.89 8.90 8.91 8.91 8.92 8.93	43.78 43.75 43.86 43.86 43.85 43.84 43.96 43.95 44.08)

Limit to blow count to 15 blows per inch	Efficiency	0.800
Strength Limit State:	Helmet Hammer Cushion	3.20 kips 109975 kips/in
$R_{dr_26x0.625_factored} := 1150 \cdot kip \cdot \varphi_{dyn.reduced}$	Skin Quake Toe Quake Skin Damping Toe Damping	0.100 in 0.040 in 0.200 sec/ft 0.150 sec/ft
$R_{dr_26x0.625_factored} = 598 \cdot kip$ Service and Extreme Limit States: $\varphi := 1.0$	Pile Length Pile Penetration Pile Top Area	115.00 ft 95.00 ft 49.80 in2
$R_{dr_26x0.625_servext} := 1150 \cdot kip$	Pile Model	Skin Friction Distribution
	Res. Shaft = 10 % (Proportional)	

Checked by: <u>LK 10-1-2008</u>

Assume Contractor will use a Delmag D 36-32 hammer on the highest fuel setting to install: 28-in Dia. pile with 5/8-in wall thickness

Pile Size = 28"D x 5/8"W

State of Maine Dept. Of Transportation Auburn CNR Crossing Bridge Pipe Pile			GR	18 LWEAP (TM) Ve	3-Sep-2008 ersion 2003
Ultimate Capacity	Maximum Compression Stress	Maximum Tension Stress	Blow Count	Stroke	Energy
kips	ksi	ksi	blows/in	feet	kips-ft
1140.0 1150.0 1160.0 1170.0 1180.0	37.33 37.48 37.60 37.72 37.84	3.68 3.68 3.67 3.67 3.66	13.1 13.4 13.8 14.2 14.5	8.92 8.93 8.95 8.95 8.96	42.95 42.98 43.03 43.08 43.14
(1191.0	37.95	3.65	15.0	8.97	43.16
1200.0 1210.0 1220.0	38.04 38.17 38.29	3.66 3.67 3.70	15.4 15.7 16.1	8.98 8.99 9.00	43.12 43.30 43.36
1230.0	38.38	3.71	16.7	9.01	43.30

Limit to blow count to 15
blows per inch

Strength Limit State:

 $R_{dr_28x0.625_factored} := \, 1191 \cdot kip \cdot \varphi_{dyn.reduced}$

 $R_{dr_28x0.625_{factored}} = 619 \cdot kip$

Service and Extreme Limit States: $\phi := 1.0$

 $R_{dr_28x0.625_servext} := 1190 \cdot kip$

DELMAG D 36-32

Efficiency	0.800
Helmet	3.20 kips
Hammer Cushion	109975 kips/in
Skin Quake	0.100 in
Toe Quake	0.040 in
Skin Damping	0.200 sec/ft
Toe Damping	0.150 sec/ft
Pile Length	115.00 ft
Pile Penetration	95.00 ft
Pile Top Area	53.80 in2
Pile Model	Skin Friction Distribution

Res. Shaft = 10 % (Proportional)

Checked by: <u>LK 10-1-2008</u>

Assume Contractor will use a Delmag D 36-32 hammer on the highest fuel setting to install: 30-in Dia. pile with 5/8-in wall thickness

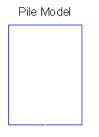
Pile Size = 30"D x 5/8"W

	ne Dept. Of Tran R Crossing Bridge		GR	18 LWEAP (TM) Ve	3-Sep-2008 ersion 2003	
Ultimate Capacity kips	Maximum Compression Stress ksi	Maximum Tension Stress ksi	Blow Count blows/in	Stroke feet	Energy kips-ft	
1160.0 1170.0 1180.0 1190.0 1200.0 1210.0 1220.0 1230.0 1240.0	36.27 36.35 36.46 36.60 36.69 37.00 36.97 37.07 37.38	3.27 3.27 3.28 3.29 3.31 3.32 3.34 3.37 3.36 3.38	12.6 13.0 13.3 13.7 14.0 14.1 14.6 15.0 15.1	8.95 8.96 8.97 8.98 9.08 9.01 9.01 9.11 9.03	42.25 42.25 42.26 42.27 42.82 42.49 42.51 42.94 42.51)

Limit to blow count to 15 blows per inch

Strength Limit State:

 $R_{dr_30x0.625_factored} := \ 1230 \cdot kip \cdot \varphi_{dyn.reduced}$


 $R_{dr_{30x0.625_{factored}}} = 640 \cdot kip$

Service and Extreme Limit States: $\phi := 1.0$

 $R_{dr_{30x0.625_servext}} := 1230 \cdot kip$

DELMAG D 36-32

Efficiency	0.800	
Helmet Hammer Cushion	3.20 kips 109975 kips/i	n
Skin Quake Toe Quake Skin Damping Toe Damping	0.100 in 0.040 in 0.200 sec/ft 0.150 sec/ft	
Pile Length Pile Penetration Pile Top Area	115.00 ft 95.00 ft 57.70 in2	
	Skin Friction	

Res. Shaft = 10 % (Proportional)

Abutment and Wingwall Passive and Active Earth Pressure:

For cases where interface friction is considered (for gravity structures) use Coulomb Theory

Coulomb Theory - Passive Earth Pressure from Maine DOT Bridge Design Guide Section 3.6.6 pg 3-8

Angle of back face of wall to the horizontal: $\alpha := 90 \cdot deg$

Angle of internal soil friction: $\phi := 32 \cdot \deg$

Friction angle between fill and wall:

From LRFD Table 3.11.5.3-1 range from 17 to 22 $\delta := 20 \cdot deg$

Angle of backfill to the horizontal $\beta := 0 \cdot \deg$

$$\begin{split} K_p &\coloneqq \frac{\sin(\alpha - \phi)^2}{\sin(\alpha)^2 \cdot \sin(\alpha + \delta) \cdot \left(1 - \sqrt{\frac{\sin(\phi + \delta) \cdot \sin(\phi + \beta)}{\sin(\alpha + \delta) \cdot \sin(\alpha + \beta)}}\right)^2} \\ K_p &= 6.89 \end{split}$$

Rankine Theory - Passive Earth Pressure from Bowles 5th Edition Section 11-5 pg 602

Angle of backfill to the horizontal

$$\beta := 0 \cdot \deg$$

Angle of internal soil friction:

$$\phi := 32 \cdot \deg$$

$$K_{p_rank} := \frac{\cos(\beta) + \sqrt{\cos(\beta)^2 - \cos(\varphi)^2}}{\cos(\beta) - \sqrt{\cos(\beta)^2 - \cos(\varphi)^2}}$$

$$K_{p_rank} = 3.25$$

Bowles does not recommend the use of the Rankine Method for K_p when $\beta>0$.

Rankine Theory - Active Earth Pressure from Maine DOT Bridge Design Guide Section 3.6.5.2 pg 3-7

For a horizontal backfill surface:

$$\begin{split} \varphi &:= 32 \cdot \text{deg} \\ K_a &:= \tan \biggl(45 \cdot \text{deg} - \frac{\varphi}{2} \biggr)^2 \end{split} \qquad K_a = 0.307 \end{split}$$

Checked by: LK 10-1-2008

Settlement Analyses:

Reference: FHWA Soils and Foundation Workshop Manual (FHWA HI-88-009) Bazaraa 1967 pg 168

The roadway will be widened by 8 feet behind both abutments with a maximum fill height of 4.3 feet. Look at Abutment No.1 at Station 4+52 with 4.3 ft of fill. Simplified soil profile based on BB-ACNR-101:

Proposed Fill - Look at 4.3 feet of fill

Finished Grade Elevation 237.0 ft

N = 25 bpf (medium dense) γ = 125 pcf

Elevation 232.7 ft

Existing Fill/Native sand - fine to coarse sand

 $H_1 := 17.3 \cdot ft \qquad \gamma_{sand} := 125 \cdot pcf \qquad N_{sand1} := 20$

Elevation 215.4 ft

Silt - Upper crust

 $H_2 := 16.7 \cdot ft$

 $\gamma_{\text{ucsilt}} := 115 \cdot \text{pcf}$ $N_{\text{ucsilt}} := 10$

Groundwater Elevation 215.4 ft

 $\gamma_w := 62.4 pcf$

Elevation 198.7 ft

Silt - Su=550 psf (medium stiff)

 $H_3 := 9.0 \cdot ft$

 $\gamma_{\rm silt} := 115 \cdot \rm pcf$

 $C_{c \text{ silt1}} := 0.1148$ $C_{r \text{ silt1}} := 0.0103$ $e_{os1} := 0.81$

Elevation 189.7 ft

Clayey Silt - Su = 660 (medium stiff)

 $H_4 \coloneqq 26.5 \cdot \text{ft} \quad \gamma_{clayeysilt} \coloneqq 115 \cdot \text{pcf} \quad C_{c_clayeysilt1} \coloneqq 0.3449 \quad C_{r_clayeysilt1} \coloneqq 0.0299 \ e_{ocs1} \coloneqq 1.07$

Elevation 163.2 ft

Silt - Su = 620 (medium stiff)

 $H_5 := 7 \cdot ft$

 $\gamma_{\text{silt}} := 115 \cdot \text{pcf}$ $C_{\text{c silt2}} := 0.1536$ $e_{\text{os2}} := 0.85$

Elevation 156.2 ft

Clayey Silt - Su =1300 (stiff)

 $H_6 := 11.5 \cdot ft$

 $\gamma_{\rm clavevsilt} := 115 \cdot \rm pcf$

 $C_{c \text{ claveysilt2}} := 0.1841 \quad e_{ocs2} := 0.96$

Elevation 144.7 ft

Sand - fine to coarse sand, very dense

 $H_7 := 7.0 \cdot ft$

 $\gamma_{\text{sand}} := 125 \cdot \text{pcf}$ $N_{\text{sand2}} := 50$

Top of Bedrock Elevation 137.7 ft

Bedrock

By: Kate Maguire July 2008 Checked by: <u>LK 10-1-2008</u>

LOADING ON AN INFINITE S	STRIP - VERTICAL EMBANKMENT LOADING	7	
Project Name: CNR Crossing Project Manager : JWentwort			
	e a = 8.00(ft)		
	n b = 31.00(ft) ea = 537.50(psf)		
INCREMENT OF X = 18.0	STRESSES FOR Z-DIRECTION 00(ft)		
Z	Vert. Δz		
	(psf)		
0.00	537.50		
2.00	536.71		
4.00	531.72		
6.00	520.33		
8.00	502.79		
10.00	480.76	at 8.7 ft	$\Delta \sigma_{\rm zsand1} := 495.08 \cdot \rm psf$
12.00	456.24		
14.00	430.92		
16.00	405.97		
18.00	382.12		
20.00 22.00	359.74 338.98		
24.00	319.87		
26.00	302.35	at 25.7 ft	$\Delta \sigma_{\text{zucsilt}} := 313.74 \cdot \text{psf}$
28.00	286.30		
30.00	271.61		
32.00	258.15		
34.00	245.82		
36.00	234.48		
38.00	224.06	at 38.2 ft	A 222.10 C
40.00	214.44	at 30.2 It	$\Delta \sigma_{\text{zsilt1}} := 223.10 \cdot \text{psf}$
42.00	205.56		
44.00 46.00	197.33 189.70		
48.00	182.61		
50.00	176.00		
52.00	169.82		
54.00	164.05		
56.00	158.64		
58.00	153.57	at 56.3 ft	$\Delta \sigma_{\text{zclayeysilt1}} := 158.08 \cdot \text{psf}$
60.00	148.79		
62.00	144.30		
64.00	140.06		
66.00 68.00	136.05 132.26		
70.00	128.67		
72.00	125.27	-4 70 0 4	
74.00	122.04	at 73.0 ft	$\Delta \sigma_{zsilt2} := 123.66 \cdot psf$
76.00	118.96		
78.00	116.04		
80.00	113.25		
82.00	110.59	at 82.3 ft	$\Delta \sigma_{\text{zclaveysilt2}} := 110.21 \cdot \text{psf}$
84.00	108.05		zciayeysiiiz · 210.21 psi
86.00	105.62		
88.00	103.30	at 0.1 5 ft	A - 100.54 C
90.00 92.00	101.07 98.94	at 91.5 ft	$\Delta \sigma_{\rm zsand2} := 100.54 \cdot \rm psf$
94.00	96.90		
37.00	55.50		

Checked by: LK 10-1-2008

Existing Fill/Sand

Determine corrected SPT value N':

N'/N - Ratio of Corrected blow count to SPT Value

$$\sigma_{1o} \coloneqq \frac{H_1}{2} \cdot \left(\gamma_{sand}\right) \qquad \qquad \sigma_{1o} = 1081.25 \cdot psf \qquad \text{at mid-point}$$

SPT N-value (bpf)

$$N_{sand1} := 20$$

$$AT P_0 = 1080 pst$$

AT P
$$_{o}$$
 = 1080 psf N'/N $_{sand}$ = r1 = 1.25 r_{1} := 1.25

Corrected Blow Count

$$N' := r1 \cdot N_{sand1} \qquad \qquad N' = 25$$

$$N' = 25$$

From Figure 13 using the "clean well graded fine to coarse sand" curve

Bearing Capacity Index:

$$C1 := 80$$

Use STRESS to determine the change in stress at the mid point of the layer under consideration (above)

$$\Delta \sigma_{\rm zsand1} = 495.08 \cdot \rm psf$$

Upper Crust Silt

Determine corrected SPT value N':

N'/N - Ratio of Corrected blow count to SPT Value

$$\sigma_{2o} \coloneqq \left\lceil \frac{H_2}{2} \cdot \left(\gamma_{ucsilt} - \gamma_w \right) \right\rceil + \left. H_1 \cdot \left(\gamma_{sand} \right) \right. \\ \left. \sigma_{2o} = 2601.71 \cdot psf \right. \quad \text{at mid-point}$$

$$\sigma_{2o} = 2601.71 \cdot psf$$
 at mid-point

SPT N-value (bpf)

$$N_{ucsilt} := 10$$

$$AT P_0 = 2600 psf$$

$$N'/N_{fill} = r1 = 0.87$$
 $r1 := 0.87$

$$1 := 0.87$$

Corrected Blow Count

$$N' := r1 \cdot N_{ucsilt} \qquad \qquad N' = 9$$

$$N' = 9$$

From Figure 13 using the "Inorganic silt" curve

Bearing Capacity Index:

$$C2 := 27$$

Use STRESS to determine the change in stress at the mid point of the layer under consideration (above)

$$\Delta \sigma_{\text{zucsilt}} = 313.74 \cdot \text{psf}$$

Silt

Average values from lab data: $e_{os1} = 0.81$ $C_{r \ silt1} := 0.0103$

$$\sigma_{3o} := H_1 \cdot (\gamma_{sand}) + H_2 \cdot (\gamma_{ucsilt} - \gamma_w) + \frac{H_3}{2} (\gamma_{silt} - \gamma_w)$$

$$\sigma_{3o} = 3277.62 \cdot psf \quad \text{at mid-point}$$

Use STRESS to determine the change in stress at the mid point of the layer under consideration (above)

$$\Delta \sigma_{zsilt1} = 223.1 \cdot psf$$

Clayey Silt

Average values from lab data:

$$\begin{split} e_{ocs1} &= 1.07 \qquad C_{r_clayeysilt1} \coloneqq 0.0299 \\ \sigma_{4o} &\coloneqq H_1 \cdot \left(\gamma_{sand}\right) + H_2 \cdot \left(\gamma_{ucsilt} - \gamma_w\right) + H_3 \cdot \left(\gamma_{silt} - \gamma_w\right) + \frac{H_4}{2} \cdot \left(\gamma_{clayeysilt} - \gamma_w\right) \qquad \sigma_{4o} = 4211.27 \cdot psf \\ &\text{at mid-point} \end{split}$$

Use STRESS to determine the change in stress at the mid point of the layer under consideration (above)

$$\Delta \sigma_{\text{zclayeysilt1}} = 158.08 \cdot \text{psf}$$

Silt

Average values from lab data: $e_{os2} = 0.85$ $C_{c\ silt2} = 0.1536$

$$\sigma_{5o} \coloneqq H_1 \cdot \left(\gamma_{sand}\right) + H_2 \cdot \left(\gamma_{ucsilt} - \gamma_w\right) + H_3 \cdot \left(\gamma_{silt} - \gamma_w\right) + H_4 \left(\gamma_{clayeysilt} - \gamma_w\right) + \frac{H_5}{2} \left(\gamma_{silt} - \gamma_w\right)$$

$$\sigma_{50} = 5092.32 \cdot psf$$
 at mid-point

Use STRESS to determine the change in stress at the mid point of the layer under consideration (above)

$$\Delta \sigma_{zsilt2} = 123.66 \cdot psf$$

Clayey Silt

Average values from lab data:

$$e_{ocs2} = 0.96$$
 $C_{c_clayeysilt2} = 0.1841$

$$\begin{split} \sigma_{6o} \coloneqq H_1 \cdot \left(\gamma_{sand}\right) + \left(H_2 + H_3 + H_4 + H_5\right) \cdot \left(115 \cdot pcf - \gamma_w\right) + \frac{H_6}{2} \cdot \left(\gamma_{clayeysilt} - \gamma_w\right) \\ \sigma_{6o} &= 5578.87 \cdot psf \quad \text{at mid-point} \end{split}$$

Use STRESS to determine the change in stress at the mid point of the layer under consideration (above)

$$\Delta \sigma_{zclayeysilt2} = 110.21 \cdot psf$$

Sand

Determine corrected SPT value N':

N'/N - Ratio of Corrected blow count to SPT Value

$$\sigma_{7o} \coloneqq H_1 \cdot \left(\gamma_{sand}\right) + \left(H_2 + H_3 + H_4 + H_5 + H_6\right) \cdot \left(115 \cdot pcf - \gamma_w\right) + \frac{H_7}{2} \cdot \left(\gamma_{sand} - \gamma_w\right)$$

$$\sigma_{7o} = 6100.42 \cdot psf \quad \text{at mid-point}$$

SPT N-value (bpf) $N_{sand2} := 50$

AT P_0 = 6100 psf N'/N_{sand} = r1 = 0.65 $r_1 := 0.65$

Corrected Blow Count $N' := r1 \cdot N_{sand2}$ N' = 33

From Figure 13 using the "clean well graded fine to coarse sand" curve

Bearing Capacity Index: C3 := 95

Use STRESS to determine the change in stress at the mid point of the layer under consideration (above)

$$\Delta \sigma_{zsand2} = 100.54 \cdot psf$$

Calculate Settlement:

Fill/Sand: $\Delta H_1 := H_1 \cdot \frac{1}{C1} \cdot log \left(\frac{\sigma_{1o} + \Delta \sigma_{zsand1}}{\sigma_{1o}} \right) \qquad \Delta H_1 = 0.4249 \cdot in$

 $\Delta H_2 \coloneqq H_2 \cdot \frac{1}{C2} \cdot log \left(\frac{\sigma_{2o} + \Delta \sigma_{zucsilt}}{\sigma_{2o}} \right) \qquad \Delta H_2 = 0.367 \cdot in$

Silt: $\Delta H_3 \coloneqq H_3 \cdot \left(\frac{C_{r_silt1}}{1 + e_{os1}}\right) \cdot log \left(\frac{\sigma_{3o} + \Delta \sigma_{zsilt1}}{\sigma_{3o}}\right) \qquad \Delta H_3 = 0.0176 \cdot in$

 $\text{Clayey Silt:} \qquad \Delta H_4 \coloneqq H_4 \cdot \left(\frac{C_{r_clayeysilt1}}{1 + e_{ocs1}} \right) \cdot log \left(\frac{\sigma_{4o} + \Delta \sigma_{zclayeysilt1}}{\sigma_{4o}} \right) \qquad \Delta H_4 = 0.0735 \cdot in$

Silt: $\Delta H_5 := H_5 \cdot \left(\frac{C_{c_silt2}}{1 + e_{os2}}\right) \cdot log\left(\frac{\sigma_{5o} + \Delta \sigma_{zsilt2}}{\sigma_{5o}}\right) \qquad \Delta H_5 = 0.0727 \cdot in$

 $\text{Clayey Silt:} \qquad \qquad \Delta H_6 \coloneqq H_6 \cdot \left(\frac{C_{c_clayeysilt2}}{1 + e_{ocs2}} \right) \cdot log \left(\frac{\sigma_{6o} + \Delta \sigma_{zclayeysilt2}}{\sigma_{6o}} \right) \qquad \Delta H_6 = 0.1101 \cdot in$

Sand: $\Delta H_7 \coloneqq H_7 \cdot \frac{1}{C3} \cdot log \left(\frac{\sigma_{7o} + \Delta \sigma_{zsand2}}{\sigma_{7o}} \right) \qquad \Delta H_7 = 0.0063 \cdot in$

Total Settlement = $\Delta H_1 + \Delta H_2 + \Delta H_3 + \Delta H_4 + \Delta H_5 + \Delta H_6 + \Delta H_7 = 1.072 \cdot in$

Consolidation Settlement = $\Delta H_3 + \Delta H_4 + \Delta H_5 + \Delta H_6 = 0.2739 \cdot in$

By: Kate Maguire July 2008 Checked by: <u>LK 10-1-2008</u>

Check Clay settlement using Das in an Excel spreadsheet:

	Α	В	С	D	Е	F	G	Н	1	J	K	L	M	N
1	Abutment No.		ing BB-AC			Ė	0	11	'	J	IX		IVI	111
2	Auburn (1560)				nents for v	∟ vide	ened roadwa	av @ Statio	n 4+54					
	4.3 ft of new fi									ble	at 17 ft bgs.			
4					<u> </u>			,						
	Unit Weight													
5	of clay	115	pcf				B1	23	ft					
	Unit Weight													
6	of sand	125	pcf											
_	Unit Weight							_						
7	of water	62.4	pct			_	B2		ft					
8							Н	4.3						
9	Donth	Но	Po		Pmax	_	a1	a2	Dstress		settlement			
11	Depth (ft)	(ft)	(psf)	ocr	(psf)		(rad)	(rad)	(psf)		(ft)			
12	17	(11)	2662.5	2.0	5325			-0.934288	,		(11)	Silt -UC		
13	18	1	2715.1	2.0	5430.2		-0.13798	-0.90675	493.2302		0.000793	Cc	0.2	
14	19	1	2767.7	2.0	5535.4		-0.140593		487.6619		0.000771	Cr	0.022	
15	20	1	2820.3	2.0	5640.6			-0.855053			0.00075	е	1.01	
16	21	1	2872.9	2.0	5745.8			-0.830821			0.000729			
17	22	1	2925.5	2.0	5851		-0.145988	-0.807617	469.9273		0.000708			
18	23	1	2978.1	2.0	5956.2			-0.785398	463.77		0.000688			
19	24	1	3030.7	2.0	6061.4			-0.764125			0.000668			
20	25	1	3083.3	2.0	6166.6			-0.743756			0.000649			
21	26	1	3135.9	2.0	6271.8			-0.72425			0.000631			
22	27	1	3188.5	2.0	6377			-0.705568			0.000613			
23	28	1	3241.1	2.0	6482.2			-0.687671			0.000595			
24 25	29 30	1	3293.7 3346.3	2.0 2.0	6587.4 6692.6			-0.670522 -0.654083			0.000578			
26	31	1	3398.9	2.0	6797.8			-0.63832	413.4422		0.000562 0.000546			
27	32	1	3451.5	2.0	6903			-0.623199			0.000540			
28	33	1	3504.1	2.0	7008.2			-0.608689			0.000515			
29	34	1	3556.7	2.0	7113.4			-0.594759			0.000501			
30	35	1	3609.3	1.8	6496.74		-0.143486		389.1951		0.001555	Silt	Сс	0.1148
31	36	1	3661.9	1.8	6591.42			-0.568525	383.336		0.001512		Cr	0.0633
32	37	1	3714.5	1.8	6686.1		-0.141225	-0.556166	377.5688		0.00147		е	0.81
33	38	1	3767.1	1.8	6780.78		-0.140014	-0.54428	371.8969		0.00143			
34	39	1	3819.7	1.8	6875.46		-0.138762	-0.532844	366.3234		0.001391			
35	40	1	3872.3	1.8	6970.14			-0.521834			0.001353			
36	41	1	3924.9	1.8	7064.82			-0.511231			0.001317			
37	42	1	3977.5	1.8	7159.5			-0.501013			0.001282			
38	43	1	4030.1	1.8	7254.18			-0.491164			0.001248	01 011		0.400=
39 40	44	1 1	4082.7	1.5	6124.05 6202.95			-0.481664 -0.472497	339.985		0.003594	ClayeySilt	Cc	0.4097 0.2059
41	45 46	1	4135.3 4187.9	1.5 1.5	6281.85			-0.472497	335.027 330.1718		0.003501		Cr e	0.2039
42	46	1	4240.5	1.5	6360.75			-0.455101			0.00341		G .	0.99
43	48	1	4293.1	1.5	6439.65			-0.446842			0.003322			
44	49	1	4345.7	1.5	6518.55			-0.438859			0.003156			
45	50	1	4398.3	1.5	6597.45			-0.431139			0.003077			
46	51	1	4450.9		6676.35			-0.423669			0.003001			
47	52	1	4503.5		6755.25			-0.416439			0.002927			
48	53	1	4556.1	1.5	6834.15			-0.409437			0.002856			
49	54	1	4608.7	1.5				-0.402655			0.002787			
50	55	1	4661.3	1.5				-0.396081			0.00272			
51	56	1	4713.9		7070.85			-0.389709			0.002656			
52	57	1	4766.5	1.5	7149.75			-0.383528			0.002593		0-	0.00
53	58	1	4819.1	1.5	7228.65			-0.37753			0.000304		Cc	0.28
54	59	1	4871.7	1.5	7307.55			-0.371709	275.793		0.000297		Cr	0.0268
55 56	60	1 1	4924.3 4976.9	1.5	7386.45 7465.35			-0.366057 -0.360566			0.00029 0.000283		е	1.16
56 57	61 62	1	5029.5	1.5 1.5				-0.355231			0.000283			
58	63	1	5029.5	1.5	7623.15			-0.355231			0.000277			
59	64	1	5134.7		7702.05			-0.330043			0.000271			
60	65	1	5187.3	1.5	7780.95			-0.340097			0.000259			
61	66	1	5239.9		7859.85			-0.335324			0.000253			
62	67	1	5292.5		7938.75			-0.330679			0.000248			
63	68	1	5345.1		8017.65			-0.326156			0.000243			
64	69	1		1.5				-0.321751			0.000238			

	Α	В	С	D	Е	F	G	Н		J	K	L	М	N
65	70	1	5450.3	1.4	7630.42		-0.099439	-0.317459	240.4816		0.000833	Silt	Сс	0.1536
66	71	1	5502.9	1.4	7704.06		-0.098395	-0.313276	237.6658		0.000816		Cr	0.0822
67	72	1	5555.5	1.4	7777.7		-0.097368	-0.309199	234.9086		0.000799		e	0.85
68	73	1	5608.1	1.4	7851.34		-0.096357	-0.305223	232.2082		0.000783			
69	74	1	5660.7	1.4	7924.98		-0.095363	-0.301345	229.5633		0.000767			
70	75	1	5713.3	1.4	7998.62		-0.094386	-0.297562	226.9724		0.000752			
71	76	1	5765.9	1.4	8072.26		-0.093424	-0.293869	224.4339		0.000737			
72	77	1	5818.5	1.3	7564.05		-0.092479	-0.290265	221.9467		0.000265	Clayey Silt	Cc	0.36
73	78	1	5871.1	1.3	7632.43		-0.091549	-0.286745	219.5092		0.00026		Cr	0.032
74	79	1	5923.7	1.3	7700.81		-0.090634	-0.283308	217.1202		0.000255		e	0.96
75	80	1	5976.3	1.3	7769.19		-0.089734	-0.27995	214.7784		0.00025			
76	81	1	6028.9	1.3	7837.57		-0.08885	-0.276668	212.4826		0.000246			
77	82	1	6081.5	1.3	7905.95		-0.08798	-0.273461	210.2315		0.000241			
78	83	1	6134.1	1.3	7974.33		-0.087124	-0.270325	208.0241		0.000236			
79	84	1	6186.7	1.3	8042.71		-0.086283	-0.267259	205.8591		0.000232			
80	85	1	6239.3	1.3	8111.09		-0.085455	-0.26426	203.7356		0.000228		total	
81	86	1	6291.9	1.3	8179.47		-0.084641	-0.261326	201.6523		0.000224		settlement	
82	87	1	6344.5	1.3	8247.85		-0.083841	-0.258455	199.6083		0.00022		(in.)	
83	88	1	6397.1	1.3	8316.23		-0.083053	-0.255645	197.6025		0.000216	0.07781166	0.9	
84														
85	Reference: Pr	inciples	of Founda	ation En	gineering l	Fou	rth Edition E	Braja M. Da	S					
86		Section	4.6 Stress	Increas	se Under a	an I	Embankmer	nt pg 233						

Both methods to calculate consolidation settlement result in approximately 1 inch of settlement - OK

Bedrock

Checked by: LK 10-1-2008

The roadway will be widened by 8 feet behind both abutments with a maximum fill height of 4.3 feet. Look at Station 6+00 as the critical section on the north side.

Evaluate the amount of settlement due to this fill:

Reference: FHWA Soils and Foundation Workshop Manual (FHWA HI-88-009)

Elevation 185.0 ft

Bazaraa 1967 pg 168

Simplified soil profile based on BB-ACNR-104: Finished Grade Elevation 240.0 ft Proposed Fill Assume: 4.3 feet of fill N = 25 bpf (medium dense) γ = 125 pcf Elevation 235.7 ft Existing Fill: fine to coarse sand $H_1 := 12.6 \cdot ft$ 12.6 feet thick $\gamma_{\text{fill}} := 125 \cdot \text{pcf}$ N = 20 bpf (medium dense) γ = 125 pcf $N_{\text{fill}} := 20$ Elevation 223.1 ft Groundwater Elevation 223.1 ft $H_2 := 15.4 \cdot ft$ Silt: Upper crust 15.4 feet thick $\gamma_{\text{ucsilt}} := 115 \cdot \text{pcf}$ $\gamma_w := 62.4 \text{pcf}$ N = 16 bpf (medium dense) $N_{ucsilt} := 16$ γ = 115 pcf Elevation 207.7 ft $H_3 := \, 10.0 \cdot \, ft$ Clayey Silt 10.0 feet thick $\gamma_{clayeysilt} := 115 \cdot pcf$ $e_{ocs} := 1.12$ Su=600 psf (medium stiff) γ = 115 pcf $C_{c_clayeysilt} := 0.382$ $C_{r_clayeysilt} := 0.0448$ Elevation 197.7 ft $H_4 := 10.0 \cdot ft$ Silty Clay $\gamma_{\text{siltvclav}} := 115 \cdot \text{pcf}$ $e_{osc} := 0.99$ 10.0 feet thick Su = 1075 (medium stiff) $C_{c_siltyclay} := 0.274$ $C_{r_siltyclay} := 0.0419$ $\gamma = 115 \text{ pcf}$ Elevation 187.7 ft $H_5 := 2.7 \cdot ft$ Silt $\gamma_{silt} := 115 \cdot pcf$ 2.7 feet thick Su = 500 (medium stiff) $e_{os} := 1.09$ $C_{c \text{ silt}} := 0.2743$ γ = 115 pcf Top of Bedrock

LOADING ON AN INFINIT	E STRIP - VERTICAL EMBANI	KMENT LOADING	
Project Name: CNR Crossi Project Manager : JWentw	,	ect Number: 15600.00 nputed by: km	
	ope a = 8.00(ft) dth b = 31.00(ft)		
p load/unit a	area = 537.50(psf)		
	RESSES FOR Z-DIRECTION		
X = 1			
Z	Vert. Δz		
(ft)	(psf)		
5.00	526.86		
6.00	520.33		1000
7.00	512.25		at 6.3 ft $\Delta \sigma_{zfill} := 517.91 \cdot psf$
8.00	502.79		
9.00	492.21		
10.00	480.76		
11.00	468.69		
12.00	456.24		
13.00	443.59		
14.00	430.92		
15.00	418.34		
16.00	405.97		
17.00	393.88		
18.00	382.12		
19.00	370.73		
20.00	359.74		at 20.3 ft $\Delta \sigma_{\text{zucsilt}} := 358.15 \cdot \text{psf}$
21.00	349.15		Zucsiit · Eeerie per
22.00	338.98		
23.00	329.23		
24.00	319.87		
25.00	310.92		
26.00	302.35		
27.00	294.14		
28.00	286.30		
29.00	278.79		
30.00	271.61		
31.00	264.73		
32.00	258.15		10000
33.00	251.85		at 33.0 ft $\Delta \sigma_{\text{zclayeysilt}} := 251.85 \cdot \text{psf}$
34.00	245.82		
35.00 36.00	240.03 234.48		
37.00	229.16		
38.00	224.06		
39.00	219.15		
40.00	214.44		
41.00	209.91		
42.00	205.56		
43.00	201.37		at 43.0 ft $\Delta \sigma_{zsiltyclay} := 201.37 \cdot psf$
44.00	197.33		zsiltyclay - 201.57 psi
45.00	193.45		
46.00	189.70		
47.00	186.09		
48.00	182.61		
49.00	179.24		at 49.35 ft $\Delta \sigma_{zsilt} := 178.67 \cdot psf$
50.00	176.00		Zsilt .— 170.07 psi
51.00	172.86		
52.00	169.82		
53.00	166.89		
54.00	164.05		
			•

Checked by: <u>LK 10-1-2008</u>

Existing Fill

Determine corrected SPT value N':

N'/N - Ratio of Corrected blow count to SPT Value

$$\sigma_{1o} := \frac{H_1}{2} \cdot \left(\gamma_{fill} \right)$$
 $\sigma_{1o} = 787.5 \cdot psf$ at mid-point

SPT N-value (bpf) $N_{fill} := 20$

AT $P_0 = 780 \text{ psf}$ N'/N_{fill} = r1 = 1.1 r1 := 1.1

From Figure 13 using the "clean well graded fine to coarse sand" curve

Bearing Capacity Index: C1 := 73

Use STRESS to determine the change in stress at the mid point of the layer under consideration (above)

$$\Delta \sigma_{zfill} = 517.91 \cdot psf$$

Upper Crust Silt

Determine corrected SPT value N':

N'/N - Ratio of Corrected blow count to SPT Value

$$\sigma_{2o} \coloneqq \left\lceil \frac{H_2}{2} \cdot \left(\gamma_{ucsilt} - \gamma_w \right) \right\rceil + H_1 \cdot \left(\gamma_{fill} \right) \\ \sigma_{2o} = 1980.02 \cdot psf \qquad \text{at mid-point}$$

SPT N-value (bpf) $N_{ucsilt} := 16$

AT P_0 = 1980 psf N'/ N_{fill} = r1 = 0.95 $r_1 := 0.95$

Corrected Blow Count $N' := r1 \cdot N_{ucsilt}$ N' = 15

From Figure 13 using the "Inorganic silt" curve

Bearing Capacity Index: C2 := 35

Use STRESS to determine the change in stress at the mid point of the layer under consideration (above)

$$\Delta \sigma_{\text{zucsilt}} = 358.15 \cdot \text{psf}$$

Clayey Silt

Average values from lab data:

$$\begin{split} e_{ocs} &= 1.12 \qquad C_{r_clayeysilt} = 0.0448 \\ \sigma_{3o} &:= H_1 \cdot \left(\gamma_{fill}\right) + H_2 \cdot \left(\gamma_{ucsilt} - \gamma_w\right) + \frac{H_3}{2} \cdot \left(\gamma_{clayeysilt} - \gamma_w\right) \\ &\qquad \sigma_{3o} = 2648.04 \cdot psf \qquad \text{at mid-point} \end{split}$$

Use STRESS to determine the change in stress at the mid point of the layer under consideration (above)

$$\Delta \sigma_{zclaveysilt} = 251.85 \cdot psf$$

Silty Clay

Average values from lab data: $e_{osc} = 0.99$ $C_{r_siltyclay} = 0.0419$

$$\begin{split} \sigma_{4o} \coloneqq H_1 \cdot \left(\gamma_{fill}\right) + H_2 \cdot \left(\gamma_{ucsilt} - \gamma_w\right) + H_3 \cdot \left(\gamma_{clayeysilt} - \gamma_w\right) + \frac{H_4}{2} \left(\gamma_{siltyclay} - \gamma_w\right) \\ \sigma_{4o} = 3174.04 \cdot psf \quad \text{at mid-point} \end{split}$$

Use STRESS to determine the change in stress at the mid point of the layer under consideration (above)

$$\Delta \sigma_{zsiltyclay} = 201.37 \cdot psf$$

Silt

Average values from lab data: $e_{os} = 1.09$ $C_{c \ silt} = 0.2743$

$$\begin{split} \sigma_{5o} \coloneqq H_1 \cdot \left(\gamma_{fill} \right) + H_2 \cdot \left(\gamma_{ucsilt} - \gamma_w \right) + H_3 \cdot \left(\gamma_{clayeysilt} - \gamma_w \right) + H_4 \left(\gamma_{siltyclay} - \gamma_w \right) + \frac{H_5}{2} \left(\gamma_{silt} - \gamma_w \right) \\ \sigma_{5o} = 3508.05 \cdot psf \qquad \text{at mid-po} \end{split}$$

Use STRESS to determine the change in stress at the mid point of the layer under consideration (above)

$$\Delta \sigma_{zsilt} = 178.67 \cdot psf$$

Calculate Settlement:

$$\begin{aligned} \text{Fill:} \qquad \Delta H_1 \coloneqq H_1 \cdot \frac{1}{C1} \cdot log \Bigg(\frac{\sigma_{1o} + \Delta \sigma_{zfill}}{\sigma_{1o}} \Bigg) \qquad \qquad \Delta H_1 = 0.4546 \cdot in \end{aligned}$$

$$\Delta H_2 \coloneqq H_2 \cdot \frac{1}{C2} \cdot log \Biggl(\frac{\sigma_{2o} + \Delta \sigma_{zucsilt}}{\sigma_{2o}} \Biggr) \qquad \qquad \Delta H_2 = 0.3813 \cdot in$$

$$\Delta H_3 \coloneqq H_3 \cdot \left(\frac{C_{r_clayeysilt}}{1 + e_{ocs}}\right) \cdot log \left[\frac{\sigma_{3o} + \left(\Delta \sigma_{zclayeysilt}\right)}{\sigma_{3o}}\right] \\ \Delta H_3 = 0.1001 \cdot in$$

$$\text{Silty Clay:} \qquad \Delta H_4 \coloneqq H_4 \cdot \left(\frac{C_{r_siltyclay}}{1 + e_{osc}} \right) \cdot log \left(\frac{\sigma_{4o} + \Delta \sigma_{zsiltyclay}}{\sigma_{4o}} \right) \qquad \qquad \Delta H_4 = 0.0675 \cdot in$$

Silt:
$$\Delta H_5 \coloneqq H_5 \cdot \left(\frac{C_{c_silt}}{1 + e_{os}}\right) \cdot log \left(\frac{\sigma_{5o} + \Delta \sigma_{zsilt}}{\sigma_{5o}}\right) \qquad \Delta H_5 = 0.0917 \cdot in$$

Total Settlement =
$$\Delta H_1 + \Delta H_2 + \Delta H_3 + \Delta H_4 + \Delta H_5 = 1.0952 \cdot in$$

Consolidation Settlement =
$$\Delta H_3 + \Delta H_4 = 0.1676 \cdot in$$

By: Kate Maguire July 2008 Checked by: <u>LK 10-1-2008</u>

15000.00

Check Clay settlement using Das in an Excel spreadsheet:

	Α	В	С	D	Е	F	G	Н	ı	J	K	L	М	N
1	Auburn (1560	(00.00												
	4.3 ft of new								Groundwat	er a	t 12.6 ft bas).		
3							1							
	Unit weight													
4	of clay	115	ncf				B1	23	ft					
	,		P G.											
	Unit Weight													
5	of sand	125	ncf											
۳	Unit weight	120	Poi											
6	of water	62.4	ncf				B2	8	ft					
7	or water	02.7	ры				H	4.3						
8								7.0						
9	Depth	Но	Po	ocr	Pmax		a1	a2	Dstress		settlement			
10	(ft)	(ft)	(psf)	OCI	(psf)		(rad)	(rad)	(psf)		(ft)			
11	13	(11)	1575	2.0	3150			-1.056345	517.0938		(11)			
12	14	1	1627.6	2.0	3255.2			-1.030343			0.001302	Silt -UC		
13	15	1	1680.2					-0.992894					0.2	
		1		2.0	3360.4						0.001257	Cc	0.022	
14 15	16 17	1	1732.8 1785.4	2.0 2.0	3465.6 3570.8			-0.962994 -0.934288			0.001213	Cr	1.01	
									498.5751		0.001171	е	1.01	
16	18	1	1838	2.0	3676		-0.13798	-0.90675	493.2302		0.00113			
17	19	1	1890.6	2.0	3781.2		-0.140593		487.6619		0.001091			
18	20	1	1943.2	2.0	3886.4			-0.855053			0.001053			
19	21	1	1995.8	2.0	3991.6			-0.830821			0.001017			
20	22	1	2048.4	2.0	4096.8			-0.807617			0.000982			
21	23	1	2101	2.0	4202			-0.785398	463.77		0.000948			
22	24	1	2153.6	2.0	4307.2			-0.764125			0.000916			
23	25	1	2206.2	2.0	4412.4			-0.743756			0.000885			
24	26	1	2258.8	2.0	4517.6		-0.148644		444.9214		0.000855			
25	27	1	2311.4	2.0	4622.8			-0.705568			0.000826			
26	28	1	2364	2.0	4728			-0.687671			0.000798			
27	29	1	2416.6	2.0	4833.2			-0.670522			0.000772			
28	30	1	2469.2	2.0	4938.4			-0.654083			0.000746			
29	31	1	2521.8	2.0	5043.6		-0.147078		413.4422		0.000722			
30	32	1	2574.4	2.0	5148.8			-0.623199			0.000698			
31	33	1		1.4	3677.8			-0.608689				ClayeySilt		0.382
32	34	1	2679.6	1.4	3751.44			-0.594759	395.1413		0.001262		Cr	0.0448
33	35	1	2732.2	1.4	3825.08		-0.143486	-0.58138	389.1951		0.001222		е	1.12
34	36	1		1.4	3898.72			-0.568525	383.336		0.001184			
35	37	1	2837.4	1.4	3972.36		-0.141225	-0.556166	377.5688		0.001147			
36	38	1	2890	1.4	4046		-0.140014	-0.54428	371.8969		0.001111			
37	39	1	2942.6	1.4	4119.64		-0.138762	-0.532844	366.3234		0.001077			
38	40	1	2995.2	1.4	4193.28		-0.137476	-0.521834	360.8502		0.001044			
39	41	1	3047.8	1.4	4266.92		-0.136161	-0.511231	355.4791		0.001012			
40	42	1	3100.4	1.4	4340.56		-0.134825	-0.501013	350.2109		0.000979	Silty Clay	Сс	0.274
41	43	1	3153	1.4	4414.2		-0.133472	-0.491164	345.0461		0.00095		Cr	0.0419
42	44	1	3205.6	1.4	4487.84		-0.132106	-0.481664	339.985		0.000922		е	0.99
43	45	1	3258.2	1.4	4561.48		-0.130733	-0.472497	335.027		0.000895			
44	46	1		1.4	4635.12		-0.129355	-0.463648	330.1718		0.000869			
45	47	1	3363.4		4708.76			-0.455101			0.000845			
46	48	1	3416	1.4	4782.4			-0.446842			0.000821			
47	49	1	3468.6		4509.18			-0.438859			0.000451	Silt	Сс	0.2743
48	50	1	3521.2		4577.56			-0.431139			0.000439		Cr	0.0249
49	51	1	3573.8		4645.94			-0.423669			0.000427		е	1.09
50														
51													total settlement	
52													(in.)	
53												0.03634	0.4	
	Reference: F	rincipl	es of Fou	ndation	Engineeri	ng I	Fourth Edition	n Braja M.	Das					
55							n Embankm							
								, ,						

Time Rate of Settlement:

Look at case of most fill: 4.3 feet of fill; 1.0 inches of settlement

Determine the time for 90% consolidation for primary settlement Reference: FHWA Soils and Foundation Workshop Manual Second Edition page 179

At Station 4+52:

Thickness of the compressable layer =

$$H_{c452} := 70.7 \cdot ft$$

Assume double drainage due to presence of sand layers above and below the clay layer.

$$H_{cv452} := \frac{H_{c452}}{2}$$
 $H_{cv452} = 35.35 \text{ ft}$

Time factor from Table on page 179

TF := 0.848

At 90% primary consolidation

Coefficient of consolidation from lab data:
$$C_v := 1.6 \cdot 10^{-6} \cdot \frac{\text{ft}^2}{\text{sec}}$$
 $C_v = 0.1382 \cdot \frac{\text{ft}^2}{\text{day}}$

$$C_v = 0.1382 \cdot \frac{ft^2}{day}$$

Time rate of settlement to achieve 90% Primary Settlement

$$t_{90} := \frac{\text{TF} \cdot \text{H}_{\text{cv452}}^2}{\text{C}_{\text{v}}}$$

$$t_{90} = 7665.5084 \cdot day$$
 year := 365 · day

$$year := 365 \cdot day$$

$$t_{90} = 21.0014 \cdot \text{year}$$

At Station 6+00:

Thickness of the compressable layer =

$$H_{c600} := 38.1 \cdot ft$$

Assume double drainage due to presence of sand layers above and below the clay layer.

$$H_{cv600} := \frac{H_{c600}}{2}$$
 $H_{cv600} = 19.05 \text{ ft}$

Time factor from Table on page 179

$$TF := 0.848$$

At 90% primary consolidation

Coefficient of consolidation from lab data: $C_v := 1.7 \cdot 10^{-6} \cdot \frac{\text{ft}^2}{\text{sec}}$ $C_v = 0.1469 \cdot \frac{\text{ft}^2}{\text{day}}$

$$C_{v} := 1.7 \cdot 10^{-6} \cdot \frac{\text{ft}^{2}}{\text{sec}}$$

$$C_v = 0.1469 \cdot \frac{ft^2}{day}$$

Time rate of settlement to achieve 90% Primary Settlement

$$t_{90} := \frac{TF \cdot H_{cv600}^{2}}{C_{v}}$$

$$t_{90} = 2095.1887 \cdot day$$
 year := 365 · day

$$year := 365 \cdot day$$

$$t_{90} = 5.7402 \cdot \text{year}$$

Determination of Downdrag:

Use beta method to determine downdrag

Granular soil (NavFac 7.2) $\beta_{gr} := 0.3$

Clay (Dixon & Sandford), Presumpscot formation $$\beta_{clay} \coloneqq 0.13$$

Assumed values

Unit weight of granular soil $\gamma_t := 125 \cdot pcf$

Unit weight of water $\gamma_w := 62.4 \cdot pcf$

Effective unit weight of

granular soil $\gamma' := \gamma_t - \gamma_w \qquad \gamma' = 62.6 \cdot pcf$

Unit weight of clay $\gamma_{siltandclay} := 115 \cdot pcf$

Effective unit weight of

clay $\gamma'_{siltandclay} := \gamma_{siltandclay} - \gamma_{w}$ $\gamma'_{siltandclay} = 52.6 \cdot pcf$

Stress from overburden material. Overburden consists of a maximum of 4.3 feet of fill on 17 feet of existing fill material on 71 feet of silt and clay. Water table is at the bottom of the existing fill.

Additional Overburden Stress due to fill =

$$\sigma_{v_ob} := 4.3 \cdot ft \cdot \gamma_t$$
 $\sigma_{v_ob} = 537.5 \cdot psf$

Effective vertical stress in middle of each layer, water elevation coincides with top of overburden

At Station 4+53: Most consolidation settlement; thickest silt and clay

Total thickness of each stratum

$$D_{efill} := 17.0 \cdot ft$$
 $D_{siltandclay} := 71.0 \cdot ft$

$$\sigma'_{v_fill} \coloneqq \sigma_{v_ob} + \frac{D_{efill}}{2} \cdot \gamma_t \qquad \qquad \sigma'_{v_fill} = 1600 \cdot psf$$

$$\sigma'_{v_siltandclay} \coloneqq \sigma_{v_ob} + D_{efill} \cdot \gamma_t + \frac{D_{siltandclay}}{2} \cdot \gamma'_{siltandclay} \\ \sigma'_{v_siltandclay} = 4529.8 \cdot psf$$

Checked by: LK 10-1-2008

Pile parameters:

Look at piles: 12x53 14x73, 14x89 and 14x117

Pile depth:

Flange width:

$$d := \begin{pmatrix} 11.78 \\ 13.61 \\ 13.83 \\ 14.21 \end{pmatrix} \cdot \text{ in } \begin{array}{c} \text{HP 12 x 53} \\ \text{HP 14 x 73} \\ \text{HP 14 x 89} \\ \text{HP 14 x 117} \\ \end{array} \\ B_f := \begin{pmatrix} 12.045 \\ 14.585 \\ 14.695 \\ 14.885 \\ \end{pmatrix} \cdot \text{ in } \begin{array}{c} \text{HP 12 x 53} \\ \text{HP 14 x 73} \\ \text{HP 14 x 89} \\ \text{HP 14 x 117} \\ \end{array}$$

Box perimeter:
$$P := 2 \cdot \left(d + B_f\right) \quad P = \begin{pmatrix} 47.65 \\ 56.39 \\ 57.05 \\ 58.19 \end{pmatrix} \cdot \text{in} \quad \begin{array}{l} \text{HP 12 x 53} \\ \text{HP 14 x 73} \\ \text{HP 14 x 89} \\ \text{HP 14 x 117} \\ \end{array}$$

Magnitude of maximum downdrag, considered over entire clay thickness

$$Q_{dd} \coloneqq \left(D_{siltandclay} \cdot \sigma'_{v_siltandclay} \cdot \beta_{clay}\right) \cdot P$$

$$Q_{dd} = \begin{pmatrix} 166.0208 \\ 196.4724 \\ 198.772 \\ 202.7439 \end{pmatrix} \cdot kip$$

If downdrag is considered over entire clay stratum, what is the factor of safety. Ultimate capacity based on 50ksi steel and area of pile

Pile area:

$$A_{pile} := \begin{pmatrix} 15.5 \\ 21.4 \\ 26.1 \\ 34.4 \end{pmatrix} \cdot in^{2} \qquad \begin{array}{c} \text{HP 12 x 53} \\ \text{HP 14 x 73} \\ \text{HP 14 x 89} \\ \text{HP 14 x 117} \\ \end{array}$$

$$\begin{split} A_{pile} &:= \begin{pmatrix} 15.5 \\ 21.4 \\ 26.1 \\ 34.4 \end{pmatrix} \cdot \text{in}^2 & \begin{array}{c} \text{HP 12 x 53} \\ \text{HP 14 x 73} \\ \text{HP 14 x 89} \\ \text{HP 14 x 117} \\ \\ Q_{app} &:= 400 \cdot \text{kip} \\ Q_{ult} &:= 50 \cdot \text{ksi} \cdot A_{pile} \\ \\ FS &:= \frac{Q_{ult}}{Q_{app} + Q_{dd}} \\ \\ \end{array} \quad FS = \begin{pmatrix} 1.3692 \\ 1.7939 \\ 2.1795 \\ 2.8536 \\ \end{pmatrix} \end{split} \cdot \text{kip}$$

Checked by: <u>LK 10-1-2008</u>

Magnitude of downdrag, considered over top 2/3 of clay stratum, realistic

$$\sigma'_{v.cl.2_3} \coloneqq \sigma_{v_ob} + D_{efill} \cdot \gamma' + \frac{D_{siltandclay} \cdot \frac{2}{3}}{2} \cdot \gamma'_{siltandclay} \qquad \sigma'_{v.cl.2_3} = 2846.5667 \cdot psf$$

$$Q_{dd.2_3} \coloneqq \left(D_{siltandclay} \cdot \frac{2}{3} \cdot \sigma'_{v.cl.2_3} \cdot \beta_{clay}\right) \cdot P$$

$$Q_{dd.2_3} = \begin{pmatrix} 69.5526 \\ 82.31 \\ 83.2734 \\ 94.6274 \end{pmatrix} \cdot kip$$

Factor of safety, downdrag over 2/3 of clay stratum

$$FS := \frac{Q_{ult}}{Q_{app} + Q_{dd.2_3}} \qquad \qquad FS = \begin{pmatrix} 1.6505 \\ 2.2185 \\ 2.7003 \\ 3.5468 \end{pmatrix}$$

Use downdrag load of 80 kips

Based on past practice in the estimation of downdrag forces in Maine, a downdrag load factor of 1.0 is recommended

By: Kate Maguire July 2008 Checked by: <u>LK 10-1-2008</u>

Frost Protection:

Method 1 - MaineDOT Design Freezing Index (DFI) Map and Depth of Frost Penetration Table are in BDG Section 5.2.1.

From the Design Freezing Index Map: Auburn, Maine DFI = 1400 degree-days

From the lab testing: fill soils are coarse grained assume a water content = ~10%

From Table 5-1 MaineDOT BDG for Design Freezing Index of 1400 frost penetration = 79.2 inches

Frost_depth := 79.2in Frost_depth = $6.6 \cdot ft$

Method 2 - Check Frost Depth using Modberg Software

Closest Station is Lewiston

	Mod	Berg Re	sults									
Project Location: Lewiston, Maine												
Air Design N-Factor Surface D Mean Ann Design Le	esign Fr ual Tem	reezing li)	= = = =	0.80	•						
Layer #:Type	t	w%	d	Cf	Cu	Kf	Ku	L				
1-Coarse	63.4	10.0	125.0	28	34	2.0	1.6	1,800				
t w% d Cf Cu = Kf Ku = L	=	Moistu Dry de Heat C Capacity Therm aal condu	ensity, in Capacity of thawe al condu	nt, in pe lbs/cubic of frozer d phase ctivity in thawed	rcentage oft. n phase , in BTU frozen phase,	J/(cubic f phase, ir in BTU/((cubic ft t degree n BTU/(ft	t hr degree).				
Total De	oth of Fr	******** rost Pene ******	******* etration ******	= = ******	******* 5.28 f	********* t = ******	63.4 i	**************************************				

Use Modberg Frost Depth = 5.3 feet for design

Checked by: <u>LK 10-1-2008</u>

Seismic:

```
Auburn CNR Crossing Bridge
                                        PIN 15600.00
Date and Time: 9/9/2008 3:02:05 PM
Conterminous 48 States
2007 AASHTO Bridge Design Guidelines
AASHTO Spectrum for 7% PE in 75 years
State - Maine
Zip Code - 04210
Zip Code Latitude = 44.097300
Zip Code Longitude = -070.240100
Site Class B
Data are based on a 0.05 deg grid spacing.
  Period
              Sa
   (sec)
              (g)
             0.088
                     PGA - Site Class B
    0.0
    0.2
             0.177
                     Ss - Site Class B
                     S1 - Site Class B
    1.0
             0.047
Conterminous 48 States
2007 AASHTO Bridge Design Guidelines
Spectral Response Accelerations SDs and SD1
State - Maine
Zip Code - 04210
Zip Code Latitude = 44.097300
Zip Code Longitude = -070.240100
As = FpgaPGA, SDs = FaSs, and SD1 = FvS1
Site Class E - Fpga = 2.50, Fa = 2.50, Fv = 3.50
Data are based on a 0.05 deg grid spacing.
  Period
              Sa
   (sec)
              (g)
    0.0
             0.221
                     As - Site Class E
                     SDs - Site Class E
    0.2
             0.442
    1.0
             0.163
                     SD1 - Site Class E
```