MAINE DEPARTMENT OF TRANSPORTATION BRIDGE PROGRAM GEOTECHNICAL SECTION STATE HOUSE STATION 16 AUGUSTA, MAINE

Feasibility Study and Preliminary Geotechnical Design Report For the rehabilitation/replacement of:

VERANDA STREET BRIDGE OVER THE ST. LAWRENCE AND ATLANTIC RAILROAD PORTLAND, MAINE

Prepared by: Laura Krusinski, P.E. Senior Geotechnical Engineer

Reviewed by: Kathleen Maguire, P.E. Geotechnical Engineer

Cumberland County

Federal No. BH-1015(800)X PIN 10158.00 December 2004

Soils Report 2004-35

TABLE OF CONTENTS

SECT	TION PAGE	C
Geot	TECHNICAL SUMMARY 1	
1.0	INTRODUCTION	
2.0	GEOLOGIC SETTING	
3.0	SUBSURFACE INVESTIGATION	
4.0	LABORATORY TESTING	
5.0	SUBSURFACE CONDITIONS 7	
6.0	GEOPHYSICAL INVESTIGATION	
7.0	CONDITION OF SUBSTRUCTURES	
8.0	INFERRED ABUTMENT GEOMETRY 11	
9.0	STONE MASONRY ABUTMENT STABILITY ANALYSES	
10.0	CONCRETE ABUTMENT STABILITY ANALYSES 16	
11.0	WINGWALL STABILITY ANALYSES	
12.0	FOUNDATION ALTERNATIVES 19	
	12.1SUBSTRUCTURE REINFORCEMENT	
13.0	GEOTECHNICAL DESIGN RECOMMENDATIONS	
14.0	FUTURE GEOTECHNICAL WORK	
15.0	CLOSURE	

APPENDICES

APPENDIX A	Рнотоѕ
APPENDIX B	BORING LOGS
APPENDIX C	LABORATORY DATA
APPENDIX D	NONDESTRUCTIVE TESTING REPORT, NDT CORPORATION
APPENDIX E	CALCULATIONS – STONE MASONRY ABUTMENT STABILITY ANALYSES
APPENDIX F	CALCULATIONS – CIRCA 1930 CONCRETE ABUTMENT STABILITY
	Analyses
SHEETS	Analyses
Sheet 1	ANALYSES LOCATION MAP
SHEET 1	LOCATION MAP
SHEET 1 SHEET 2	LOCATION MAP BORING LOCATION PLAN

GEOTECHNICAL REPORT SUMMARY

A Feasibility Study and Preliminary Geotechnical Design Report for the proposed replacement or rehabilitation of the Veranda Street Bridge over the St. Lawrence and Atlantic Railroad, in Portland, Maine has been completed. Potential bridge modifications include a 0.91 to 1.677 m (3.0 to 5.5 foot) raise in the roadway profile to provide a 6.9 m (22.5 ft) railroad under clearance in the future. This report has been prepared to present:

- subsurface data collected from the preliminary geotechnical subsurface investigation;
- geophysical data collected to verify existing abutment geometry;
- subsurface data collected to characterize of the backfill soils of the existing abutments, and the soils the abutments bear upon;
- stability analyses for the existing abutments with the proposed roadway profile;
- ➢ foundation alternatives:
 - substructure reinforcement/rehabilitation
 - substructure replacement, and,
- ➢ foundation recommendations.

RECOMMENDATIONS

Due to the condition of the abutments, the results of stability analyses, and the potential cost of abutment reinforcement, replacement of the bridge substructures is recommended.

Based on the visual observations of the substructures, verified abutment dimensions, and substructure stability analyses, it has been determined that re-use of the existing bridge substructures under the proposed roadway profile raise *is feasible only with significant reinforcement*. However, due to the condition of the abutments and the results of stability analyses, the potential cost of abutment reinforcement can be significant. Prior to any scope decision, a life cycle cost analysis is recommended, as the cost of a properly engineered substructure reinforcement project can likely exceed that of substructure replacement. For the purpose of such an analysis, two abutment reinforcement alternatives have been provided in this report, and these reinforcement alternatives must be engineered to provide the substructures with AASHTO required factors of safety of 1.5 and 2.0, against sliding and overturning, respectively. The life cycle cost analysis task is beyond the scope of this report.

CONDITION OF EXISTING SUBSTRUCTURES

<u>Overall Substructure Condition</u>. The Veranda Street Bridge substructures consist of stone masonry ashlar abutments dating to a bridge constructed prior to 1930, and unreinforced concrete abutment and wingwall modifications constructed circa 1930.

All are founded on spread footings. The concrete abutments and wingwalls are in good condition, but the concrete is unreinforced. The masonry stone abutments are visually in good condition, however, the geophysical data show that behind the stone abutment face the blocks are unbonded and moisture has infiltrated the individual stones.

MaineDOT Bridge Inspection Records (2001) assign a condition rating of 6 to the substructures. A rating of 6, on a scale of 0 to 9 indicates "satisfactory condition".

<u>Pointing</u>. The pointing has failed at scattered locations in the courses of the stone masonry. There is some deterioration of the concrete caps.

<u>Drainage.</u> The pre-1930 stone substructures were constructed without a drainage system. The concrete abutment modifications were constructed with two weepholes per abutment.

<u>Abutment Foundation Soils and Backfill</u> - The data indicate that the stone masonry abutments, concrete abutment extensions and concrete wingwalls bear on dense to very dense, fine to coarse sand, some to trace of gravel, with trace of silt. The soil backfill behind the abutments is generally described as loose to dense, damp to moist, silty fine to coarse sand, trace of brick wood and gravel. The absence of a high groundwater table and source of water implies that prolonged cold weather will not result in ice lenses. With the exception of one backfill sample which is classified as having a high degree of frost susceptibility, all backfill samples have a negligible to low degree of frost susceptibly.

<u>Abutment Footing Embedment.</u> A test pit was hand dug in front of the stone masonry section of the north (Falmouth) abutment but did not encounter the bottom of the stone footing. Future investigations should confirm the footing embedment and toe dimensions assumed in this report.

INFERRED ABUTMENT GEOMETRY

A ground penetrating radar (GPR) survey and sonic/ultrasonic investigation of the Veranda Street Bridge abutments was performed by NDT Corporation of Worcester, Massachusetts, under the direction of the MaineDOT. The objective of the geophysical investigation was to determine the approximate thickness and nature of the concrete and stone masonry abutments.

ABUTMENT STABILITY ANALYSIS

The overall stability of the Portland Veranda Street Bridge south and north abutments was assessed considering the geometry and backfill soils confirmed by the GPR study and soil sampling. The overall stability of each abutment was analyzed considering

the confirmed geometry, the earth loads due to the potential raise in the roadway profile by 910 mm, and the stabilizing moment of superstructure dead load.

The overall stability of the north stone masonry abutment is calculated to be approximately 1.3 against overturning and 1.4 against sliding, compared with the AASHTO required factors of safety of 2.0 and 1.5. The overall stability of the south stone masonry abutment is calculated to be approximately 1.2 against overturning and 1.6 against sliding, which are also lower than the factors of safety required by AASHTO. These factors of safety represent the higher range, as the design assumptions are <u>unconservative</u>.

Based on the stability analyses, the factors of safety against overturning, sliding and bearing capacity for the existing substructures are unacceptable if the roadway profile is raised 910 mm. The overfill would result in increased earth pressure loads and footing bearing pressures. These factors of safety will be even lower for an analysis assuming a 1.677 m raise in grade. The stability analyses demonstrate that both abutments require significant reinforcement for re-use or replacement. Replacement is preferred.

FOUNDATION ALTERNATIVES

Based on the stability analyses, reinforcement or replacement of the existing abutments is required:

Alternative #1 - Abutment and Wingwall Reinforcement. The recommended abutment reinforcing system may consist of either:

- Excavation of the abutment backfill, and <u>thickening the abutment section</u> by casting a thicker backwall with reinforced concrete. This essentially increases the mass of the abutment by building-up the gravity section of the abutment. The end result would be acceptable factors of safety against sliding and overturning. Furthermore, construction of a backfill drainage system, and construction of weep holes is required.
- <u>Drill soil or rock anchors through the abutment face</u>, in two to three rows, and grout into the soil behind the abutments. This system essentially increases the mass of the abutment by engaging the soil mass beyond the potential failure wedge. Should the abutment and soil begin to move, the anchors would become tensioned to stabilize the wall. This option would be very difficult to construct, as there is limited room between the railroad tracks and the abutments and limited headroom.

These reinforcement systems must be engineered to raise the factors of safety of the substructures to 1.5 for sliding and 2.0 for overturning. Design of the reinforcing system is beyond the scope of this report.

Alternative #2 - Foundation Replacement. Based on the findings of this report, replacement of the bridge substructures is preferred. Replacement substructures may be supported by shallow foundations. Spread footings should be embedded a sufficient depth to bear on the glacial till unit, which generally consists of medium dense to dense sand. The selection of bottom of footing elevations should be based on an assessment of suitable bearing soil and the depth of frost penetration, and is beyond the scope of this report.

1.0 INTRODUCTION

A preliminary subsurface investigation, geophysical investigation and geotechnical recommendations have been completed for the improvement of the Veranda Street Bridge spanning the St. Lawrence and Atlantic Railroad in Portland, Maine. The purpose of this investigation was to explore subsurface conditions at the site and develop geotechnical recommendations for the proposed bridge substructure replacement or bridge substructure rehabilitation.

This Feasibility Study and Preliminary Geotechnical Design Report for the proposed replacement or rehabilitation of the Veranda Street Bridge report presents:

- subsurface data collected from the preliminary geotechnical subsurface investigation;
- geophysical data collected to verify existing abutment geometry;
- subsurface data collected to characterize of the backfill soils of the existing abutments, and the soils the abutments bear upon;
- stability analyses for the existing abutments considering the proposed roadway profile;
- ➢ foundation alternatives:
 - substructure reinforcement/rehabilitation
 - substructure replacement and,
- ➢ foundation recommendations.

The Project Description for this project, described in the 2004-2005 Biennial Transportation Improvement Program, is *"Bridge Improvement"*. This report has been prepared for preliminary engineering for improvement of the bridge.

Potential bridge modifications include a 910 mm (3.0 ft) raise in grade to provide a 6.1 m (20-foot) under clearance. Jacking the bridge superstructure an additional 760 mm (2.5 ft) to provide a 6.9 m (22.5 ft) under clearance is possible in the future. Hence, the substructures may potentially need to be designed or reinforced to resist the additional earth pressure due to a 1.677 m (5.5 ft) raise in grade.

The Veranda Street Bridge is a simply supported single span, riveted thru girder truss bridge. The superstructure consists of a concrete deck on concrete encased stringers on thru girder floor beams. The condition of the superstructure is very poor. The floor beams are badly deteriorated, and there is severe section loss on webs of main girders. The bottom of the slab is covered with efflorescence and delaminations and scaling has begun.

The substructures of the Veranda Street Bridge are gravity abutments made of unreinforced concrete and older stone ashlar masonry. The original bridge was built before 1930 and consisted of stone masonry abutments with a timber and steel superstructure. In 1930, the timber and steel superstructure was removed and

replaced with the current steel superstructure. The stone masonry abutments were symmetrically widened with unreinforced concrete abutments and new wingwalls. The 1930 construction plans for the bridge modifications were obtained from the Railroad (14 sheets, Canadian National Railways, Verandah St. O.H. Bridge, Deering, Maine, Office of the Bridge Engineer, Toronto, dated March 1930) for this evaluation and report. Pictures of the existing abutments are included as Appendix A – Photos of this report.

A MaineDOT Bridge Inspection Report, dated April 24, 2001, states that the bridge has a sufficiency rating of 29.7, on a scale of 0 to 100. The Federal Highway Administration considers a bridge eligible for replacement if its sufficiency rating is less than 50.

2.0 GEOLOGIC SETTING

The Veranda Street Bridge carries Veranda Street over the St. Lawrence and Atlantic Railway, in Portland, in Cumberland County, as shown on Sheet 1 - Location Map presented at the end of this report.

According to the Surficial Geology Map, Portland West Quadrangle, Maine, Maine Geological Survey, 1997 (Open-File No. 97-51), the surficial soils in the vicinity of the site consist of the Presumpscot Formation. The Presumpscot Formation is a glaciomarine deposit, which accumulated on the ocean floor during the late-glacial marine submergence of lowland areas in southern Maine. These soils are comprised of silt, clay and minor amounts of sand. The most common component is the clayey silt known as the Presumpscot Formation. Sand is dominant in some areas. The unit also contains areas of till.

According to the Bedrock Geologic Map of Maine, Maine Geological Survey, 1985, the bedrock in the vicinity of the site consists of calcareous pelite of the Macworth Formation, bounded by calcareous sandstone, interbedded sandstone and impure limestone of the Vassalboro Formation.

3.0 SUBSURFACE INVESTIGATION

Subsurface explorations were performed to provide information related to the subsurface conditions, abutment backfill and foundation soils.

Subsurface conditions in the vicinity of the existing abutments were explored by drilling five (5) cased wash borings (BB-PRR-101, BB-PRR-102A, BB-PRR-102B, BB-PRR-102C, BB-PRR-102D) and digging one test pit (TP-PRR-101).

The locations of the explorations are shown on Sheet 2 - Boring Location Plan and Sheet 3 - Interpretive Subsurface Profile found at the end of this report. The test borings were drilled by the MaineDOT Materials, Testing and Exploration Division, from July 20, 2004 through July 21, 2004. Borehole logging was completed by the MaineDOT Geotechnical Team Engineer. Details and sampling methods used, field data obtained, and soil and groundwater conditions encountered are presented in the boring logs provided in Appendix B – Boring Logs and on Sheets 4 and 5 – Boring Logs, found at the end of this report.

The borings were drilled using cased wash boring and solid stem auger techniques. Soil samples were obtained at 1.5-meter (5-ft) intervals using Standard Penetration Test (SPT) methods. Bedrock was cored in borings using NQ core barrel and the Rock Quality Designation (RQD) of the core was calculated. The MaineDOT Geotechnical Engineer selected the boring locations and drilling methods, designated type and depth of sampling techniques, identified field and lab testing requirements and maintained the field logs of the subsurface conditions encountered. The borings were located in the field by use of a tape after completion of the drilling program.

4.0 LABORATORY TESTING

Laboratory testing consisted of six (6) standard grain size analyses and six (6) natural water content analyses. The results of these laboratory tests are provided in Appendix C – Laboratory Data at the end of this report. Moisture content information and other soil test results are also included on the Boring Logs in Appendix B and on Sheets 4 and 5 - Boring Logs, found at the end of this report.

5.0 SUBSURFACE CONDITIONS

An interpretation of the subsurface conditions at the Veranda Street Bridge is graphically illustrated on Sheet 3 - Interpretive Subsurface Profile, found at the end of this report. In general, the soil statigraphy encountered at the site consists of two principle soil units, fill and glacial till, overlying bedrock.

5.1 NORTH ABUTMENT

The following paragraphs discuss the soils encountered in order of increasing depth behind the north (Falmouth) abutment:

Fill – A layer of fill was encountered in boring BB-PRR-101. The fill materials are highly variable and most likely represent backfill soils for the pre-1930 stone masonry abutments. Four (4) different fill units were encountered behind the abutment:

- Brown, damp, fine to coarse SAND, trace silt, little gravel.
- Brown, damp to moist, fine to coarse silty SAND, trace brick, wood and gravel.
- Olive brown, moist, fine silty SAND, trace medium to coarse sand and gravel, with iron staining.
- Red brown, wet, fine to coarse SAND, some gravel, trace to some silt with iron staining.

SPT N-values in the upper fill layer ranged from 6 to 114 blows per foot, indicating that the soil is loose to very dense in consistency. The high blow counts are attributed to obstructions. The thickness of the fill unit is 7.3 m (24 feet).

One sample of the fill unit from BB-PRR-101 was tested and was classified as Unified SM (AASHTO A-4) and described as silty SAND. The measured water content was 21.3%. A second sample was tested and classified as Unified SW-SM (AASHTO A-1-b) and described as fine to coarse SAND, some gravel, little silt. The measured water content was 8.4%.

Fill soils were also encountered in test pit TP-PRR-101, which was hand dug in front of the north stone masonry abutment. The test pit extended to a depth of 1.2 m (4 ft), and did not encounter the bottom of the stone footing. The soils that embed the footing at the location of the TP-PRR-101 consist of 1.2 m (4.0 feet) of brown and black, dry, fine to coarse sand, some gravel, little silt, trace of brick, cobbles, coal and slag.

Glacial Till – Native glacial till deposits were encountered underlying the fill. The till unit generally consists of:

- Brown and red-brown, wet, fine to coarse SAND, trace silt, trace to no gravel, and,
- ➢ Grey, wet, fine to coarse silty SAND.

SPT N-values in the glacial till layer ranged from 43 to 80 blows per foot, indicating that the glacial till unit is dense to very dense in consistency.

One soil sample of the till unit from BB-PRR-101 was tested and is classified as Unified SP-SM (AASHTO A-3), and described as fine to coarse sand, trace silt, trace of gravel. The measured water content was 15.5 %.

5.2 SOUTH ABUTMENT

The following paragraphs discuss the soils encountered in order of increasing depth behind the south (Portland) abutment.

Fill – Fill materials from the 1930 bridge widening were encountered in boring BB-PRR-102A. This boring terminated with a concrete core of the heel of the abutment footing. Boring BB-PRR-102D sampled the backfill between the face of the older, buried stone wingwall and the newer 1930 wingwall. One consistent fill unit was encountered behind the south abutment:

Brown, damp to wet, fine to coarse SAND, some to trace of silt, little to trace gravel.

SPT N-values in the fill layer ranged from 4 to 47 blows per foot, indicating that the soil is loose to dense in consistency. The thickness of the fill unit is approximately 7.5 m (25 ft)

Borings BB-PRR-102B and BB-PRR-102C were both abandoned after hitting the remains of the abandoned southeast wingwall from the pre-1930 stone masonry substructure, which was left in place and buried in backfill with the bridge widening in 1930.

Glacial Till – Glacial till deposits were encountered underlying the fill. The deposit generally consisted of:

- Brown, moist, fine to coarse SAND, little gravel, trace silt.
- Red/brown to grey, wet, fine to coarse SAND, trace silt, trace gravel.

SPT N-values in the fill layer ranged from 47 to 59 blows per foot, indicating that the till unit is dense to very dense in consistency.

Three soil samples of the till unit from BB-PRR-102D were tested and classified as Unified SW-SM (AASHTO A-1-b), Unified SP-SM (AASHTO A-3) and Unified SM (A-2-4). Measured water contents for samples of the till unit range from 10.7 to 18.2%.

5.3 BEDROCK AND GROUNDWATER CONDITIONS

Bedrock - The site is underlain by the Macworth Formation. The bedrock surface was encountered and cored at a depth of 12.5 m (40.9 ft) bgs in boring BB-PRR-101, and at a depth of 12.3 m (40.2 ft) bgs in boring BB-PRR-102D. The bedrock observed in the core samples recovered from the explorations is described as grey and white, fine grained, hard, fresh, slightly metamorphosed SILTSTONE. The RQD of the bedrock ranged from 76 to 82%, indicating a bedrock quality of fair to good.

Groundwater - The depth of groundwater measured in the boring BB-PRR-101 was 8.84 m (29 ft) bgs (el. 2.86 m (9.38 ft)). Groundwater levels may fluctuate due to conditions other than those present at the time measurements were made.

6.0 GEOPHYSICAL INVESTIGATION

A ground penetrating radar (GPR) survey and sonic/ultrasonic investigation of the Veranda Street Bridge substructures was conducted on August 31, 2004. The investigation and data analysis was performed by NDT Corporation of Worcester, Massachusetts. The objective of the geophysical investigation was to determine the approximate thickness of the concrete and stone masonry abutments. The results of the geophysical investigation are discussed in Section 8.0 of this report. The report prepared by NDT Corporation is included as Appendix D of this report.

7.0 CONDITION OF SUBSTRUCTURES

The Veranda Street Bridge abutments and retaining walls consist of stone masonry abutments with unreinforced concrete abutment modifications and unreinforced concrete wingwalls. The stone masonry abutments date to a bridge constructed prior to 1930. The unreinforced concrete abutment and wingwall modifications were constructed in 1930 when the earlier superstructure was replaced with a wider superstructure. All substructures are supported on spread footings founded on the glacial till layer. See Appendix A – Photos for photographs of the abutments.

<u>Overall Substructure Condition</u>. The newer concrete abutments and wingwalls are in good condition, but the concrete is unreinforced, with the exception of steel rails cast into the footings. The rails are shown on the 1930 construction drawings obtained from the railroad. The rails are 2.5 m (8.25 ft) to 2.6 m (8.5 ft) long with a spacing of 900 mm (3 ft). The rails are placed in the toes and centers of the footings of the abutments, with 75 mm (3 in) of concrete cover.

The concrete-capped masonry stone abutments from the pre-1930 bridge which carried an electric trolley and are visually in good condition, however, the GPR geophysical data show that behind the stone abutment face the blocks are unbonded and moisture has infiltrated the individual stones. The unbonded and moisture infiltrated nature of the stone abutments compromises the integrity of the construction.

MaineDOT Bridge Inspection Records (2001) assign a condition rating of 6 out of 9 to the substructures. This indicates that the substructures are in "satisfactory condition".

<u>Pointing</u>. The pointing has failed at scattered locations in the courses of the stone masonry. There is some deterioration of the concrete caps.

<u>Drainage.</u> The pre-1930 stone substructures were constructed without a drainage system. The potential exists for hydrostatic pressures to develop behind the abutments from surface runoff might collects in the backfill. The unreinforced concrete

substructures were constructed with 2 weep holes per abutment. The weep holes are 100 mm (4 in) diameter cast iron pipes and are located in the extreme corners where the abutment face meets the wingwall. The wingwalls are backfilled with 300 to 460 mm (12 to 18 in) of crushed stone with a 150 mm (6 in) "tile drain".

<u>Frost.</u> The water table is low enough that abutment backfill soils will not become saturated from capillarity, and the roadway profile allows surface water to be removed rapidly without saturating the underling backfill soils. The absence of a high groundwater table and source of water implies that prolonged cold weather will not result in ice lenses. With the exception of one backfill sample which is classified as having a high degree of frost susceptibility (Frost Class III¹), all backfill samples have a negligible to low degree of frost susceptibly (Frost Class 0 to I).

<u>Stone Masonry Abutment Foundation Soils and Backfill.</u> The data indicate that both stone masonry abutments bear on dense to very dense, fine to coarse sand, some to trace of gravel, with trace of silt. The soil backfill behind the stone abutments is generally described as loose to dense, damp to moist, silty fine to coarse sand, trace of brick wood and gravel, overlying a layer of olive brown, wet, medium dense to dense, fine silty sand with iron staining.

<u>Unreinforced Concrete Abutment Foundation Soils and Backfill</u>. The data indicate that the concrete abutment extensions and concrete wingwalls bear on brown, wet to moist, dense to very dense, fine to coarse sand with some to no gravel, with trace of silt. The backfill is generally described as loose, damp, sand, trace of silt overlying very loose to medium dense, silty sand, trace of gravel.

<u>Abutment Footing Embedment.</u> Test pit TP-PRR-101 was hand dug in front of the stone masonry section of the north abutment. The test pit extended to a depth of 1.2 m (4 ft), and did not encounter the bottom of the stone footing. The soils that embed the footing at the location of the test pit consisted of brown and black, dry, fine to coarse sand, some gravel, little silt, trace of brick, cobbles, coal and slag.

¹ MaineDOT and U. S. Army Corps of Engineers Classification System.

8.0 INFERRED ABUTMENT GEOMETRY

A ground penetrating radar (GPR) survey and sonic/ultrasonic investigation of the Veranda Street Bridge substructures was conducted on August 31, 2004. The investigation and data analysis was performed by NDT Corporation of Worcester, Massachusetts. The objective of the geophysical investigation was to determine the approximate thickness of the concrete and stone masonry abutments. The report prepared by NDT Corporation is included as Appendix D of this report.

8.1 METHODS OF INVESTIGATION

The GPR method uses a pulsed electromagnetic signal that is transmitted to and reflected by subsurface features, back to the point of transmission. Metal reinforcing or changes in the electrical properties of subsurface materials (e.g. moisture) produce strong reflections of radar signals. GPR data was used to determine the thickness of the abutments and wingwalls by detecting the interface of the abutment backface and granular backfill.

Sonic/ultrasonic reflection measurements were used to calibrate the GPR data and verify the thickness of the concrete and masonry abutments determined with GPR. Sonic/ultrasonic measurements determine the characteristics of the abutment with stress waves created by an impact energy source. Direct measurements are made of the compression and shear wave velocities and the reflected compression wave phases. The time it takes for the compressional wave to propagate to the end of a subsurface feature and be reflected back to the source is related directly to the length of the path to the feature,² assuming predetermined compression wave velocity values for the concrete and rock. The computed length of the path is related to abutment thickness.

A complete discussion of the methods of investigation is included in Appendix D.

8.2 GEOPHYSICAL TEST RESULTS

GPR data was collected along 6 vertical lines and 2 horizontal lines. The GPR survey lines are illustrated in Figures 2 and 4 of Appendix D. Survey lines were selected by the MaineDOT Team Geotechnical Engineer.

The geophysical results and inferred abutment geometries for the south abutment are presented as cross sections in Figures 2 and 3 of Appendix D. The geophysical results and inferred abutment geometries for the north abutment are presented as cross sections in Appendix D - Figures 4 and 5. These findings are summarized in Tables 1 and 2.

² The time of reflection (t) is two times the length of the structure divided by the wave's velocity (t=2 x L/v)

Abutment	Abutment Section	Abutment Thickness at top m (ft)	Abutment Thickness at Ground Surface m (ft)
South	Western Concrete	1.62 (5.3)	2.0 (6.6)
South	Stone Masonry	1.62 (5.3)	1.77 to 2.0 (5.8 to 6.6)
South	Eastern Concrete	1.0 (3.3)	1.5 (5.0)

Table 1. South Abutment Geometries based on GPR Survey.

Abutment	Abutment Section	Abutment Thickness at Top m (ft)	Abutment Thickness at Ground Surface m (ft)
North	Western concrete	0.762 (2.5)	1.5 (5.0)
North	Stone Masonry	0.762 (2.5)	2.0 (6.6)
North	Eastern concrete	0.762 (2.5)	2.0 (6.6)

Table 2. North Abutment Geometries based on GPR Survey.

The geophysical report is attached as Appendix D of this report. It should be noted that actual abutment geometries may vary from the inferred geometries. The GPR and sonic/ultrasonic data also indicated, or failed to provide, the following:

 GPR data collected at the south stone masonry abutments showed strong reflectors 1 m (3.3 ft) to 1.27 m (4.17 ft) behind the abutment face in middle of the abutments, indicating the bonding of the masonry blocks is fractured and filled with moisture. The moisture blocked GRP signals, thus Appendix D -Figure 3, reports that the abutment is only 1 to 1.27 m (40 to 50 inches) thick in this area.

- 2. In general, the frequency of irregular reflectors in the stone abutment was high, indicating that there are extensive areas of "un-bonded" blocks.
- 3. In the unreinforced concrete sections of the abutments and wingwalls, systematic vertical GRP reflectors were detected at 460 to 600 mm (1.5 to 2 ft) deep, at 1.2 m (4 ft) spacing. MaineDOT Bridge Maintenance was consulted, and the reflectors are consistent with the practice of casting vertical steel "bars" in the concrete as reinforcement. These bars are not shown on the 1930 construction plans.³
- 4. The GPR and sonic/ultrasonic data <u>did not</u> fully corroborate the 1930 construction plans⁴ for the concrete abutment sections. The data indicate that the actual abutment cross section is thinner in some areas is than that shown on the 1930 plans.
- 5. No GPR data was collected to confirm depth of footing.
- 6. The data shows that the wingwalls of the older south masonry abutments are buried behind the 1930 concrete abutments and wingwalls.
- 7. GPR data was collected for the wingwalls. The findings are reported in Appendix D.

9.0 STONE MASONRY ABUTMENT STABILITY ANALYSIS

A 910 mm (3 ft) to 1677 mm (5.5 ft) raise in the roadway profile is being considered as part of the current Veranda Street Bridge project.

The overall stability of the south and north stone masonry abutments was assessed considering the geometry and backfill soils confirmed by the ground penetrating radar study and the borings. Inferred abutment geometries used in the abutment stability analyses are shown in Table 3 and shown in Appendix E – Calculations for Stone Masonry Abutment Stability Analysis.

³ 14 sheets, Canadian National Railways, Verandah St. O.H. Bridge, Deering, Maine, Office of the Bridge Engineer, Toronto, dated March 1930.

⁴ 14 sheets, Canadian National Railways, Verandah St. O.H. Bridge, Deering, Maine, Office of the Bridge Engineer, Toronto, dated March 1930.

		Stone Masonry A	butments
Abutment	Abutment Thickness at top m (ft)	Abutment Thickness at Ground Surface m (ft)	Basis of Model
North	0.84 (2.75)	2.0 (6.6)	Average of GPR Scan Lines #266 and #267, Figure 4 of Appendix D.
South	1.60 (5.25)	2.13 (7.0)	GPR Scan Line #250, Figure 2 of Appendix D.

Table 3. Inferred Abutment Cross Sectional Thickness Assumed in Stability Analyses.

Earth pressures were computed using Coulomb theory. Abutment stability was analyzed considering the earth pressures due to the potential raise in the roadway profile by 910 mm (3.0 ft). A conventional method of overturning and sliding analysis was used for the calculations. The calculated factors of safety were compared with the AASHTO specified factors of safety of 2.0 and 1.5 against overturning and sliding, respectively. The calculations are provided in Appendix E – Calculations for Stone Masonry Abutment Stability Analysis.

The following assumptions were made for the analysis:

- The restoring load and moment of the proposed superstructure and live load was included as a stabilizing force and resisting moment in the analysis.
- Horizontal components of the superstructure dead load (DL) and live load (LL) were excluding from destabilizing forces and moments.
- > No traffic surcharge was included, assuming use of an approach slab.
- A depth of footing embedment of 1.2 m (4.0 ft) and a toe of 122 mm (0.4 ft) was assumed based test pit record TP-PRR-101.

With the raise in roadway profile, the overall stability of the north stone masonry abutment is calculated to be approximately 1.3 against overturning and 1.4 against sliding, compared with the AASHTO required factors of safety of 2.0 and 1.5, respectively. The overall stability of the south stone masonry abutment is calculated to be approximately 1.2 against overturning and 1.6 against sliding. These factors of safety represent the higher range, as the design assumptions are <u>unconservative</u>.

	FS	FS	Maximum	Assumed
Abutment	Against	Against	Toe	Load Conditions
	Overturn-	Sliding	Bearing	
	ing		Pressure	
			kPa (ksf)	
				1. 910 mm (3 ft) raise in roadway
North	1.1	1.2	957 (20)	profile
				2. approach slab included
				3. superstructure DL and LL
				stabilizing forces included.
				1. 910 mm (3 ft) raise in roadway
South	1.0	1.4	1101 (23)	profile
				2. approach slab included
				3. superstructure DL and LL
				stabilizing forces included.

Table 4.Factors of Safety of Stone Masonry Abutments.

The ultimate bearing capacity of the foundation soils is estimated to be 24 ksf. The calculations are provided in Appendix E – Calculations for Stone Masonry Abutment Stability Analysis. With the proposed raise in the roadway profile, the maximum bearing pressures at the footing toe approach the ultimate soil bearing capacity.

Based on the stability analyses in this Section, the factors of safety against overturning, sliding and bearing capacity for the existing stone substructures are unacceptable if the roadway profile is raised 910 mm (3 ft). The overfill results in increased earth pressure loads on the abutment and increased footing bearing pressures. The stability analyses indicate that in order to reuse the existing substructures significant reinforcement and rehabilitation is required to resist the additional earth pressure loads.

13.0 UNREINFORCED CONCRETE ABUTMENT STABILITY ANALYSIS

A 910 mm (3 ft) to 1677 mm (5.5 ft) raise in the roadway profile is being considered as part of the current Veranda Street Bridge project.

The overall stability of the south and north concrete abutments was assessed considering the geometry determined from the GPR study. The inferred abutment geometries used in the abutment stability analyses are shown in Table 4 and graphically illustrated in Appendix F – Circa 1930 Concrete Abutment Stability Analyses.

	Unreinforce	ed Concrete Abutm	ent (circa 1930)					
	Abutment Thickness at top m (ft)	Abutment Thickness at Ground Surface m (ft)	Basis of Abutment Cross Section					
North	North 1.3 (4.25) 2.2 (7.2) GPR Scan Line #270, Figure of Appendix D. 0							
South	1.6 (5.25)	2.0 (6.6)	GPR Scan Line #247, Figure 2 of Appendix D.					

Table 5.Inferred Abutment Cross Sectional Thickness
assumed in Stability Calculations.

Earth pressures were computed using Coulomb theory. Abutment stability was analyzed considering the earth pressures due to the potential raise in the roadway profile by 910 mm. A conventional method of overturning and sliding analysis was used for the calculations. The calculated factors of safety were compared with the AASHTO specified factors of safety of 2.0 and 1.5 against overturning and sliding, respectively. The calculations are provided in Appendix F – Calculations -Circa 1930 Concrete Abutment Stability Analyses.

The following assumptions were made for the analysis:

- The restoring load and moment of the proposed superstructure and live load was included as a stabilizing force and resisting moment in the analysis.
- Horizontal components of the superstructure dead load (DL) and live load (LL) were excluded from destabilizing forces and moments.
- No traffic surcharge was applied assuming addition of an approach slab.
- A depth of footing embedment of 1.8 m (6.0 ft) and a toe length of 910 mm (3 ft) was assumed based the 1930 bridge plans.
- The GPR data indicates that some cross sections of the concrete abutments may be approximately 760 mm (2.5 ft) at the top and 1.52 m (5.0 ft) at the base. A thicker, more representative average cross section was used the analysis.

With the raise is the roadway profile, the overall stability of the north concrete abutment sections (assuming both eastern and western widened sections to be identical for the purposes of the analysis) is calculated to be approximately 1.8 against overturning and 1.2 against sliding compared with the AASHTO required factors of safety of 2.0 and 1.5. The overall stability of the south abutment concrete sections is calculated to be approximately 2.0 against overturning and 1.3 against sliding.

These factors of safety represent the higher range, as the design assumptions are <u>unconservative</u>. These stability analyses indicate that the south and north unreinforced concrete abutments require some reinforcement to improve the factors of safety against sliding and overturning in order to be reused.

Abutment	FS Against Overturn- ing	FS Against Sliding	Maximum Toe Bearing Pressure kPa (ksf)	Assumed Load Conditions
North	1.7	1.2	445 (9.3)	 900 mm raise in roadway profile approach slab included superstructure DL and LL stabilizing forces included.
South	2.0	1.3	303 (8)	 900 mm raise in roadway profile. approach slab included superstructure DL and LL stabilizing forces included.

Table 6. Factors of Safety for circa 1930 Unreinforced Concrete Abutments.

The ultimate bearing capacity of the foundation soil is estimated to be 24 ksf. With the proposed raise in the roadway profile of 910 mm, the resulting bearing pressure at the footing toe results in an approximate factor of safety of 3.0 against bearing capacity failure.

Based on the stability analyses in this Section, the factors of safety against sliding, overturning and bearing capacity for the existing substructures are marginally acceptable if the roadway profile is raised 910 mm (3 ft). The overfill results in increased earth pressure loads on the abutment and increased footing bearing pressures. The stability analyses indicate that in order to reuse the existing substructures minor reinforcement and rehabilitation will be required to resist the additional earth pressure loads.

11.0 WINGWALL STABILITY ANALYSIS

The overall stability of the existing unreinforced concrete wingwalls is not assessed in this report. However, the proposed raise in the roadway profile will result in increased earth pressure loads on the walls and increased footing bearing pressures. In order to reuse the existing wingwalls, it is likely that some reinforcement and rehabilitation will be required to resist the additional earth pressure loads. If the wingwalls are to be reused, to retain the additional fill on the side slopes U-shaped wingwalls will be required above the existing walls, or the existing wingwalls extended vertically with caps. It is recommended that the stability of the wingwalls be assessed assuming the proposed raise in roadway profile if the decision is made to reuse the abutments.

12.0 FOUNDATION ALTERNATIVES

Based on the abutment stability analyses, reinforcement for reuse or replacement is required. Both options are discussed below.

12.1 SUBSTRUCTURE REINFORCEMENT

The recommended abutment and wingwall reinforcing system may consist of either:

- 1. Excavation of the abutment backfill, <u>thickening the cross section</u> of the abutment mass with cast-in-place concrete, construction of a backfill drainage system and weep holes. This system increases the restoring moment and restoring forces of the abutment by building up the gravity section of the abutment, and reduces the potential for hydrostatic pressure with inclusion of a drainage system.
- 2. <u>Drilling and installing soil anchors</u> through the abutment face. The design is beyond the scope of this report, however, it is estimated that a minimum of 2 rows of 180 kN (40 kip) soil anchors, at 1.2 m (4 ft) on-center spacing, at 15 degree angles, and grouted into the soil behind the abutments, will be required. This system essentially increases the mass of the abutment by engaging the soil mass beyond the potential failure wedge. Should the abutment and soil begin to move, the anchors would become tensioned to stabilize the wall. Limited headroom due to the superstructure, and railroad traffic will complicate installation of anchors.
- 3. <u>Spread footings improvements.</u> Substructure rehabilitation should verify that the abutment and wingwall footings are embedded for frost. It is also important to verify that footing dimensions and embedment depths for the purpose of better estimating the applied footing pressures. In light of only limited test pit data, recommendations about footing improvement are beyond the scope of this report.

12.2 SUBSTRUCTURE REPLACEMENT

Based on the findings and conclusions of this report, replacement bridge substructures are preferred. The new structure may be supported by shallow foundations:

Spread Footings. Spread footings should be embedded a sufficient depth to bear on the glacial till unit, which generally consists of medium dense sand. The selection of bottom of footing elevations should be based on an assessment of suitable bearing soil and depth of frost penetration, and is beyond the scope of this report. In general, a minimum embedment of 1.2 m (4 ft) will be required for frost protection.

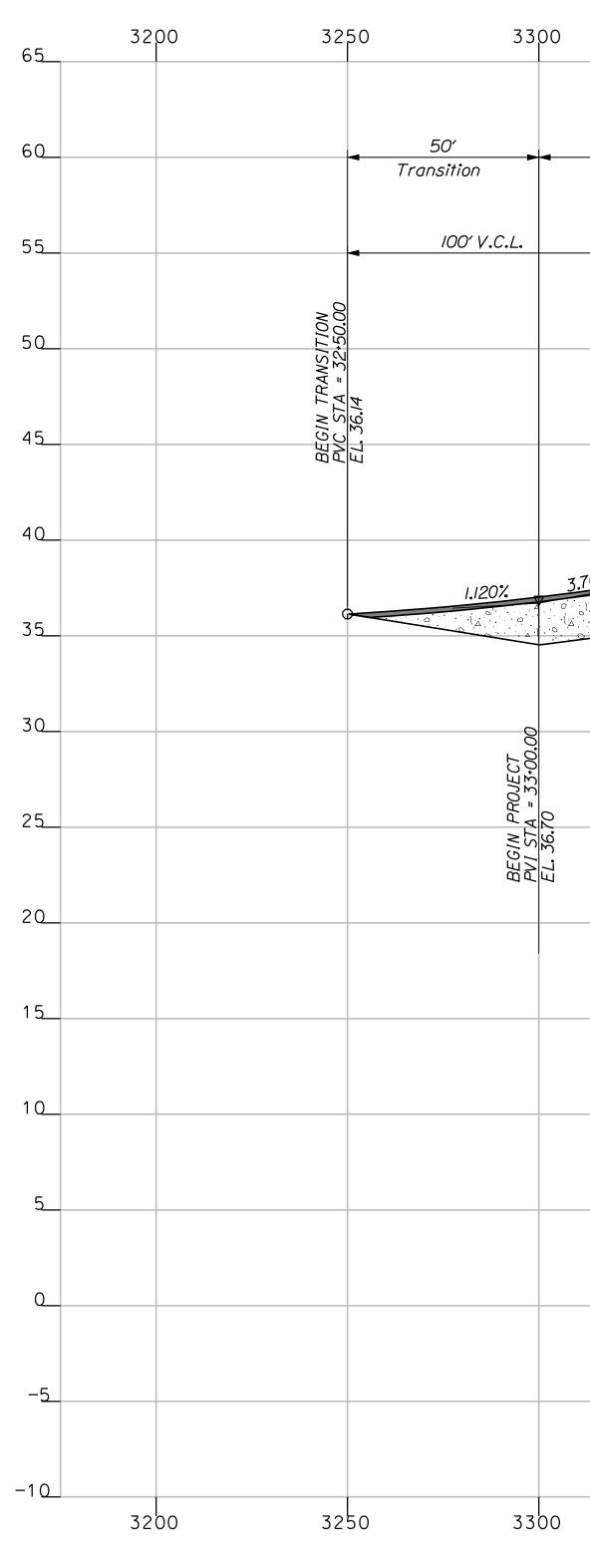
13.0 GEOTECHNCIAL DESIGN RECOMMENDATIONS

Due to the condition of the abutments, the results of stability analyses, and the potential cost of abutment reinforcement, replacement of the bridge substructures is recommended.

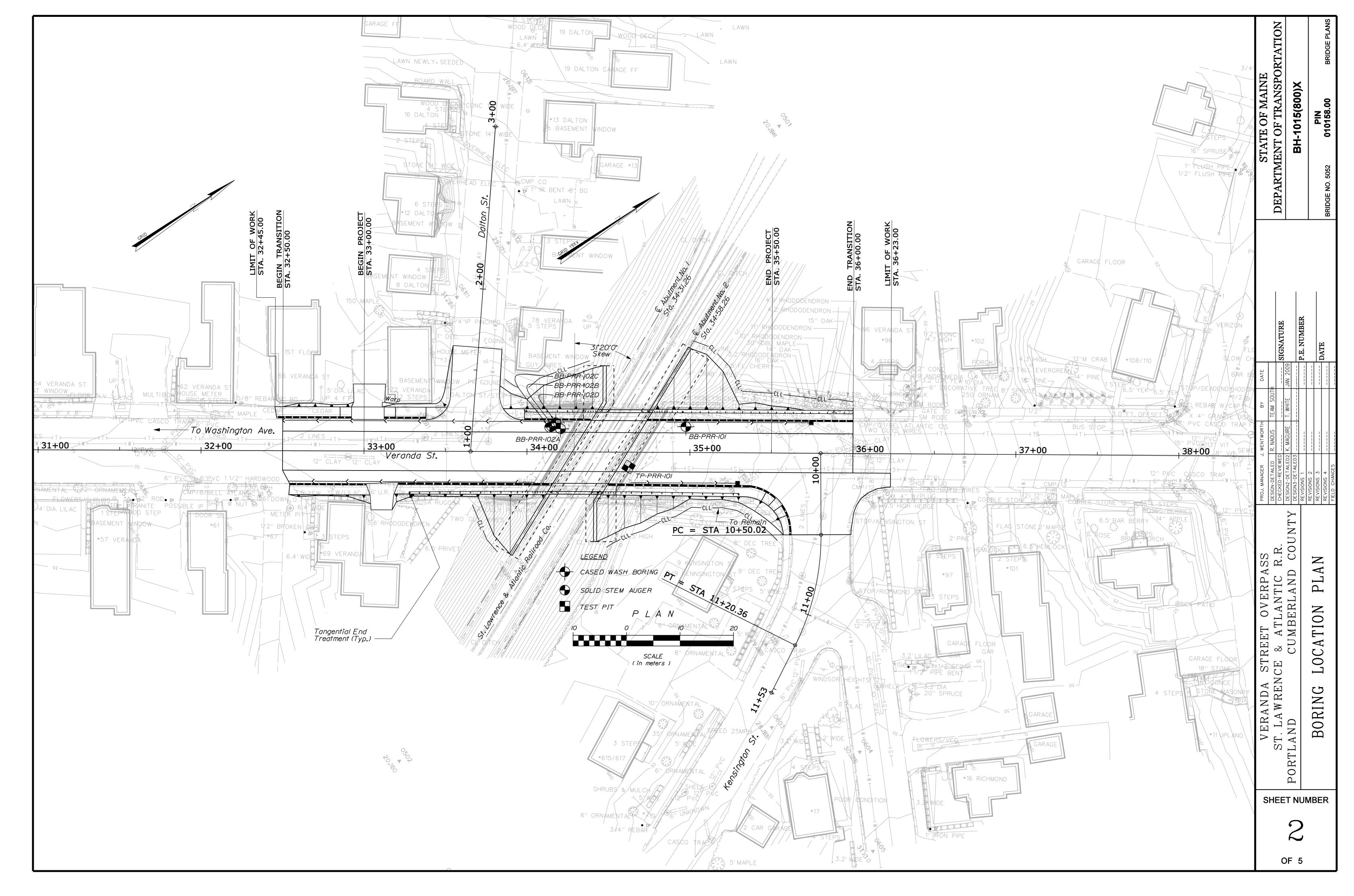
Based on verified abutment dimensions, and substructure stability analyses, it has been determined that re-use of the existing bridge substructures under the proposed roadway profile raise *is feasible only with significant reinforcement*. However, due to the condition of the abutments and the results of stability analyses, the potential cost of abutment reinforcement can be significant. Prior to any scope decision, a life cycle cost analysis is recommended, as the cost of a properly engineered substructure reinforcement project can likely exceed that of substructure replacement. For the purpose of such an analysis, two abutment reinforcement alternatives have been provided in this report, and these reinforcement alternatives must be engineered to provide the substructures with the AASHTO required factors of safety of 1.5 and 2.0, against sliding and overturning, respectively. The life cycle cost analysis task is beyond the scope of this report.

14.0 FUTURE GEOTECHNICAL WORK

In the situation that substructure reuse and rehabilitation is chosen, more geotechnical work is necessary. Some assumptions were made in the stability analyses in this report, which need confirmation. A depth of footing embedment of 1.8 m (6.0 ft) and a toe length of 910 mm (3 ft) was assumed for the analysis of the concrete abutments, based the 1930 bridge plans. This assumption must be confirmed with test pits. Confirmed footing dimensions and embedment depths should be used to refine estimates of factors of safety against overturning, and factor of safety against bearing capacity failure under the proposed conditions. It is also important to verify that the both the stone masonry and concrete abutment and wingwall footings are embedded for frost protection.


In the situation that the final project scope is substructure replacement, geotechnical design criteria for bearing capacity, settlement, frost protection and seismic loads shall be developed.

15.0 CLOSURE


This report has been prepared for the use of the MaineDOT Bridge Program and the Bureau of Planning, for the specific application to the proposed rehabilitation or replacement of the Veranda Street Bridge in the city of Portland, Maine, in accordance with generally accepted soil and foundation engineering practices. No other intended use is implied. In the event that any changes in the nature, design or location of the proposed project are planned this report should be reviewed by the geotechnical engineer to assess the appropriateness of the conclusions and recommendations and to modify the recommendations as appropriate to reflect the changes in design. Further, the analyses and recommendations are based in part upon limited soil explorations at discrete locations completed at the site. If variations from the conditions encountered during the investigation appear evident during construction, it may also be necessary to re-evaluate the recommendations made in this report.

It is recommended that the geotechnical engineer be provided the opportunity for a general review of the final design and specifications in order that the earthwork and foundation recommendations may be properly implemented in the design.

SHEETS

		NE PORTATION K BRIDGE PLANS
3350 3400 3450 3500 3550 3600 3650 250' 250' 50' 1000 1000 1000 1000 1000 Project Project 1000 1000 1000 1000 1000 1000	65 60	STATE OF MAINE ARTMENT OF TRANSPORT BH-1015(800)X NO. 5052 010158.00 BRI
A = 33-50.00 55 55 56 59 70.00 70.100 70.100 70.100 70.100 70.100 70.100 70.100 70.100 70.100 70.100 70.100 70.100 70.100	_55 _50	DEPARTN BRIDGE NO. 5052
PVT STA = 33:50. EL. 38:55 EL. 38:55 EL. 39:29 PVC STA = 32:70. EL. 39:29 STG. 34:570. EL. 39:29 PVI STA = 35:70. EL. 35.89 EL. 33.76 PVI STA = 35:70. EL. 33.76 PVI STA = 35:70. EL. 33.76 PVI STA = 35:70. EL. 33.76	_45	
5.706%. Brown, damp, loose to dense, fine to coarse SAND, trace silt, (Fill).	_40 _35	ATE SIGNATURE 2009 P.E. NUMBER DATE DATE
Prown, wet, medium dense, fine to coarse silty SAND, trace gravel, (Fill). Brown, wet, medium dense, fine to coarse silty SAND, trace gravel, (Fill). Brown, wet, dense, fine to coarse silty frace brick, cobbles, sing and coarse silt, integravel, (Fill). Olive brown, moist, silty fine SAND, trace medium to coarse sond and gravel, with iron staining, (Fill). Prown, wet, dense, fine to coarse SAND, some silt, ittle gravel, (Fill). Olive brown, moist, silty fine SAND, trace medium to coarse sond and gravel, with iron staining, (Fill). Prown, wet, dense, fine to coarse SAND, some silt, ittle gravel, (Fill). Olive brown, moist, silty fine SAND, trace medium to coarse sond and gravel, with iron staining, (Fill). Prown, wet, dense, fine to coarse SAND, some silt, ittle gravel, (Fill). Olive brown, wet, red brown, (Fill). Prown, wet, dense, fine to coarse SAND, some silt, ittle gravel, (Fill). Olive brown, wet, very dense, fine Prown, wet, dense, fine to coarse SAND, some silt, ittle gravel, (Fill). Prown, wet, very dense, fine	_30 _25 _20	(OJ. MANAGER J. WENTWORTH BY D/ SIGN-DETAILED R. NAOUS TEAM SOUTH SIGN-DETAILED R. NAOUS TEAM SOUTH ECKED-REVIEWED
Light brown, moist, dense, fine to coarse SAND, trace silt and gravel, (Fill). Brown, moist, very dense, fine to coarse SAND, some gravel, little silt, with iron staining, (Fill), Brown, moist, very dense, fine to coarse SAND, little gravel, trace silt,	_15 _10	ERPASS NTIC R.R. LAND COUNTY DE ACE PROFILE
change to red brown and dense. change to grey. change to grey. change to grey. change to grey. change to red brown, wet, very dense, fine to coarse SAND, trace silt. Bedrock: Grey white, fine grained METASLLTSTONE, (Macworth Formation). ROD=76% ROD=76% ROD=76% ROD=76% ROD=76%	5	IDA STREET OV RENCE & ATLAI CUMBER VE SUBSURF
3350 3400 3450 3500 3550 3600 3650 PROFILE HORIZ 25 0 25 50 Note: This generalized interpretive soil profile is intended to convey trends in subsurface conditions. The boundaries between strata are approximate and idealized, and have been developed by interpretations of widely spaced explorations and samples. Actual soil transitions may vary and are probably more erratic. For more specific information refer to the exploration logs.	10	VERAN ST. LAW PORTLAND INTERPRETI
VERT 5 0 5 10 SCALE		SHEET NUMBER 7 OF 36

y.white Date:1/14/2009

			US CUSTOMAR						rtland, Maine		58.00				US CUSTOMA	loration Log RY_UNITS		
pera	tor:	(MaineDOT C. Mann		Dat	vation um:	(ft.)	NGV	/D	Auger ID/OD: 125 mm Sampler: N/A		Oper	ler: ator:	(MaineDOT C. Mann		Ele Dat	um
ate s		inish:	<. Maguire 7/21/04-7/2		Dri			Sol	: 45C id Stem Auger	Hammer Wt./Fall: N/A Core Barrel: N/A		Date		inish: 7	(, Maguire 7/20/04-7/2		Rig Dri	11
efinit = Spl	g Locat ions: it Spoon	Sample	34+13.9. 15		Defi Su		ield Va		r Strength (psf)	Water Level*: N/A Definitions: WC = water content, percent		Defin D = S	ng Locat nitions: split Spoon	Sample	34+17.6. 17		Cas Defi Su =	ni Ir
= Thi = Roc = Ins	n Wall Tu k Core So	ube Sample ample Shear Test		tempt	9 _D S _{UL} WOH	= Unconfir ab) = Lat = weight	vane Si of 1401	ressive hear St b. hamm	trength (psf) Strength (ksf) rength (psf) er :weight of casing	LL = Liquid Limit PL = Plastic Limit Pl = Plasticity Index G = Grain Size Analysis C = Consolidation Test		U = 1 R = F V = 1	'hin Wall T Rock Core S	ube Sample ample Shear Test		tempt	T _v = q _p = S _{u(1} WOH WOR	ab
Depth (ft.)	Sample No.	Pen./Rec. (in.)	Sample Depth (ft.)	Blows (/6 in. Blows (/6 in. Strength (psf) or R00 (7)	N-value	Casing Blows	Elevation (ft.)	Graphic Log	Visual Descr	iption and Remarks	Laboratory Testing Results/ AASHTO and Unified Class	Depth (ft.)	Sample No.	n./Rec. (in.)	Sample Depth (ft.)	Samble Information Blows (/6 in. Strength (ps+) or ROD (7)	N-value	
<u>- 1</u>	Sa	Б.	S (+	9 <u>5 1</u> 2	ż	SSA SSA	ц Ш С	C.	No sampling conducted in	boring.		0	Š	Pen.	S S	<u> </u>		
							-										<u> </u>	
												- 5					\vdash	
						\vee	31.71		Bottom of Exploration at	7.00 7.00 feet below ground surface. er through, abandon hole.	0-						<u> </u>	F
																	<u> </u>	
) -												- 10					\vdash	
																	\vdash	
												- 15					\vdash	
																	\vdash	
0												- 20	1D	24/10	19.00 - 21.00	51/26/21/16	47	
Ì																		
5	<s:< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>• 25</td><td>20</td><td>24/9</td><td>24.00 - 26.00</td><td>18/24/15/15</td><td>39</td><td></td></s:<>											• 25	20	24/9	24.00 - 26.00	18/24/15/15	39	
emari																	\downarrow	
lemar I																		⊢
* Water	ication I	eadings hav	ve been made a	ate boundaries between t times and under cond ments were made.					gradual. tuations may occur due to conditions	Page 1 of 1 Boring No.: BB-PRR-	-102C	- 30	3D	24/12	29.00 - 31.00	25/28/31/30	59	1
itratif † Water	ication I	eadings hav	ve been made a	t times and under cond						other	-102C	- 30	3D	24/12		25/28/31/30	59	
tratif Water than	ication I level re those pre:	adings haves a sent at th	ve been made a e time measure	t times and under cond ments were made.	itions st	ated. Gr	oundwate	er fluct	tuations may occur due to conditions	Boring No.: BB-PRR-		• 30	30	24/12	31.00	25/28/31/30	59	
tratif Water than	ication I level re those pre: Ne D	epart	re been made a e time measure "Ment O <u>I/Rock Expl</u> <u>US CUSTOMAF</u>	t times and under cond ments were made. f Transpor oration Log	titions st	ON PI	oundwate roject: ocatio	er fluct :Veran n:Por	tuations may occur due to conditions nda Street Overpass Bridge tland, Maine	Boring No.: BB-PRR- Boring No.: <u>BB-P</u> PIN: <u>101</u>	-102C RR-102B 58.00	- 30 - 35	30	24/12		25/28/31/30	59 59 47	
tratif Water than Mai rille pera	ne D er: d By:	eodings have sent at th epart <u>Soi</u> k (re been made a e time measure TMENT O I/Rock Expl US CUSTOMAF MaineDOT C. Mann K. Maguire	t times and under cond ments were made. f Transpor oration Log RY UNITS	titions st totti Ele Dat Rig	oted. Gr ON Pr L vation um: Type:	oundwate roject: ocation (ft.)	: Veran n: Por 38. NGV CME	tuations may occur due to conditions nda Street Overpass Bridge tland, Maine 71 (D : 450	Boring No.: BB-PRR- Boring No.: BB-PR PIN: Auger ID/OD: 125 mm Sampler: N/A Hammer Wt./Fall: N/A	<u>RR-102B</u>				31.00			
tratif water than Mali pera ogged tate : coring efinit	ne D ar: bor: b	eodings how sent at th epart <u>Soi</u> K inish: i ion: 3 Sample	re been made a e time measure 	t times and under cond ments were mode. f Transpor oration Log Y UNITS UNITS	ttions st total Ele Dat Rig Dri Cas	ON Pr Vation um: Type: Iling M ing ID/ nitions: Insitu	cundwate roject: (ft,) lethod: iteld Va	ar fluct : Veran n: Por 38. NGV CME Sol N/A ne Shea	tuations may occur due to conditions nda Street Overpass Bridge tland, Maine 71 70 2 45C id Stem Auger A r Strength (psf)	Boring No.: BB-PRR- Boring No.: BB-PR PIN: 101 Auger 1D/0D: 125 mm Sampler: N/A Hammer Wt./Fall: N/A Core Barrel: N/A Water Level*: N/A Definitions: WC = wore content, percent	<u>RR-102B</u>		40	24/15	31.00 34.00 - 36.00 39.00 - 40.19	19/20/27/37 21/15/50(50)		
tratif water than mille per a ogge ate S or ing efinit = Spi = Thi = Rot	ne D er: tor: d By: ionsi it Spoon successfu n wall Tuk k Core Sa	ectings have sent at th epggrt <u>Soci</u> (inish: ion: Sample us Spirts bee Sample un Spirts Shear Test	re been made a e time measure 	t times and under cond ments were made. f Transpor oration Log (Y UNITS) 1/04 Lt. tempt	tions st to the state of the	OD PI Unition Um: Type: Iling M ing ID/ nitions: Pocket I Pocket I	coundwate roject: occation (fft,) lethod: ield Vau vane S vane S vane S vane S	er fluct : Verai n: Por 38. NGV CME Sol N/A Sol N/A e Shear S ressive ressive b. ham	tuations may occur due to conditions nda Street Overpass Bridge tland, Maine 71 70 2 45C id Stem Auger A r Strength (psf) Strength (psf) Strength (psf)	Boring No.: BB-PRR- Boring No.: BB-PR PIN: Auger ID/0D: 125 mm Sampler: N/A Hammer Wt./Fall: N/A Core Barrel: N/A Water Level*: N/A Definitions:	<u>RR-102B</u>	- 35	40	24/15	31.00	19/20/27/37	47	
ratif water than iiii era ogge finiti spi spi spi spi spi spi spi spi spi sp	ication I level re those pre- ne D er: tor: d By: Start/F i g Locati it Spoon successfu h Wall Tu k Core Sa it Spoon	ectings have sent at th epggrt <u>Soi</u> k inish: ion: Sample ube Sample ube Sample ube Sample ube Sample c c c c c c c c c c c c c c c c c c c	re been made a e time measure 	t fines and under cond ments were mode. f Transpor <u>oration Log</u> ty UNITS 1/04 Lt. tempt cample Information c	titions st total t	ON P Vation Um: Type: Iling M ing ID/ nitionst Insitu f Pocket 1 Unconfir ob = Lat = unconfir ob = Lat = weight	cundwate roject: ocation (ft.) ield Vau ield Vau corvane so ield Vau of 14010 of rods	er fluct : Veran n: Por 38. NGV CME Sol N/A Ne Shear S Shear S Shear S Shear S Shear S	tuations may occur due to conditions nda Street Overpass Bridge tland, Maine 71 70 5 45C id Stem Auger A r Strength (psf) trength (psf) strength (psf) er weight of casing	Boring No.: BB-PRR- Boring No.: BB-PR- PIN: Auger ID/0D: 125 mm Sampler: N/A Hammer Wt./Fall: N/A Core Barrel: N/A Water Level*: N/A Definitions: WC = woter content. percent LL = Liquid Limit PL = Plastic Jindex G = Grain Size Analysis	Laboratory Testing Results/ AASHT0	- 35	40	24/15	31.00 34.00 - 36.00 39.00 - 40.19 40.20 -	19/20/27/37 21/15/50(50)	47	
atif ater iiii gged te S ring spinit Roce init init Roce	ne D er: d By: Start/F g Locati it Spon suscessfu n Wall Tu k Core Sa it Ster	ectings have sent at th epggrt <u>Soi</u> k inish: ion: Sample ubs Sample ubs Sample ubs Sample ample Shear Test n Auger	re been made a e time measure 	t fines and under cond ments were made. f Transpor oration Log ty UNITS UNITS UNITS UNITS 1/04 Lt. tempt sample Information	tions st to the state of the	OD PI Unition Um: Type: Iling M ing ID/ nitions: Pocket I Pocket I	coundwate roject: occation (fft,) lethod: ield Vau vane S vane S vane S vane S	er fluct : Veran n: Por 38. NGV CME Sol N/A Ne Shear S Shear S Shear S Shear S Shear S	tuations may occur due to conditions nda Street Overpass Bridge tland, Maine 71 70 5 45C id Stem Auger A r Strength (psf) trength (psf) strength (psf) er weight of casing	Boring No.: BB-PRR- Boring No.: BB-PR PIN: Auger ID/OD: 125 mm Sampler: N/A Hammer Wt./Fall: N/A Core Barrel: N/A Water Level*: N/A Definitions: WC = water content. percent LL = Liquid Limit PL = Plastic Limit PL = Consolidation Test	RR-102B 58.00	- 35	40	24/15	31.00 34.00 - 36.00 39.00 - 40.19 40.20 -	19/20/27/37 21/15/50(50)	47	
atif ater an ille inggeo te ing spl init Ros Ins Spl	ication I level re those pre- ne D er: tor: d By: Start/F i g Locati it Spoon successfu h Wall Tu k Core Sa it Spoon	ectings have sent at th epggrt <u>Soi</u> k inish: ion: Sample ube Sample ube Sample ube Sample ube Sample c c c c c c c c c c c c c c c c c c c	re been made a e time measure 	t fines and under cond ments were mode. f Transpor <u>oration Log</u> ty UNITS 1/04 Lt. tempt cample Information c	titions st total t	ON Provide a standard and a standard a stand	cundwate roject: ocation (ft.) ield Vau ield Vau corvane so ield Vau of 14010 of rods	er fluct : Veran n: Por 38. NGV CME Sol N/A Ne Shear S Shear S Shear S Shear S Shear S	tuations may occur due to conditions nda Street Overpass Bridge tland, Maine 71 70 5 45C id Stem Auger A r Strength (psf) trength (psf) er weight of casing Visual Descr	Boring No.: BB-PRR- Boring No.: BB-PR PIN: Auger ID/OD: 125 mm Sampler: N/A Hammer Wt./Fall: N/A Core Barrel: N/A Water Level*: N/A Definitions: WC = water content. percent LL = Liquid Limit PL = Plastic Limit PL = Consolidation Test	Laboratory Testing Results/ AASHTO and	- 35 - 40	40	24/15	31.00 34.00 - 36.00 39.00 - 40.19 40.20 -	19/20/27/37 21/15/50(50)	47	
atif water han ill(era ggeo te spi = Spi = Thi = Roc = Ins	ication I level re those pre- ne D er: tor: d By: Start/F i g Locati it Spoon successfu h Wall Tu k Core Sa it Spoon	ectings have sent at th epggrt <u>Soi</u> k inish: ion: Sample ube Sample ube Sample ube Sample ube Sample c c c c c c c c c c c c c c c c c c c	re been made a e time measure 	t fines and under cond ments were mode. f Transpor <u>oration Log</u> ty UNITS 1/04 Lt. tempt cample Information c	titions st total t	ON Provide a standard and a standard a stand	cundwate	er fluct : Verar n: Por 38. NGV CME Sol N/A ne Shear St b. hamm w0C = 0 0 1 2 0 0 1 2 0 0 1 2 0 0 1 2 0 0 1 2 0 0 1 2 0 0 1 2 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	tuations may occur due to conditions nda Street Overpass Bridge tland, Maine 71 70 5 45C id Stem Auger A r Strength (psf) trength (psf) er weight of casing Visual Descr	Boring No.: BB-PRR- Boring No.: BB-PR PIN: 101 Auger 1D/0D: 125 mm Sampler: N/A Hammer Wt./Fall: N/A Core Barrel: N/A Core Barrel: N/A Definitions: WC = water content. percent LL = Liquid Limit PL = Plastic Limit Pl = Pl = Plastic Limit Pl =	Laboratory Testing Results/ AASHTO and Unified Class	- 35 - 40	40 50 R1	24/15	31.00 34.00 - 36.00 39.00 - 40.19 40.20 -	19/20/27/37 21/15/50(50)	47	
atif water han ill(era ggeo te spi = Spi = Thi = Roc = Ins	ication I level re those pre- ne D er: tor: d By: Start/F i g Locati it Spoon successfu h Wall Tu k Core Sa it Spoon	ectings have sent at th epggrt <u>Soi</u> k inish: ion: Sample ube Sample ube Sample ube Sample ube Sample c c c c c c c c c c c c c c c c c c c	re been made a e time measure 	t fines and under cond ments were mode. f Transpor <u>oration Log</u> ty UNITS 1/04 Lt. tempt cample Information c	titions st total t	ON Provide a standard and a standard a stand	cundwate roject: ocation (ft.) ield Vau ield Vau corvane so ield Vau of 14010 of 14010	er fluct : Verar n: Por 38. NGV CME Sol N/A ne Shear St b. hamm w0C = 0 0 1 2 0 0 1 2 0 0 1 2 0 0 1 2 0 0 1 2 0 0 1 2 0 0 1 2 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	tuations may occur due to conditions nda Street Overpass Bridge (tland, Maine 71 (0) (45C) (d Stem Auger (sf) Strength (psf) Strength (ksf) rength (psf) er (visual Descr Visual Descr No sampling conducted in	Boring No.: BB-PRR- Boring No.: BB-PR PIN: Auger ID/OD: 125 mm Sampler: N/A Hammer Wt./Fall: N/A Core Barrel: N/A Water Level*: N/A Definitions: WC = water content. percent LL = Liquid Limit PL = Plastic Limit PL = Consolidation Test	Laboratory Testing Results/ AASHTO and Unified Class	- 35 - 40 - 45	40 50 R1	24/15	31.00 34.00 - 36.00 39.00 - 40.19 40.20 -	19/20/27/37 21/15/50(50)	47	
ratif water than ill era i ggged tres i spi spi spi spi spi spi spi spi spi	ication I level re those pre- ne D er: tor: d By: Start/F i g Locati it Spoon successfu h Wall Tu k Core Sa it Spoon	ectings have sent at th epggrt <u>Soi</u> k inish: ion: Sample ube Sample ube Sample ube Sample ube Sample c c c c c c c c c c c c c c c c c c c	re been made a e time measure 	t fines and under cond ments were mode. f Transpor <u>oration Log</u> ty UNITS 1/04 Lt. tempt cample Information c	titions st total t	ON Provide a standard and a standard a stand	cundwate	er fluct : Verar n: Por 38. NGV CME Sol N/A ne Shear St b. hamm w0C = 0 0 1 2 0 0 1 2 0 0 1 2 0 0 1 2 0 0 1 2 0 0 1 2 0 0 1 2 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	tuations may occur due to conditions nda Street Overpass Bridge (tland, Maine 71 (0) (45C) (d Stem Auger (sf) Strength (psf) Strength (ksf) rength (psf) er (visual Descr Visual Descr No sampling conducted in	Boring No.: BB-PRR- Boring No.: BB-PR PIN: Auger ID/OD: 125 mm Sampler: N/A Hammer Wt./Fall: N/A Core Barrel: N/A Definitions: WC = woter content. percent LL = Liquid Limit PL = Plastic Limit PL	Laboratory Testing Results/ AASHTO and Unified Class	- 35 - 40 - 45 <u>- 50</u> <u>- Remc</u>	4D 5D R1	24/15	31.00 34.00 - 36.00 39.00 - 40.19 40.20 - 45.20 	19/20/27/37	47 47 	
Tratif Water than	ication I level re those pre- ne D er: tor: d By: Start/F i g Locati it Spoon successfu h Wall Tu k Core Sa it Spoon	ectings have sent at th epggrt <u>Soi</u> k inish: ion: Sample ube Sample ube Sample ube Sample ube Sample c c c c c c c c c c c c c c c c c c c	re been made a e time measure 	t fines and under cond ments were mode. f Transpor <u>oration Log</u> ty UNITS 1/04 Lt. tempt cample Information c	titions st total t	ON Provide a standard and a standard a stand	cundwate	er fluct : Verar n: Por 38. NGV CME Sol N/A ne Shear St b. hamm w0C = 0 0 1 2 0 0 1 2 0 0 1 2 0 0 1 2 0 0 1 2 0 0 1 2 0 0 1 2 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	tuations may occur due to conditions nda Street Overpass Bridge (tland, Maine 71 (0) (45C) (d Stem Auger (sf) Strength (psf) Strength (ksf) rength (psf) er (visual Descr Visual Descr No sampling conducted in	Boring No.: BB-PRR- Boring No.: BB-PR PIN: Auger ID/OD: 125 mm Sampler: N/A Hammer Wt./Fall: N/A Core Barrel: N/A Definitions: WC = woter content. percent LL = Liquid Limit PL = Plastic Limit PL	Laboratory Testing Results/ AASHTO and Unified Class	- 35 - 40 - 45 <u>- 50</u> <u>- Remc</u>	4D 5D R1	24/15	31.00 34.00 - 36.00 39.00 - 40.19 40.20 - 45.20 	19/20/27/37	47 47 	
ratif Water infinit spring orgge ate S pring finit = Thi = T	ication I level re those pre- ne D er: tor: d By: Start/F i g Locati it Spoon successfu h Wall Tu k Core Sa it Spoon	ectings have sent at th epggrt <u>Soi</u> k inish: ion: Sample ube Sample ube Sample ube Sample ube Sample c c c c c c c c c c c c c c c c c c c	re been made a e time measure 	t fines and under cond ments were mode. f Transpor <u>oration Log</u> ty UNITS 1/04 Lt. tempt cample Information c	titions st total t	ON Provide a standard and a standard a stand	cundwate	er fluct : Verar n: Por 38. NGV CME Sol N/A ne Shear St b. hamm w0C = 0 0 1 2 0 0 1 2 0 0 1 2 0 0 1 2 0 0 1 2 0 0 1 2 0 0 1 2 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	tuations may occur due to conditions nda Street Overpass Bridge (tland, Maine 71 (0) (45C) (d Stem Auger (sf) Strength (psf) Strength (ksf) rength (psf) er (visual Descr Visual Descr No sampling conducted in	Boring No.: BB-PRR- Boring No.: BB-PR PIN: Auger ID/OD: 125 mm Sampler: N/A Hammer Wt./Fall: N/A Core Barrel: N/A Definitions: WC = woter content. percent LL = Liquid Limit PL = Plastic Limit PL	Laboratory Testing Results/ AASHTO and Unified Class	- 35 - 40 - 45 <u>- 50</u> <u>- Remc</u>	4D 5D R1	24/15	31.00 34.00 - 36.00 39.00 - 40.19 40.20 - 45.20 	19/20/27/37	47 47 	
ratif water han iiiie era- pggee spite spp	ication I level re those pre- ne D er: tor: d By: Start/F i g Locati it Spoon successfu h Wall Tu k Core Sa it Spoon	ectings have sent at th epggrt <u>Soi</u> k inish: ion: Sample ube Sample ube Sample ube Sample ube Sample c c c c c c c c c c c c c c c c c c c	re been made a e time measure 	t fines and under cond ments were mode. f Transpor oration Log ty UNITS 1/04 Lt. tempt c c	titions st total t	ON Provide a standard and a standard a stand	cundwate	er fluct : Verar n: Por 38. NGV CME Sol N/A ne Shear St b. hamm w0C = 0 0 1 2 0 0 1 2 0 0 1 2 0 0 1 2 0 0 1 2 0 0 1 2 0 0 1 2 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	tuations may occur due to conditions nda Street Overpass Bridge (tland, Maine 71 (0) (45C) (d Stem Auger (sf) Strength (psf) Strength (ksf) rength (psf) er (visual Descr Visual Descr No sampling conducted in	Boring No.: BB-PRR- Boring No.: BB-PR PIN: Auger ID/OD: 125 mm Sampler: N/A Hammer Wt./Fall: N/A Core Barrel: N/A Definitions: WC = woter content. percent LL = Liquid Limit PL = Plastic Limit PL	Laboratory Testing Results/ AASHTO and Unified Class	- 35 - 40 - 45 <u>- 50</u> <u>- Remc</u>	4D 5D R1	24/15	31.00 34.00 - 36.00 39.00 - 40.19 40.20 - 45.20 	19/20/27/37	47 47 	
ratif water water ill (erain opggeo finite = Spi = Unn finite = Thi = Rose A = S A	ication I level re those pre- ne D er: tor: d By: Start/F i g Locati it Spoon successfu h Wall Tu k Core Sa it Spoon	ectings have sent at th epggrt <u>Soi</u> k inish: ion: Sample ube Sample ube Sample ube Sample ube Sample c c c c c c c c c c c c c c c c c c c	re been made a e time measure 	t fines and under cond ments were mode. f Transpor oration Log ty UNITS 1/04 Lt. tempt c c	titions st total t	ON Provide a standard and a standard a stand	cundwate	er fluct : Verar n: Por 38. NGV CME Sol N/A ne Shear St b. hamm w0C = 0 0 1 2 0 0 1 2 0 0 1 2 0 0 1 2 0 0 1 2 0 0 1 2 0 0 1 2 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	tuations may occur due to conditions nda Street Overpass Bridge (tland, Maine 71 (0) (45C) (d Stem Auger (sf) Strength (psf) Strength (ksf) rength (psf) er (visual Descr Visual Descr No sampling conducted in	Boring No.: BB-PRR- Boring No.: BB-PR PIN: Auger ID/OD: 125 mm Sampler: N/A Hammer Wt./Fall: N/A Core Barrel: N/A Definitions: WC = woter content. percent LL = Liquid Limit PL = Plastic Limit PL	Laboratory Testing Results/ AASHTO and Unified Class	- 35 - 40 - 45 <u>- 50</u> <u>- Remc</u>	4D 5D R1	24/15	31.00 34.00 - 36.00 39.00 - 40.19 40.20 - 45.20 	19/20/27/37	47 47 	
	ication I level re those pre- ne D er: tor: d By: Start/F i g Locati it Spoon successfu h Wall Tu k Core Sa it Spoon	ectings have sent at th epggrt <u>Soi</u> k inish: ion: Sample ube Sample ube Sample ube Sample ube Sample c c c c c c c c c c c c c c c c c c c	re been made a e time measure 	t fines and under cond ments were mode. f Transpor oration Log ty UNITS 1/04 Lt. tempt c c	titions st total t	ON Provide a standard and a standard a stand	cundwate	er fluct : Verar n: Por 38. NGV CME Sol N/A ne Shear St b. hamm w0C = 0 0 1 2 0 0 1 2 0 0 1 2 0 0 1 2 0 0 1 2 0 0 1 2 0 0 1 2 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	tuations may occur due to conditions nda Street Overpass Bridge (tland, Maine 71 (0) (45C) (d Stem Auger (sf) Strength (psf) Strength (ksf) rength (psf) er (visual Descr Visual Descr No sampling conducted in	Boring No.: BB-PRR- Boring No.: BB-PR PIN: Auger ID/OD: 125 mm Sampler: N/A Hammer Wt./Fall: N/A Core Barrel: N/A Definitions: WC = woter content. percent LL = Liquid Limit PL = Plastic Limit PL	Laboratory Testing Results/ AASHTO and Unified Class	- 35 - 40 - 45 <u>- 50</u> <u>- Remc</u>	4D 5D R1	24/15	31.00 34.00 - 36.00 39.00 - 40.19 40.20 - 45.20 	19/20/27/37	47 47 	
$\frac{1}{1}$	ication I level re those pre- ne D er: tor: d By: Start/F i g Locati it Spoon successfu h Wall Tu k Core Sa it Spoon	ectings have sent at th epggrt <u>Soi</u> k inish: ion: Sample ube Sample ube Sample ube Sample ube Sample c c c c c c c c c c c c c c c c c c c	re been made a e time measure 	t fines and under cond ments were mode. f Transpor oration Log ty UNITS 1/04 Lt. tempt c c	titions st total t	ON Provide a standard and a standard a stand	cundwate	er fluct : Verar n: Por 38. NGV CME Sol N/A ne Shear St b. hamm w0C = 0 0 1 2 0 0 1 2 0 0 1 2 0 0 1 2 0 0 1 2 0 0 1 2 0 0 1 2 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	tuations may occur due to conditions nda Street Overpass Bridge (tland, Maine 71 (0) (45C) (d Stem Auger (sf) Strength (psf) Strength (ksf) rength (psf) er (visual Descr Visual Descr No sampling conducted in	Boring No.: BB-PRR- Boring No.: BB-PR PIN: Auger ID/OD: 125 mm Sampler: N/A Hammer Wt./Fall: N/A Core Barrel: N/A Definitions: WC = woter content. percent LL = Liquid Limit PL = Plastic Limit PL	Laboratory Testing Results/ AASHTO and Unified Class	- 35 - 40 - 45 <u>- 50</u> <u>- Remc</u>	4D 5D R1	24/15	31.00 34.00 - 36.00 39.00 - 40.19 40.20 - 45.20 	19/20/27/37	47 47 	
tratif Water rille oggee ate S or ing stars ate S or ing stars or ing	ication I level re those pre- ne D er: tor: d By: Start/F i g Locati it Spoon successfu h Wall Tu k Core Sa it Spoon	ectings have sent at th epggrt <u>Soi</u> k inish: ion: Sample ube Sample ube Sample ube Sample ube Sample c c c c c c c c c c c c c c c c c c c	re been made a e time measure 	t fines and under cond ments were mode. f Transpor oration Log ty UNITS 1/04 Lt. tempt c c	titions st total t	ON Provide a standard and a standard a stand	cundwate	er fluct : Verar n: Por 38. NGV CME Sol N/A ne Shear St b. hamm w0C = 0 0 1 2 0 0 1 2 0 0 1 2 0 0 1 2 0 0 1 2 0 0 1 2 0 0 1 2 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	tuations may occur due to conditions nda Street Overpass Bridge (tland, Maine 71 (0) (45C) (d Stem Auger (sf) Strength (psf) Strength (ksf) rength (psf) er (visual Descr Visual Descr No sampling conducted in	Boring No.: BB-PRR- Boring No.: BB-PR PIN: Auger ID/OD: 125 mm Sampler: N/A Hammer Wt./Fall: N/A Core Barrel: N/A Definitions: WC = woter content. percent LL = Liquid Limit PL = Plastic Limit PL	Laboratory Testing Results/ AASHTO and Unified Class	- 35 - 40 - 45 <u>- 50</u> <u>- Remc</u>	4D 5D R1	24/15	31.00 34.00 - 36.00 39.00 - 40.19 40.20 - 45.20 	19/20/27/37	47 47 	
tratif water than mille per a ogge ate S or ing efinit = Spi = Thi = Rot	ication I level re those pre- ne D er: tor: d By: Start/F i g Locati it Spoon successfu h Wall Tu k Core Sa it Spoon	ectings have sent at th epggrt <u>Soi</u> k inish: ion: Sample ube Sample ube Sample ube Sample ube Sample c c c c c c c c c c c c c c c c c c c	re been made a e time measure 	t fines and under cond ments were mode. f Transpor oration Log ty UNITS 1/04 Lt. tempt c c	titions st total t	ON Provide a standard and a standard a stand	cundwate	er fluct : Verar n: Por 38. NGV CME Sol N/A ne Shear St b. hamm w0C = 0 0 1 2 0 0 1 2 0 0 1 2 0 0 1 2 0 0 1 2 0 0 1 2 0 0 1 2 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	tuations may occur due to conditions nda Street Overpass Bridge (tland, Maine 71 (0) (45C) (d Stem Auger (sf) Strength (psf) Strength (ksf) rength (psf) er (visual Descr Visual Descr No sampling conducted in	Boring No.: BB-PRR- Boring No.: BB-PR PIN: Auger ID/OD: 125 mm Sampler: N/A Hammer Wt./Fall: N/A Core Barrel: N/A Definitions: WC = woter content. percent LL = Liquid Limit PL = Plastic Limit PL	Laboratory Testing Results/ AASHTO and Unified Class	- 35 - 40 - 45 <u>- 50</u> <u>- Remc</u>	4D 5D R1	24/15	31.00 34.00 - 36.00 39.00 - 40.19 40.20 - 45.20 	19/20/27/37	47 47 	

:1/26/2009 Date: ŝ GEOTECH Divi LOGS1.dgn 5 ш 008 \leq ST

<u>ioi</u>		of Transportion Log AT UNITS	_		ocatio				<u>-PRR-102D</u> 10158.00 SSA	Dril		<u>Soi</u>		f Transport oration Log RY UNITS
	• Mann • Maguire		Dat Rig	um: Type:		NGV(CME	45C		d Split Spoon //760 mm	Opero Logge	ator: ed By:		Mann Maguire	
	/20/04-7/20		_	lling № ing ID/		Case HW	ed Wash Boring	Core Barrel: NO Water Level*: None Ob	served				//20/04-7/20	
	oon Sample at		Defi S _U = T _V = q _D =	nitions: Insitu f Pocket i Unconfir	ield Var Torvane S ned Compi	ne Shear Shear St ressive	- Strength (psf) Irength (psf) Strength (ksf)	Definitions: WC = water content, percent LL = Liquid Limit PL = Plastic Limit		Defini D = Sp MD = L U = Th	in Wall T	i Sample ul Split Sp ube Sample	64+20.5. 14	
ſes†		Sample Information	WOH	= weight	of 1401	b. hamme	rength (psf) ar weight of casing	Pl = Plasticity Index G = Grain Size Analysis C = Consolidation Test		V = 1r	ock Core S Isitu Vane Solid Ste	Shear Test		ample Information
	Sample Depth (ft.)	Blows (/6 in. Shear Strength (psf) or ROD (%)	N-value	Casing Blows	Elevation (ft.)	Graphic Log	Visual Descri Refer to BB-PRR-102A for sa	iption and Remarks	Loboratory Testing Results/ AASHTO and Unified Class	o Depth (ft.)	Sample No.	Pen./Rec. (in	•• Sample Depth (ft.)	Blows (/6 in. Shear Strength (psf) or ROD (%)
				SSA			19.0'.				10	24/15	2.50	18/21/14/11
										- 5 -	20	24/14	5.00 - 7.00	2/2/6/6
				57 32 28						- 10 -	30	24/4	10.00 - 12.00	10/8/6/6
				34 24 21	-					- 15 -	40	24/6	14.00 - 16.00	5/2/2/1
	19.00 -			17 26 90	20.37	~~~~~			.000-					
0	21.00	51/26/21/16	47	44 45 29 36	17.37		gravel. (Fill).	coarse SAND, some silt, litti 		- 20 -	R1	13/13	19.50 - 20.58	ROD = N/A%
)	24.00 - 26.00	18/24/15/15	39	53 27 45	- 14.37		and gravel. (Fill).	fine to coarse SAND, trace si ESTIMATED B.O.F. of concrete	. 000-	<u>- 25 -</u> <u>Remar</u>	ks:			
				73 102 103	-		abutment							heel of the concre nte boundaries between s
2	29.00 - 31.00	25/28/31/30	59	25 42 92			Brown, moist, very dense, f gravel, trace silt.	ine to coarse SAND, little	G#176158 A−1−b. SW−SM WC=10.7%	* Wate than	r level r those pre	eadings hav esent at th	e been mode of e time measure	t times and under condit ments were made.
5	34.00 - 36.00	19/20/27/37	47	110 95 59	5.37		Red/brown, moist, dense, fi trace gravel.	ne to coarse SAND, trace silt	.000- G#176159 A-3. SP-5M WC=18.2%	Ма	ine [of Transport
				72 110 150	-						ator: ed By:		US CUSTOMAR MaineDOT G. Lidstone G. Maguire 7/21/04-7/2	
′8 8	39.00 - 40.19 40.20 - 45.20	21/15/50(50) ROD = 76%		170 78 043 ND	-0.83		243 blows for 2".	AND, little silt, trace grave 40 rained METASILTSTONE, (Macwor	A-2-4. SM WC=16.2%	Borin Defini D = Sp MD = U U = Th R = Re	ng Locat itions: olit Spoor Jnsuccesse nin Wall 1 ock Core S	tion: Sample Ful Split Sp Tube Sample Sample	34+62.4.9.	1 Rt.
					-		40.2-41.2' (7:42) 41.2-42.2' (7:17) 42.2-43.2' (7:00) 43.2-44.2' (7:43) 44.2-45.2' (8:31) 96% Recov	ery		<u>\$\$4 =</u>	Solid Ste	e Shear Tes em Auger C C C C C C C C C C C C C C C C C C C	Depth	Blows (/6 in. Shear Strength (5ssi) or ROD (%)
					-5.83	<u>81418</u>	Bottom of Exploration at 4	45 5.20 feet below ground surfac	. 200- e.	d Depth	Samp I e	Len.	Sample (ft.)	Blows Shear Streng (psf) or R00
										• 5				
		ate boundaries between a						Page 1 of 1						
		t times and under condi ments were made.	rions sto	uted. Gr	oundwate	er tlucti	uations may occur due to conditions o	Boring No.: BB-PF	RR-102D	• 10				

lai	ne [Ment O	f Transpor [.] oration Log	tati				da Street Overpass Bridge Iand, Maine	Boring No.:	BB-PRF	
-: 11			US CUSTOMAR	Y UNITS	510	vation		38.7		PIN:	1015 125 mm SSA	8.00
rill pera			Mannebul		Dat		(+ + •)	NGVE		Auger 1D/OD: Sampler:	Standard Spl	it Spoon
	d By: Start/F		(, Maguire 7/20/04-7/20)/04	_	Type: Iling M	lethod:	CME	45C ad Wash Boring	Hammer Wt./Fall: Core Barrel:	63.5 kg/760 NQ	mm
orin	g Locat		34+20.5. 14.		Cas	ing ID/		NW	-	Water Level*: Definitions:	None Observe	d
= Sp = Ur		ful Split Sp	oon Sample att	empt	S _U = T _V =	Insitu F Pocket 1	forvane S	Shear Sti	Strength (psf) rength (psf)	WC = water content, perce LL = Liquid Limit	ent	
= Roc	k Core S	lube Sample Sample e Shear Test	,		Suti	Unconfir ab) = Lat = weight	vane Sh	near Str	Strength (ksf) ength (psf) r	PL = Plastic Limit Pl = Plasticity Index G = Grain Size Analysis		
<u> </u>	id Ste	em Auger	S	ample Information	WOR	= weight	of rods	WOC =	weight of casing	C = Consolidation Test		
:	·	(in	Depth	s in.			6	Log				Laboratory Testing Results/
	le No	en. /Rec.) e De	Blows (/6 Shear Strength (psf) or ROD (%)	N-value	δυ ε	Elevation (ft.)	Graphic l	Visual Descri	ption and Remarks		AASHTO and
- - 	Samp l e	Pen.	Sample (ft.)	Blow Shec Stre (psf	- N	Casing Blows	Е Iev (ft.	Grap			U	nified Cla
	1D	24/15	0.50 - 2.50	18/21/14/11	35	SSA	38.21	***	6" PAVEMENT. Brown, damp, loose to dense.		0.500- . trace	
									silt, pavement in nose of sp	poon, (Fill).		
_			5.00			\vee			Similar to above, loose.			
	2D	24/14	5.00 - 7.00	2/2/6/6	8	10						
						14						
						17	30.71				8.000-	
						36	_					
+			10.00			24			Brown, wet, medium dense, f	ine to coarse silty S	AND, trace	
ļ	3D	24/4	10.00 - 12.00	10/8/6/6	14	18	-		gravel. (Fill).	· · , ·		
ļ		 			<u> </u>	18	-					
		 			<u> </u>	13	-					
ļ			14.00 -			11	-		Similar to above, but very	loose.		
ļ	4D	24/6	14.00 - 16.00	5/2/2/1	4	6	-					
		 				7	-					
						10						
						11			b24 blows for 6".			
			19.50 -			Þ24						
ł	R1	13/13	20+58	ROD = N/A%		NΩ	19.21	XXXXX 24 77 919 24 77 919 24 24 97 91	R1: Concrete. R1: Core Times (min:sec)		19.500-	
						18.11 2015-20.5° (1:20)						
									Losing water below casing, enough water.		20,600	
ŀ							-		Bottom of Exploration at 20 Abandon hole, pulled forward	0.60 feet below groun d to BB-PRR 102B loca	nd surface. Ition	
nis	borinq	g cored t	hrough the I	heel of the concre	ete abu	tment b	uilt in	n 1930				
ati	fication	lines repre	esent approxima	ite boundaries between	soil typ	esi trans	itions m	av be ar	adual.	Page 1 of 1		
ater	· level r	readings hav	ve been made at						uations may occur due to conditions o	-	BB-PRR-1	024
ai	ne [f Transport	tati	on _P	roject:	: Veran	da Street Overpass Bridge	Boring No.:	TP-PR	R-101
_		301	US CUSTOMAR	oration Log RY UNITS		L	ocation	n: Port	Hand, Maine	PIN:	1015	8.00
	er: tor:		MaineDOT G. Lidstone		Ele Dat	vation um:	(ft.)	21.3 NGV		Auger ID/OD: Sampler:	N/A N/A	
	d By:		 Lidstone Maguire 		_	Type:		NGVL N/A	- 	Hammer Wt./Fall:	N/A N/A	
	Start/f a Loca		7/21/04-7/2 [.] 34+62.4, 9. [.]			lling M ing 107		Hana N/A	d Dug Test Pit	Core Barrel: Water Level*:	N/A N/A	
ni	tions:	n Sample	57-02.44 J.		Defi	ing 1D/ nitions: Insitu f			Strength (psf)	Water Level*: Definitions: WC = water content, perce		
th	nsuccessi in Wall 1	ful Split Sp Tube Sample	ooon Sample att	tempt	τ _ν = α _p =	Pocket ' Unconfir	Torvane S ned Compr	Shear St ressive	rength (psf) Strength (ksf)	LL = Liquid Limit PL = Plastic Limit		
In	ck Core S situ Vane Solid Ste	e Shear Tes	•		WOH	= weight	of 1401t	b. hamme	ength (psf) r weight of casing	PI = Plasticity Index G = Grain Size Analysis C = Consolidation Test		
Ţ		in. J		ample Information								Laborator
	No.		Depth	(/6 in. th (%)	<i>"</i>		u io	c Log	Visual Descri	iption and Remarks		Testing Results/ AASHTO
	Sample	en./Rec	ample ft.)	Blows (/6 Shear Strength (psf) or ROD (%	N-value	Casing Blows	Elevation (ft.)	Graphic			u	and nified Cla
-	Ň	- A	Sc C	م ب ر به	ż	ပိထာ	υŰ	ت ***	Embankment grade in front o	f wall.		
						-	1		Brown, dry, fine to coarse some gravel, trace cobbles,			
							1		Brown as above, mixed with silt, some gravel, trace co	black fine to coarse	SAND, little	
							1		<u>, eterr</u> in dee eu			
							17.33		Bottom of Exploration at 4 Block at bottom of pit. Bot	4.00 feet below groun	4.000- d surface. O' bas. Not	
							1		bottom of block wall.			
							1		Elev. 16.57' is ESTIMATED to stone abutment (Falmouth bo above the estimated BDF.			
						╞──	1		JUDIVE THE ESTIMATED BOF.			
		+					1					
							1					
1							1					
							1					
ļ							1					
ļ							1					
		-				-	1					
; •						-	1					

Stratification lines represent approximate boundaries between soil typest transitions may be gradual.	Page 1 of 1
• Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other than those present at the time measurements were made.	Boring No.: TP-PRR-101

Test Pit hand dug by G. Lidstone on North Abutment 20.0' from abutment corner. (right).

emarks

		E OF MAINE OF TRANSPORTATION	R-101 18.00			on: Por	Loca		of Transport oration Log RY UNITS		<u>Soi</u>	ine [ler:	rill
PIN PIN	BH-1015(800)X	OF MAINE F TRANSPC	m	Sampler: Standard Spi Hammer Wt./Fall: 63.5 kg/760 Core Barrel: NO Water Level*: '8.84 m bgs Definitions: "8.84 m bgs We water content. percent LL = Liquid Limit PL = Plastic Limit Pl = Plastic Limit Pl = Plasticity Index G = Grain Size Analysis C = Consolidation Test Standard Spi	45C ed Wash Boring Strength (psf) rength (psf) Strength (ksf) ength (psf)	CME d: Case HW Vane Shear shear St Shear Str Dib, hamme	ype: ing Meth g 1D/OD: tions: nsitu Fiel ocket Torv nconfined () = Lab Van weight of	Rig Dril Casi Defin Su = Tv = ap = Su(la WOH =	.8 Lt.	. Maguire /19/04-7/2 4+97.4, 15 con Sample at	K Finish: 7 hion: 3 hisample fulseSample sample ashear Test	ed By: Start/F ng Locat itions: blit Spoor Jnsuccesse hin Wall 1 bock Core S	gge te fini = Sp = U = Th = Ro = In
	BH-10		Laboratory Testing Results/ AASHTO and nified Class	escription and Remarks U	v	Graphic Log	Casing Blows Flevotion	N-value	Sample Information Shear Strength (psf) or ROD (%) or ROD (%)	Sample Depth (ft.)	Pen./Rec. (in,)	Sample No.	
		STAT DEPARTMENT		st, loose, fine to coarse silty SAND,	gravel, (Fill). Obstruction at 4		27 23	44 6	10/13/31/26 3/4/2/5	2.00 - 4.00 5.00 - 7.00	24/18	1D 2D	-
			G#176155 A-4. SM WC=21.3%	ium dense, fine silty SAND, trace trace of gravel, with iron staining		39 	29 43 95 152	57	57/47/10/10	9.00 - 11.00	24/17	30	_
	MBER	URE	A-1-D. SW-SM	fine SAND, some silt, with iron	staining. (fill) Red brown, wet,	99 99	191 81 177 205 141 122 157	65	20/65/49/40	14.00 - 16.00 19.00 - 21.00	24/16	4D	-
DATE	JAN 2009		WC=8.4%	h iron staining, (Fill), D.F. of ashlar stone abutment, 	El. 16.57′estin El. 14.76′esti		203 184 200 226 138 265	43	28/22/21/30	21.00	24/16	60	-
		WENTWORTH BY R. NAOUS TEAM S			awashed Ahead Similar to above		438 516 87 9WA 355 621 67 6WA 55		38/40/60(25)	29.00 - 30.08	13/4	70	-
	DESIGN2-DETAILED2 DESIGN3-DETAILED3 RFVISIONS 1	PROJ. MANAGER J. DESIGN-DETAILED CHECKED-REVIEWED	G#176157 A-3, SP-SM WC=15,5%	fine to coarse SAND, trace silt,			57 50 68 70 73 93	51	19/26/25/26	34.00 - 36.00	24/14	80	-
	COUNTY	ASS R.R.		. Recovery	Red brown, wet, Grey, wet, very		61 -1 140 NO -2	80	16/28/52/50(100) ROD = 82%	39.00 - 40.92 40.90 - 45.90	23/13 60/60	9D-A 9D-B 9D-C R1	-
S	LAND	ERP		45.900- at 45.90 feet below ground surface.	Bottom of Explo	51 24/12	r- 						
LOGS	UMBER	ET C ATL		Page 1 of 1	radual.	; may be gi	transitio	soil type	fill of older, pre ate boundaries between a t times and under condi	sent approxim e been made a	lines repre	ification er level r	or '
BORING	PORTLAND C		01	Boring No.: BB-PRR-1			2. or ounc	۵۲۵ د ۵۲۱	t fimes and under condition	time measure	esent of the	those pr	
MBER		SHEE											

OF 36

APPENDIX A

Photos

APPENDIX B

Boring Logs

Ι	Maine	-		of Transporta	ation	F	Project:	Veran	da Street Overpass Bridge	Boring No.:	BB-P	RR-101	
			Soil/Rock Explo								101	58.00	
Drille	r:		MaineDOT		Fle	vation ((ft.)	38.3	9	Auger ID/OD:	125 mm SSA		
Opera			C. Mann		_	um:	,	NG ^v		Sampler:	Standard Split	Spoon	
<u> </u>	ed By:		K. Maguire		_	Type:			E 45C	Hammer Wt./Fall:	63.5 kg/760 mm		
	Start/Fin		7/19/04-7/20/04			lling Me	thod:		ed Wash Boring	Core Barrel:			
	g Locati		34+97.4, 15.8 L		_	sing ID/		HW		Water Level*:	~8.84 m bgs of	n 7/20/04	
Definitio	ons:		, i., i.o.o L		Defir	nitions:				Definitions:	- U		
MD = U U = Thi R = Roo V = Insi	it Spoon Sa Insuccessfu n Wall Tub ck Core Sa tu Vane Sh Solid Stem	ul Split Spoo e Sample mple near Test	on Sample attempt		T _v = q _p = S _{u(la} WOF	Pocket To Unconfine ab) = Lab H = weight	Vane Shea t of 140lb.	ear Stren essive Str ar Streng hammer	gth (psf) ength (ksf)	WC = water content, percen LL = Liquid Limit PL = Plastic Limit PI = Plasticity Index G = Grain Size Analysis C = Consolidation Test	t		
				Sample Information								Laboratory	
Depth (ft.)	Sample No.	Pen./Rec. (in.)	Sample Depth (ft.)	Blows (/6 in.) Shear Strength (psf) or RQD (%)	N-value	Casing Blows	Elevation (ft.)	Graphic Log	Visual Descr	iption and Remarks		Testing Results/ AASHTO and Unified Clas	
0						SSA	37.89		6" PAVEMENT.		0.500		
			+ +				-					1	
			ļ				4		Prown down down fing to serve	SAND trace silt littl-	wal (Fill)		
	1D	24/18	2.00 - 4.00	10/13/31/26	44				Brown, damp, dense, fine to coarse	SAND, trace sill, little gra	avel, (F111).		
							1						
			+ +			$\left \cdot \right $	-		Obstruction at 4.0' bgs.				
5 -						$ \vee $	4		_	find to oppres sile. CAND	traga bright 1		
Ĩ	2D	24/15	5.00 - 7.00	3/4/2/5	6	27			Dark brown, damp to moist, loose, 1 and gravel, (Fill).	time to coarse stity SAND,	uace prick, wood		
					1	23	1						
			+ +				-						
			ļ			30	4						
						40							
	3D	24/17	9.00 - 11.00	57/47/10/10	57	29	29.39	'	Olive brown, moist, medium dense,			G#176155 A-4, SM	
10 -							-		sand, trace of gravel, with iron stain	ing and sand layers. (Fill).		WC=21.3%	
						43	4						
						95							
						152	1						
						101	1						
			<u> </u>			191	4		Red brown, wet, dense, fine SAND.	some silt with iron staini	ng (fill)		
15	4D	24/16	14.00 - 16.00	15/30/35/26	65	81			ree orown, wer, dense, nile SAIND,	, some sin, with non stalli	н <u>ь</u> . (ни).		
15 -						177	1						
			+ +			205	1						
						205	4						
						141							
						122							
	50	24/15	10.00 21.00	20/65/40/40	114	157	19.39	1	Red brown, wet, very dense, fine to	coarse SAND some grave	— — — — 19.000 el. little silt with	0#170150	
20 -	5D	24/13	19.00 - 21.00	20/65/49/40	114	157	4		iron staining. (Fill).	course or not, some grave	a, mue sitt with	A-1-b, SW-S WC=8.4%	
						203							
						184			El. 16.57' estimated B.O.F. of ashlar	r stone abutment			
			+ +			200	16.39	'				1	
						200	4		El. 14.76' estimated B.O.F. of 1930	concrete abutment			
						226	14.00		1	concrete adutificiti.	24.000		
	6D	24/16	24.00 - 26.00	28/22/21/30	43	138	1 ^{14.39}		Brown, wet, dense, fine to coarse SA	AND, trace gravel and silt.	24.000	1	
25 _	rks:							··· 0.0 ···		-			

Remarks:

Boring BB-PRR-101 sampled backfill of older, pre-1930 ashlar stone abutments.

Stratification lines represent approximate boundaries between soil types; transitions may be gradual.	Page 1 of 2
* Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other than those present at the time measurements were made.	Boring No.: BB-PRR-101

Ι	Maine	-		of Transporta	ation		Project:	Veran	da Street Overpass Bridge	Boring No.:	BB-PI	RR-101
			Soil/Rock Explo				Location	n: Port	and, Maine	PIN:	101:	58.00
Drille	r:		MaineDOT		Elev	vation	(ft.)	38.3	9	Auger ID/OD:	125 mm SSA	
Opera			C. Mann		_	um:	()	NG		Sampler:	Standard Split	Spoon
	ed By:		K. Maguire		_	Type:			E 45C	Hammer Wt./Fall:	63.5 kg/760 mi	<u>`</u>
	Start/Fin	ish:	7/19/04-7/20/04	L			ethod:		d Wash Boring	Core Barrel:	NQ	
	g Locati		34+97.4, 15.8 L			ing ID		HW		Water Level*:	~8.84 m bgs or	7/20/04
Definitio	-		5179711, 10.0 2		Defin	nitions:	eld Vane S		noth (nof)	Definitions: WC = water content, percent	-	1120101
MD = U U = Thi R = Ro V = Insi		Il Split Spor e Sample mple ear Test	on Sample attempt		T _v = q _p = S _{u(la} WOH	Pocket Unconfii (b) = Lab	Torvane Sh ned Compre Vane She nt of 140lb.	ear Strer essive St ar Streng hammer	ength (ksf)	LL = Liquid Limit PL = Plastic Limit PI = Plasticity Index G = Grain Size Analysis C = Consolidation Test		
				Sample Information	1			1				Laboratory
Depth (ft.)	Sample No.	Pen./Rec. (in.)	Sample Depth (ft.)	Blows (/6 in.) Shear Strength (psf) or RQD (%)	N-value	Casing Blows	Elevation (ft.)	Graphic Log	Visual Desci	ription and Remarks		Testing Results/ AASHTO and Unified Class
25						265		0.00 0.00 0.00				
						438		6. 80 g				
						516	1					
						87	-	80.00	aWashed Ahead			
			+			_aWA	-	00.0.00	Similar to above.			
30 -	7D	13/4	29.00 - 30.08	38/40/60(25)		355	_	0.00				
-						621						
						67]	6000				
						_awa 55	-	80.00 00.00				
							_	60.00 00.00 00.00 00.00				
						57	_	9.000	Drown wat	TTO SAND treas 14 t	araval	C#17(157
25	8D	24/14	34.00 - 36.00	19/26/25/26	51	50		ອ້ອງ ແລະ ເຊິ່ງ ແລະ ເຊິ່ງ ເ ແລະ ເຊິ່ງ ເຊິ່ງ ແລະ ເຊິ່ງ	Brown, wet, very dense, fine to coa	ise SAIND, trace silt, trace	giavei.	G#176157 A-3, SP-SM
35 -						68	1	8000				WC=15.5%
						70	-	0.00				
							_	0.000				
						73		୧:୫ ୦. ନୁସ୍କ ୧୦୦୦ ମୁସ୍କ ନ				
						93						
	9D-A	23/13	39.00 - 40.92	16/28/52/50(100)	80	\61	/ -1.11		Similar to above.			
40 -	<u>9D-В</u> 9D-С	60/60	40.90 - 45.90	RQD = 82%		140	1		Red brown, wet, very dense, fine to			
	R1	20,00				NQ.	-2.51	2111	Grey, wet, very dense, fine to coars	-	40.900	
							_		Bedrock: Grey and white, fine grain Formation).	ned METASILTSTONE, (N	Macworth	
								Ref 1	R1: Core Times (min:sec)			
								616	40.9-41.9 (9:45) 41.9-42.9 (12:00)			
							-		42.9-43.9 (10:15) 43.9-44.9 (10:23)			
45 -							_		44.9-45.9 (11:07) 100% Recovery			
						$\square \forall$	-7.51	<u>A</u> LD			45.900	
		_	Ι Τ				,		Bottom of Exploration at	45.90 feet below ground	surface.	
							-					
							_					
							_					
50												
SU Rema	arks:		<u> </u>				_	1				1

Boring BB-PRR-101 sampled backfill of older, pre-1930 ashlar stone abutments.

Stratification lines represent approximate boundaries between soil types; transitions may be gradual.	Page 2 of 2
* Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other than those present at the time measurements were made.	Boring No.: BB-PRR-101

Ν	Maine	-		of Transporta	tion	F	Project:	Verand	da Street Overpass Bridge	Boring No.:	BB-PR	R-102A
			Soil/Rock Explo				ocation	n: Port	land, Maine	PIN:	101:	58.00
Drille	r:		MaineDOT		Ele	vation (ft.)	38.7	1	Auger ID/OD:	125 mm SSA	
Opera			C. Mann		_	um:	- /	NGV		Sampler:	Standard Split	Spoon
	ed By:		K. Maguire		_	Type:			E 45C	Hammer Wt./Fall:	63.5 kg/760 mi	<u>^</u>
	Start/Fin	ish:	7/20/04-7/20/04			ling Me	thod:		ed Wash Boring	Core Barrel:	NQ	
	g Locati		34+20.5, 14.1 L		_	sing ID/		NW	<u> </u>	Water Level*:	None Observed	1
MD = U U = Thi R = Roo V = Insi	it Spoon Sa	Il Split Spoo e Sample mple ear Test	on Sample attempt		S _u = T _V = q _p = S _{u(l} ;	Pocket To Unconfine	Vane Shea	ear Stren essive Str ar Strengt	gth (psf) ength (ksf)	Definitions: WC = water content, percent LL = Liquid Limit PL = Plastic Limit PI = Plasticity Index G = Grain Size Analysis C = Consolidation Test		
			1	ample Information		<u> </u>	1	T				Laboratory
Depth (ft.)	Sample No.	Pen./Rec. (in.)	Sample Depth (ft.)	Blows (/6 in.) Shear Strength (psf) or RQD (%)	N-value	Casing Blows	Elevation (ft.)	Graphic Log	Visual Descri	ption and Remarks		Testing Results/ AASHTO and Unified Clas
0	1D	24/15	0.50 - 2.50	18/21/14/11	35	SSA	38.21		6" PAVEMENT. Brown, damp, loose to dense, fine to of spoon, (Fill).	o coarse SAND, trace silt, j	0.500- pavement in nose	
5 -	2D	24/14	5.00 - 7.00	2/2/6/6	8	10	-		Similar to above, loose.			
						14 17 36 24	- 30.71					
10 -	3D	24/4	10.00 - 12.00	10/8/6/6	14	18 18			Brown, wet, medium dense, fine to o	coarse silty SAND, trace gr	avel. (Fill).	
	4D	24/6	14.00 - 16.00	5/2/2/1	4	13 11 6	-		Similar to above, but very loose.			
15 -						7 10	-					
						11 b ₂₄			b24 blows for 6".			
20 -	R1	13/13	19.50 - 20.58	RQD = N/A%		NQ	19.21		R1: Concrete. R1: Core Times (min:sec) 19.5-20.5 (8:43) 20.5-20.6 (1:20) Losing water below casing, with rec	irculation can't pump enoug	19.500 gh water. 20.600	
							-		Bottom of Exploration at Abandon hole, pulled forward to BE	20.60 feet below ground s B-PRR 102B location		

This boring cored through the heel of the concrete abutment built in 1930.

Stratification lines represent approximate boundaries between soil types; transitions may be gradual.	Page 1 of 1
* Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other than those present at the time measurements were made.	Boring No.: BB-PRR-102A

I	Maine									Boring No.:	BB-PR	R-102B
		Soil/Rock Exploration Log US CUSTOMARY UNITS					_ocatior	1: Port	land, Maine	PIN:	101:	58.00
Drille	r.		MaineDOT		Fle	vation ((fft)	38.7	1	Auger ID/OD:	125 mm	
Opera			C. Mann		_	um:		NG		Sampler:	N/A	
-	ed By:		K. Maguire		_	Type:			E 45C	Hammer Wt./Fall:	N/A	
	Start/Fir	ish [.]	7/21/04-7/21/0)4	_	ling Me	thod.		d Stem Auger	Core Barrel:	N/A	
	g Locat		34+15, 15.6 Lt		_	ing ID/		N/A	-	Water Level*:	N/A	
Definiti	ons:		51+15, 15.0 E		Defir	nitions:				Definitions:	14/11	
MD = U U = Th R = Ro V = Ins	lit Spoon S Jnsuccessfi in Wall Tub ick Core Sa itu Vane SI Solid Stem	ul Split Spo e Sample mple near Test	on Sample attemp	t	T _v = q _p = S _{u(la} WOH	Pocket To Unconfination (b) = Lab	Vane Shea t of 140lb.	ear Strer ssive St ar Streng hammer	gth (psf) ength (ksf)	WC = water content, percent LL = Liquid Limit PL = Plastic Limit PI = Plasticity Index G = Grain Size Analysis C = Consolidation Test		
				Sample Information		1						Laboratory
Depth (ft.)	Sample No.	Pen./Rec. (in.)	Sample Depth (ft.)	Blows (/6 in.) Shear Strength (psf) or RQD (%)	N-value	Casing Blows	Elevation (ft.)	Graphic Log	Visual Descr	iption and Remarks		Testing Results/ AASHTO and Unified Class.
0						SSA			No sampling conducted in boring.			
							-					
- 5 -							33.71		Bottom of Exploration at	5.00 feet below ground su	5.000 rface	
							-		Casing very crooked, abandon hole.	5.00 feet below ground su	i iucci	
							1					
							-					
- 10 -												
10												
							1					
							-					
							4					
							1					
- 15 -			+				-					
							4					
							1					
							-					
							4					
- 20												
- 20 -							1					
			+				1					
							-					
			+				1					
25 	arks:		<u> </u>	<u> </u>								
<u></u>												
Stratifie	cation lines	represent a	pproximate bound	daries between soil types; tra	nsitions n	av he ar	adual			Page 1 of 1		
								1910 0000	due to conditions other	-		
than	those prese	ent at the tin	een made at times ne measurements	es and under conditions stated s were made.	. Ground	water Tiu	ะเนลแบทร ที	iay uccu	aue to conditions other	Boring No.:	BB-PRR-	102B

L

Ι	Maine	e Dep	artment	of Transporta	ation	F	Project:	Veran	da Street Overpass Bridge	Boring No.:	BB-PR	R-102C
		Soil/Rock Exp US CUSTOM/			l	ocation	1: Port	land, Maine	PIN:	101:	58.00	
Drille	r:		MaineDOT		Elev	vation (ft.)	38.7	1	Auger ID/OD:	125 mm	
Opera			C. Mann			um:	,	NG		Sampler:	N/A	
-	ed By:		K. Maguire			Type:			E 45C	Hammer Wt./Fall:	N/A	
	Start/Fin	ish:	7/21/04-7/21/0)4	_	ling Me	thod:		d Stem Auger	Core Barrel:	N/A	
	g Locati		34+13.9, 15.1		_	ing ID/		N/A	-	Water Level*:	N/A	
Definiti	ons:		51115.9, 15.1	Bt.	Defir	nitions:				Definitions:	14/21	
MD = U U = Thi R = Ro V = Ins	lit Spoon Si Jnsuccessfi in Wall Tub ck Core Sa itu Vane Sh Solid Stem	ul Split Spo e Sample mple near Test	on Sample attemp	t	T _v = q _p = S _{u(la} WOH	Pocket To Unconfine (b) = Lab	Vane Shea of 140lb. I	ear Stren essive Str ar Streng hammer	gth (psf) ength (ksf)	WC = water content, percent LL = Liquid Limit PL = Plastic Limit PI = Plasticity Index G = Grain Size Analysis C = Consolidation Test		
		-		Sample Information								Laboratory
Depth (ft.)	Sample No.	Pen./Rec. (in.)	Sample Depth (ft.)	Blows (/6 in.) Shear Strength (psf) or RQD (%)	N-value	Casing Blows	Elevation (ft.)	Graphic Log	Visual Descr	iption and Remarks		Laboratory Testing Results/ AASHTO and Unified Class.
0						SSA			No sampling conducted in boring.			
- 5 -							31.71		Bottom of Exploration at Obstruction. Could not auger throug	7.00 feet below ground su h, abandon hole.	7.000 rface.	
- 20 -							-					
Rema	arks:		<u></u>	<u>.</u>	1		-	1	1			
* Water	r level read	ings have b	een made at time	daries between soil types; tra				nay occu	r due to conditions other	Page 1 of 1 Boring No.:	BB-DDD	102C
than f	those prese	ent at the tir	ne measurements	s were made.							DD-PKK-	102C

L

I	Main	e Dep	artment	of Transporta	tion		Projec	: Vera	da Street Overpass Bridge Boring No.: <u>B</u>	B-PRR-102D	
			Soil/Rock Expl US CUSTOMA	-			Locatio	on: Po	land, Maine PIN:	10158.00	
Drille	r:		MaineDOT		Elev	vation	(ft.)	39.	7 Auger ID/OD: 125 mm	1 SSA	
Oper			C. Mann		Dat		()			d Split Spoon	
<u> </u>	ed By:		K. Maguire		_	Type:				/760 mm	
	Start/Fi	nish:	7/20/04-7/20/04	4	_	Drilling Method: Cased Wash Boring Core Barrel: NQ					
	ng Locat		34+17.6, 17.7 1		_	ing ID		HV		bserved	
Definiti	ons:		,		Defin	itions:			Definitions:		
MD = U U = Th R = Ro V = Ins	lit Spoon S Jnsuccesst in Wall Tut ick Core Sa itu Vane S Solid Stem	ful Split Spo be Sample ample hear Test	on Sample attempt	t	T _V = q _p = S _{u(la} WO⊦	Pocket Unconfi (b) = Lal	Torvane S ned Comp b Vane Sh ht of 1401	hear Stre ressive S ear Stren). hamme	rength (ksf) PL = Plastic Limit		
				Sample Information			_			Laboratory	
Depth (ft.)	Sample No.	Pen./Rec. (in.)	Sample Depth (ft.)	Blows (/6 in.) Shear Strength (psf) or RQD (%)	N-value	Casing Blows	Elevation	Graphic Log	Visual Description and Remarks	Testing Results/ AASHTO and Unified Class.	
0						SSA			Refer to BB-PRR-102A for sampling information on upper 19.0'.		
							-				
- 5 -											
						$\left \right\rangle$	Η				
- 10 -						V	_				
						57	_				
						32	_				
						28 34	-				
						24	-				
- 15 -						21	_				
						17	-				
						26	-				
						90	1				
	1D	24/10	19.00 - 21.00	51/26/21/16	47	44	20.3	7	Brown, wet, dense, fine to coarse SAND, some silt, little gravel. (Fill).	-19.000-	
- 20 -						45					
						29	1	_			
						36	17.3		El 17.39' (depth bgs 21.98') ESTIMATED B.O.F. of ashlar stone abutmen	-22.000- nt	
						53					
25	2D	24/9	24.00 - 26.00	18/24/15/15	39	27			Light brown, moist, dense, fine to coarse SAND, trace silt and gravel. (Fi	11).	
<u>Rema</u>	arks:										
Stratific	cation lines	represent a	approximate bound	aries between soil types; trar	nsitions m	nav be o	iradual		Page 1 of 2		

oralinouton into represent approximate boundaries between son types, administration may be gradual.	l ugo l ol 1
* Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other than those present at the time measurements were made.	Boring No.: BB-PRR-102D

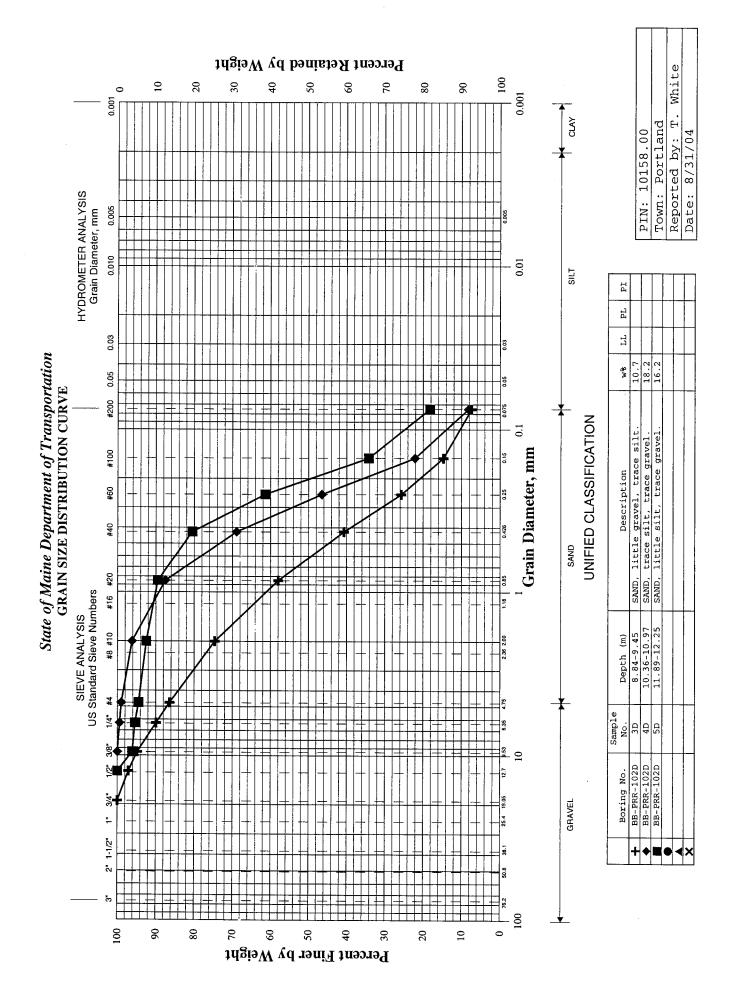
Maine Department of Transportation					On Project: Veranda Street Overpass Bridge				ing No.:	BB-PRR-102D				
			Soil/Rock Expl US CUSTOMA			l	ocation	1: Port	and, Maine PIN:	:	10158.00			
Drille	r:		MaineDOT		Ele	vation (ft.)	39.3	7 Auger	er ID/OD:	125 mm SSA			
Oper	ator:		C. Mann		_	um:	,	NG			Standard Split S	poon		
Logg	ed By:		K. Maguire		Rig	Type:		СМ	E 45C Hamm		63.5 kg/760 mn			
Date	Start/Fir	nish:	7/20/04-7/20/04	4		ling Me	thod:	Cas	d Wash Boring Core I	Barrel:	NQ			
Borir	ng Locat	ion:	34+17.6, 17.7 1	t.	_	ing ID/		HW	-	r Level*:	None Observed			
Definitions: D = Split Spoon Sample MD = Unsuccessful Split Spoon Sample attempt U = Thin Wall Tube Sample R = Rock Core Sample V = Insitu Vane Shear Test SSA = Solid Stem Auger				Defir S _U = T _V = q _p = S _{u(la} WOH	hitions: Insitu Fie Pocket To Unconfine (b) = Lab ' H = weight	ld Vane Shorvane Shorvane Shore orvane Shore Vane Shore of 140lb. I	near Stre ear Strer essive St ar Streng hammer	Definitio ngth (psf) WC = w yth (psf) LL = Liq ength (ksf) PL = Pla h (psf) Pl = Pla G = Gra G = Gra						
				Sample Information		i – –	1					Laboratory		
Depth (ft.)	Sample No.	Pen./Rec. (in.)	Sample Depth (ft.)	Blows (/6 in.) Shear Strength (psf) or RQD (%)	N-value	Casing Blows	bigger Bigger					Testing Results/ AASHTO and Unified Class.		
25						45	14.37		EI. 14.76' (depth of 24.6') ESTIMATED B.O	D.F. of concrete abuth	-25.000-			
							-							
						73	4							
						102	1							
						103	1							
	3D	24/12	20.00 21.00	25/28/21/20	50	25	-		Brown, moist, very dense, fine to coarse SAN	Brown, moist, very dense, fine to coarse SAND, little gravel, trace silt. G#176				
- 30 -	30	24/12	29.00 - 31.00	25/28/31/30	59	42	1				A-1-b, SW-SM WC=10.7%			
						92	1							
						110	1							
							-							
	4D	24/15	24.00 26.00	10/20/27/27	47	95	5.37		Red/brown, moist, dense, fine to coarse SAN	ND trace silt_trace gr		G#176159		
- 35 -	4D	24/15	34.00 - 36.00	19/20/27/37	47	59 72	-		Red orown, moist, dense, mie to coarse 5/4/v	ND, trace sin, trace gr	aver.	A-3, SP-SM WC=18.2%		
						110		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0						
						150	1	80000 80000 80000 80000						
						170		8 ⁶ 6 ⁶ 6 α ^{.00} ,00 0						
	5D	14.3/8	39.00 - 40.19	21/15/50(50)		78	1		Grey, wet, fine to coarse SAND, little silt, tra	race gravel.		G#176160 A-2-4, SM		
- 40 -	R1	60/58	40.20 - 45.20	RQD = 76%		a43 NQ	-0.83	Sec.	A43 blows for 2". Bedrock: Grey white, fine grained METASII	I TSTONE (Magwor	40.200-	WC=16.2%		
									R1: Core Times (min:sec) 40.2-41.2 (7:42)	ILISIONE, (Macwor	ui Formation).			
									41.2-42.2 (7:17) 42.2-43.2 (7:00)					
							1		42.2-43.2 (7:00) 43.2-44.2 (7:43) 44.2-45.2 (8:31) 96% Recovery					
							1		44.2-45.2 (8:51) 90% Recovery					
- 45 -						$\vdash \forall \vdash$	-5.83	81116	Pottom of Exploration at 45 30 for	of balays ground sur	45.200-			
							-		Bottom of Exploration at 45.20 fee	et below ground sur	lace.			
							-							
							-							
50														
<u>50</u> Rema	arks:	1	1			L		1						
									<u>.</u>					
Stratific	cation lines	represent a	pproximate bound	aries between soil types; trai	nsitions n	nay be gra	idual.		F	Page 2 of 2				
* Wate than	r level read those prese	ings have be ent at the tin	een made at times ne measurements	and under conditions stated were made.	. Ground	dwater fluo	ctuations m	nay occu	due to conditions other	Boring No.:	BB-PRR-1	02D		

Maine Department of Transportation			F	Project: Veranda Street Overpass Bridge			Boring No.:	TP-PF	R-101			
		-	Soil/Rock Expl	loration Log			_ocatior	: Portl	and, Maine	PIN:	1015	58.00
Drille	r:		MaineDOT		Elev	Elevation (ft.) 21.33			3	Auger ID/OD:	N/A	
Opera			G. Lidstone		Datu			NGV		Sampler:	N/A	
Logg	ed By:		K. Maguire		Rig	Type:		N/A		Hammer Wt./Fall:	N/A	
Date Start/Finish: 7/21/04-7/21/04 Drilling					ing Me	thod:	Hand	l Dug Test Pit	Core Barrel:	N/A		
	g Locati	ion:	34+62.4, 9.1 R	kt.		ing ID/	OD:	N/A		Water Level*:	N/A	
Definitions: D = Split Spoon Sample MD = Unsuccessful Split Spoon Sample attempt U = Thin Wall Tube Sample R = Rock Core Sample V = Insitu Vane Shear Test SSA = Solid Stem Auger				Definitions: $S_{U} = Insitu Field Vane Shear Strength (psf) T_{V} = Pocket Torvane Shear Strength (psf) q_{p} = Unconfined Compressive Strength (ksf) S_{U(lab)} = Lab Vane Shear Strength (psf) WOR = weight of 140lb. hammer WOR = weight of rods. WOC = weight of casing$					Definitions: WC = water content, percent LL = Liquid Limit PL = Plastic Limit PI = Plasticity Index G = Grain Size Analysis C = Consolidation Test			
				Sample Information								Laboratory
Depth (ft.)	Sample No.	Pen./Rec. (in.)	Sample Depth (ft.)	Blows (/6 in.) Shear Strength (psf) or RQD (%)	N-value	Casing Blows	Elevation (ft.)	Graphic Log	Visual Descr		Testing Results/ AASHTO and Unified Class.	
0									Embankment grade in front of wall.			
							1		Brown, dry, fine to coarse SAND, li	ttle silt, trace brick, some g	ravel, trace	
							-		cobbles, trace slag and coal. Brown as above, mixed with black f	ine to coarse SAND. little	silt, some gravel.	
							1		trace cobbles, slag and coal.	· · · · · · · · · · · · · · · · · · ·	·,···,	
											4.000	
							17.33		Bottom of Exploration at	4.00 feet below ground s	4.000-	
- 5 -							1		Block at bottom of pit. Bottom of To	m of block wall.		
							-			TIMATED to be the BOF of the older ashlar stone abutment). Test pit terminated 9" above the estimated BOF.		
									(rannoutir bound). Test pit terminat	eu / above the estimateu i		
							-					
- 10 -							4					
							1					
							-					
			_				_					
10												
- 15 -							1					
							1					
							-					
							1					
							1					
- 20 -							-					
							4					
							1					
							-					
25												
<u>Rema</u>												
Test	Pit hand o	dug by G	. Lidstone on No	orth Abutment 20.0' from	abutmer	nt corne	r, (right).					

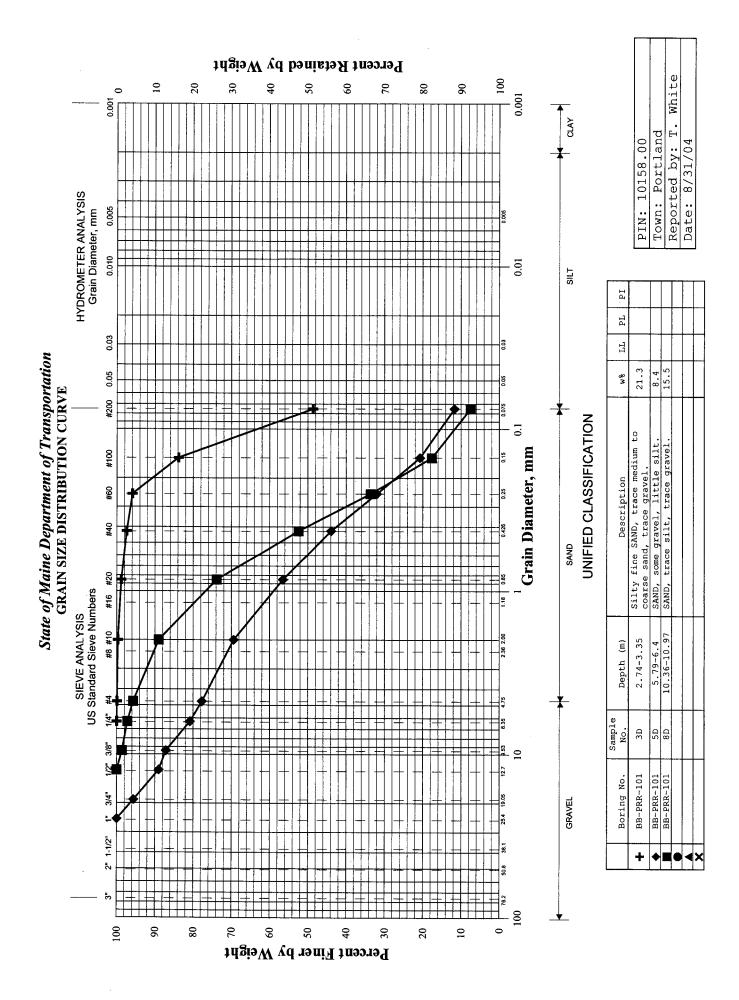
Stratification lines represent approximate boundaries between soil types; transitions may be gradual.	Page 1 of 1
* Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other than those present at the time measurements were made.	Boring No.: TP-PRR-101

APPENDIX C

Laboratory Data


State of Maine - Department of Transportation Laboratory Testing Summary Sheet

Town(s):	Project Number: 10158.00											
Boring & Sample Station Offset Depth Refere					G.S.D.C.	W.C.			Classification			
Identification Number	(Feet)	(Feet)	(Feet)	Number	Sheet				Unified	AASHTO		
BB-PRR-102D, 3D		. , , 17.7 Lt.	29.0-31.0	176158	1	10.7			SW-SM	A-1-b	0	
BB-PRR-102D, 4D		17.7 Lt.	34.0-36.0	176159	1	18.2			SP-SM		0	
BB-PRR-102D, 5D		17.7 Lt.	39.0-40.19	176160	1	16.2			SM	A-2-4	II	
BB-PRR-101, 3D	34+97.4	15.8 Lt.	9.0-11.0	176155	2	21.3			SM	A-4		
BB-PRR-101, 5D	34+97.4	15.8 Lt.		176156	2	8.4			SW-SM		0	
BB-PRR-101, 8D	34+97.4	15.8 Lt.	34.0-36.0	176157	2	15.5			SP-SM	A-3	0	
,											-	
		}										
	ļ											
	41		·					4.4-	40 Th: :	161		
Classification of		•				-						
is followed by the			-	•	-			• •	•	• •		
			s based upon th									
SDC = Grain Size Distr /C = water content as d			-			STM D	422-63	3 (Rea	approved 19	98)		


WC = water content as determined by AASHTO T 265-93 and/or ASTM D 2216-98

LL = Liquid limit as determined by AASHTO T 89-96 and/or ASTM D 4318-98

PI = Plasticity Index as determined by AASHTO 90-96 and/or ASTM D4318-98

SHEET NO.1

APPENDIX D

Nondestructive Testing Report, NDT Corporation

LAVRA KRISINSEI FILE COPY

NONDESTRUCTIVE TESTING

VERANDA STREET BRIDGE

Portland, Maine

Prepared For

Maine Department of Transportation

September, 2004

M-NDT CORPORATION

NDT CORPORATION

September 24, 2004

Mrs. Laura Krusinski, PE Maine Department of Transportation Bridge Program 16 State House Station Augusta, Maine 04333-0016

Dear Mrs. Krusinski:

NDT Corporation conducted Ground Penetrating Radar (GPR) and Sonic/Ultrasonic (Sonic) survey of the Veranda St. Bridge abutments in Portland, Maine to determine the approximate dimensions of the concrete and masonry abutments. Field work was conducted on August 31, 2004

If you have any questions or need additional information, contact Paul Fisk at 508-754-0147.

Sincerely, NDT Corporation

aul In

Paul S. Fisk

	SEP 27 2004
Maina	Dept. On the control of

67 MILLBROOK STREET, WORCESTER, MA 01606 Tel (508) 754-0417 Fax (508) 754-0418

Table of Contents

1.0	Sumn	nary	2
2.0	Metho	ods of Investigation	2
	2.1	Survey Control	
	2.2	Ground Penetrating Radar	
	2.3	Sonic/Ultrasonic Measurements	
3.0	Discu	ssion of Results	3
Figur	es		
Appe	ndix 1	Ground Penetration Radar	
Appe	ndix 2	Sonic/Ultrasonic Testing	

1.0 Summary

A Ground Penetrating radar (GPR) and Sonic/Ultrasonic nondestructive testing investigation was conducted on August 31, 2004. The objective of the investigation was to determine the approximate thickness of the concrete and masonry abutments of the Veranda St. Bridge over the St. Lawrence and Atlantic Railroad in Portland, Maine. GPR data was used to determine the thickness of the abutment and wing walls while Sonic/Ultrasonic frequency/reflection measurements were used to calibrate the GPR and also determine thickness of the abutments and wing walls.

2.0 Methods of Investigation

2.1 Location and Survey Control

The general location of the Veranda Street Bridge is shown on Figure 1. Ground penetrating radar (GPR) lines (Figures 2 and 4) were collected vertically from the top of the abutment down to the ground surface. The western most corners of the abutment were used as station 0+00. GPR lines were taken every 10 feet. Sonic/ultrasonic measurements were taken from top to bottom at approximately 2 foot increments along selected GPR lines.

2.2 Ground Penetrating Radar (GPR)

GPR data are acquired using a digital system coupled with a 400 MHz antenna. The GPR method uses a pulsed electromagnetic signal that is transmitted to and reflected by a target back to the point of transmission. The wave transmission and reflection is dependent on the electrical (dielectric constant and conductivity) properties of the material(s) being investigated. Since these electrical properties are highly dependent on moisture content, saturated or moist conditions provide both strong reflections and high attenuation. Metal reinforcing, pipes and beams also produce strong reflections of radar signals. GPR results are qualitative and depth interpretation is based on calibration(s). Appendix 1 is a discussion of the GPR survey method.

2.3 Sonic/Ultrasonic Measurements

Sonic/ultrasonic testing is the most definitive NDT testing technique for the assessment of concrete. Sonic/ultrasonic NDT measurements determine the characteristics of concrete by creating a stress wave generated by a relatively low energy projectile impact energy source. Stress wave measurements in the

sonic/ultrasonic frequency band are used to make direct measurements of the compressional and shear wave transmission velocity and to measure reflected phases of the compressional wave. The transmission velocity values determine the elastic deformational characteristics of the concrete, including Young's, bulk, and shear moduli, as well as Poisson's ratio, and calculated strength values. Appendix 2 is a discussion of the sonic/ultrasonic survey method.

Sonic/ultrasonic reflection data measures the time required for a compressional wave transmitted at the front of a structure to propagate to the end of the structure and be reflected back to the front. The time of the reflection is two times the length of the structure divided by its velocity. The compressional wave velocity values are predetermined by measurements across the exposed top of the structure or by a back calculation from cylinder tests or design strength values.

The sonic/ultrasonic data are acquired with a system designed and built by NDT Corporation specifically for testing concrete structures. This system uses a projectile impact energy source and a mechanical sensor array. The signal is input to a set of amplifiers for signal conditioning, analog to digital conversion and finally to a portable PC for display and archiving of the data. The sensors are typically spaced 2, 6, 18, 30 inches (spacing is dependent on concrete thickness) from the energy impact point.

3.0 Discussion of Results

SOUTH ABUTMENT AND WING WALLS

GPR data was collected along 6 vertical (top to ground surface) lines and 2 horizontal lines; one at approximately 2 feet above the ground surface and one at approximately 7 feet above the ground surface. GPR data was also collected on the west facing wing wall; 3 vertical and 2 horizontal. The locations of these lines are shown on Figure 2. Sonic/ultrasonic data was collected along selected GPR lines; four on the abutment and 1 on the west facing wing wall. Due to the complexity and variability of the structures GPR and Sonic results are presented in cross-sections along GPR lines and are shown in Figures 2 and 3.

Western Concrete Abutment:	Approximately 64 inches at the top and approximately 80 inches near the ground surface.						
Masonry Abutment*	Approximately 64 inches at the top and 70 to 80 inches at the ground surface.						
Eastern Concrete Abutment	Approximately 40 inches at the top and approximately 60 inches near the ground surface.						

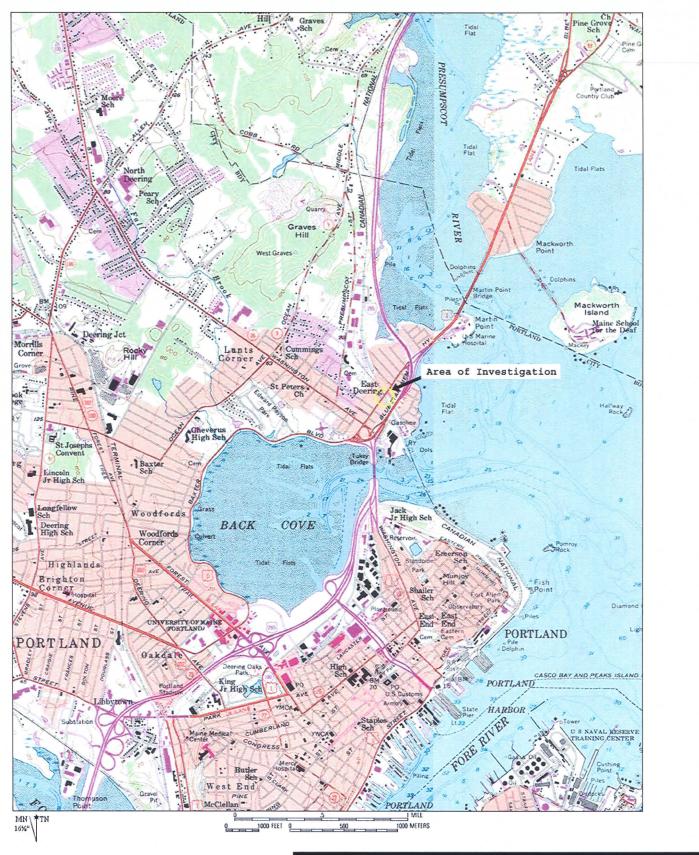
*Vertical GPR File 251, horizontal GPR Files 255 and 254 and sonic/ultrasonic data collected at this location indicated reflector depths of approximately 40 to 50 inches, it is believed the bonding of the masonry blocks, in the middle to eastern 20 feet of the masonry abutment, is fractured and filled with moisture for the 14 foot height tested. This high moisture/debonded area has blocked both the GPR and sonic signals and data from propagating past this point, thus it is reported the abutment is only 40 to 50 inches thick through this section.

NORTH ABUTMENT AND WING WALLS

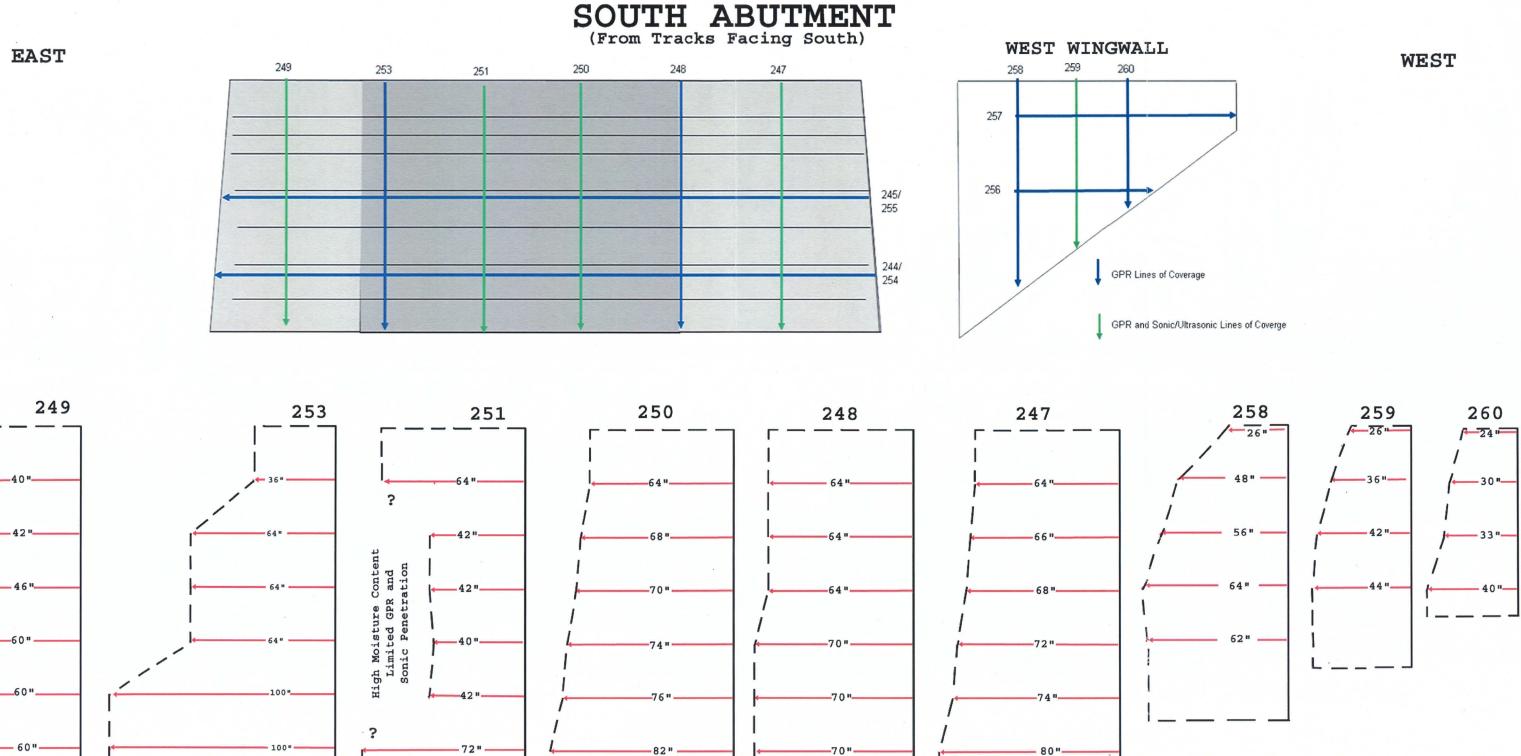
GPR data was collected along 6 vertical (top to ground surface) lines and 2 horizontal lines; one at approximately 2 feet above the ground surface and one at approximately 7 feet above the ground surface. GPR data was also collected on the west and east facing wing walls; 1 vertical and 1 horizontal. The locations of these lines are shown on Figure 4. Sonic/ultrasonic data was collected along selected GPR lines; four on the abutment and 1 on each of the wing walls. GPR and Sonic results are presented in cross-sections for each line and are shown in Figures 4.

Western Concrete Abutment:	Approximately 30 inches at the top and
	approximately 60 inches near the ground surface.
Masonry Abutment/ Eastern Concrete Abutment	Approximately 30 inches at top, 66 inches at approximately 8 feet above the ground, and approximately 80 inches near the ground surface

INTERMEDIATE REFLECTORS


Intermediate GPR reflectors were detected in the data from both abutments and wing walls. In the wing-walls and concrete sections of the abutments, systematic reflectors, at approximately 18 to 24 inches deep, are consistent in number and spacing to vertical "rails" noted on the plans. In the masonry abutments intermediate reflectors were noted at irregular locations and depths, these reflectors are believed to be fractured (un-bonded) blocks where moisture has infiltrated and caused a reflector. It should be noted that the frequency of data representative of "un-bonded" blocks is high.

SONIC/ULTRASONIC AND GPR CORELATION


Sonic/ultrasonic frequency and reflection measurements were correlated with the GPR results and were used to determine the GPR signal velocity. Sonic/ultrasonic measurements directly measure the compressional velocity of the concrete (average of 14,000 ft/sec) and granite blocks (average of 13,000 ft/sec across joints, and average of 15,000 ft/sec for solid granite). Using the measured compressional velocity reflection times and measure frequency values can used to calculate thicknesses. The time to back

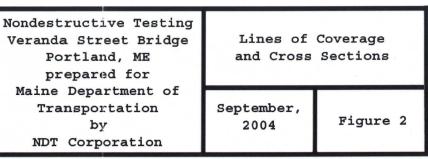
of wall GPR reflectors and intermediate reflectors (back of blocks, "rails" in wing walls, etc) were compared to the sonic/ultrasonic thicknesses and it was determined that the typical GPR signal velocity of 2 inches/nanosecond was within 6 inches of most reflectors. Figure 5 is an annotated GPR record (File 250), which is typical for the masonry abutments, showing GPR back of wall reflector and intermediate reflectors. In this case it appears that cracking/deterioration of the mortar between masonry blocks has blocked the sonic/ultrasonic signal from propagating to the back of the wall and has also allowed moisture to collect at the block interfaces giving an intermediate GPR reflector and a shallow sonic/ultrasonic frequency thickness. Figure 6 is a GPR record (File 257), which is typical for the concrete wing walls and abutment sections, depicting the back of wall reflector and the intermediate reflectors these reflectors are believed to be "rails".

FIGURES

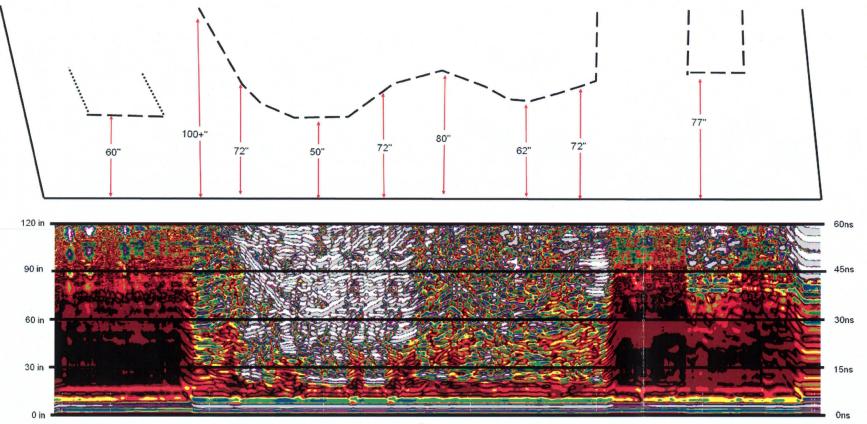
Nondestructive Testing Veranda Street Bridge Portland, ME prepared for Maine Department of Transportation by NDT Corporation

70"-

84"

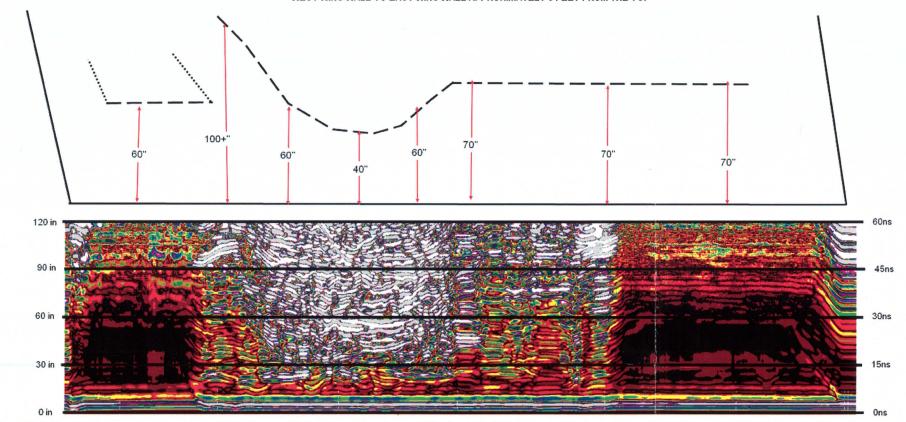

72"

100"


_ 60"_

-

80"

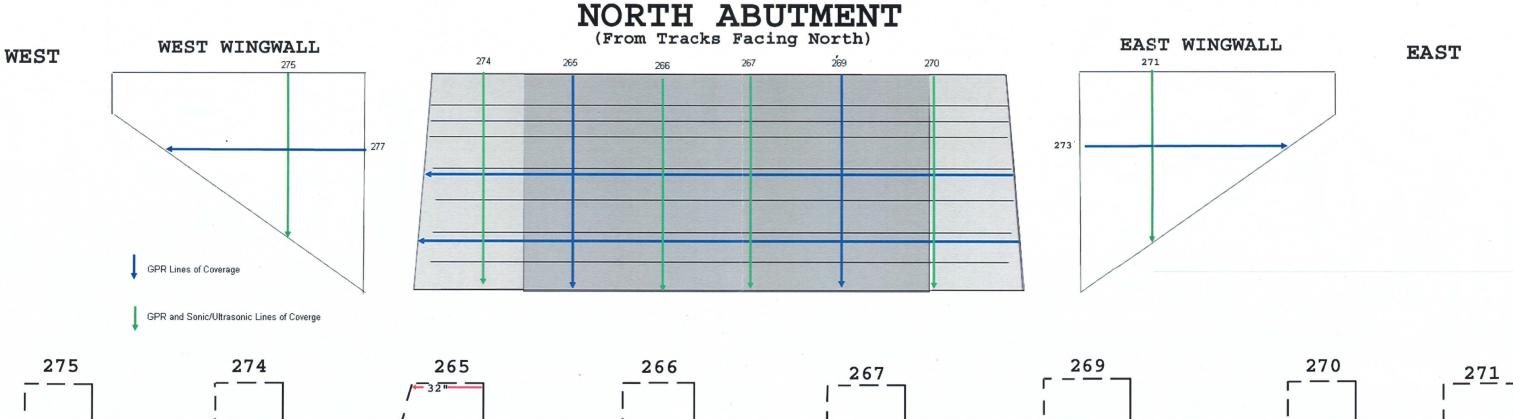


SOUTH ABUTMENT CROSS SECTION ALONG FILE 254 WEST WING WALL TO EAST WING WALL APPROXIMATELY 10 FEET FROM THE TOP

Abutment Face

WEST

EAST


Abutment Face

Nondestructive Testing Veranda Street Bridge Portland, ME prepared for Maine Department of Transportation by NDT Corporation

South Abutment Cross Sections

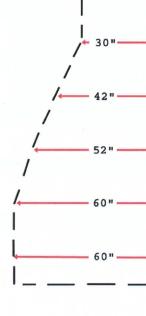
Septemebr, 2004

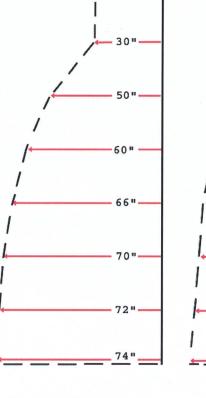
Figure 3

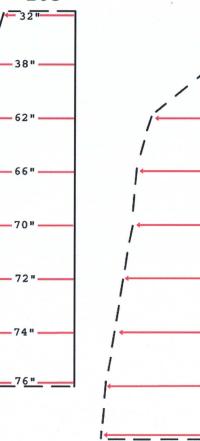
- 32"

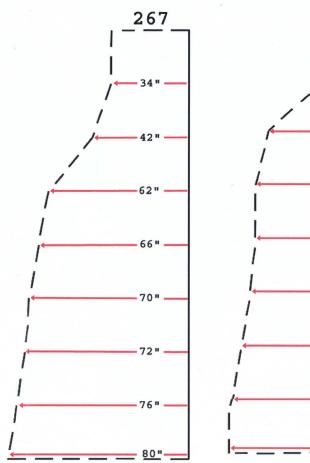
60'

66"


68"


72"


76"

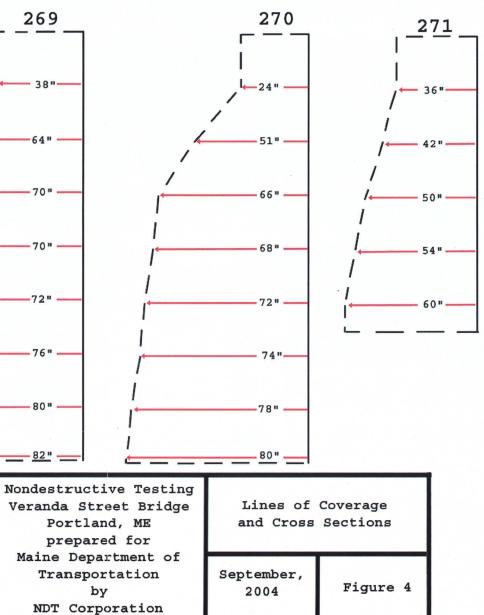

80"

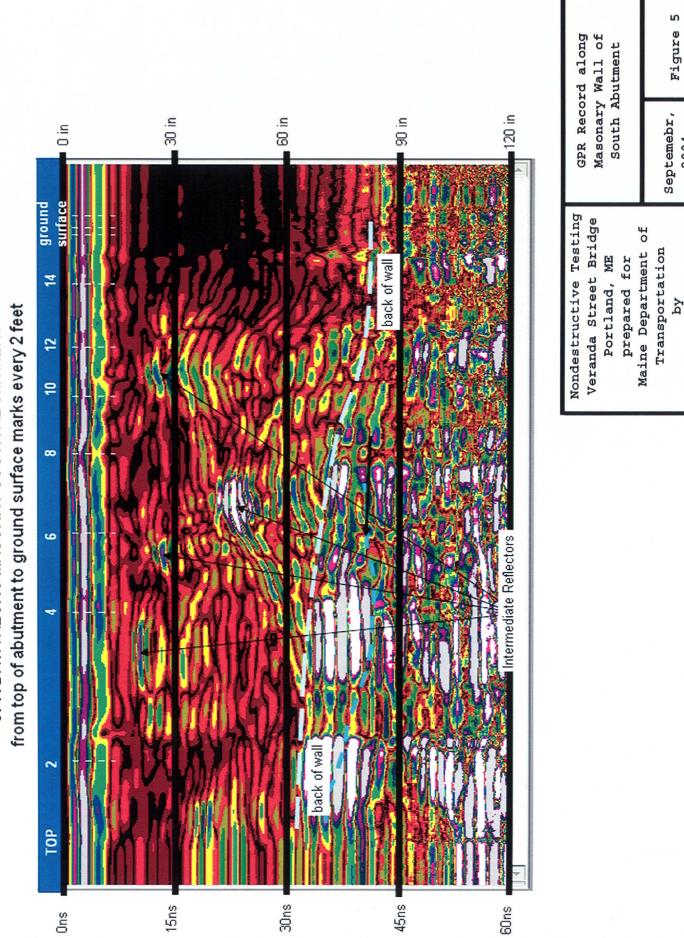
82"

38

64

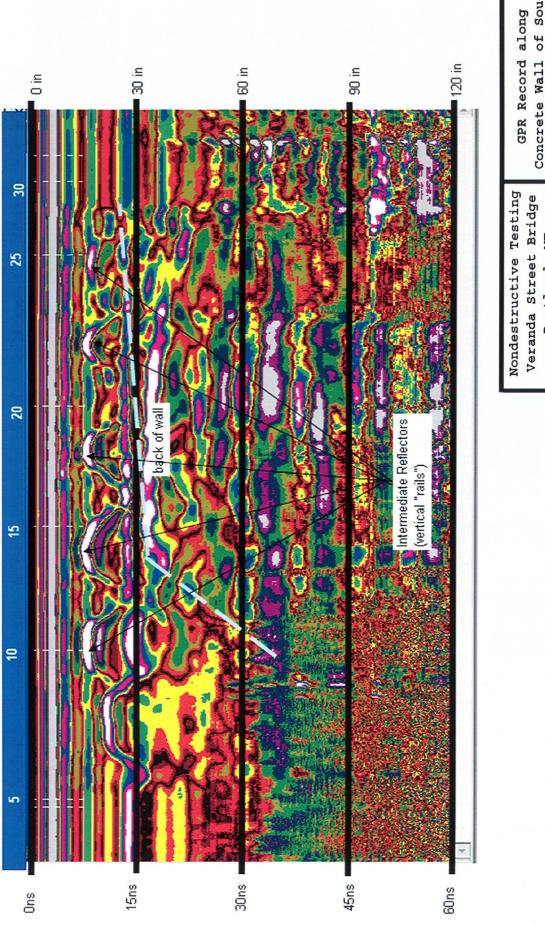
70"

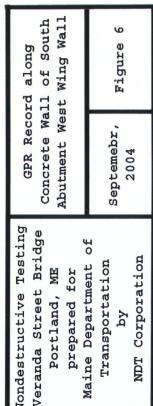

70"


72"

76"

80" -


82"



GPR DATA ALONG MASONRY SOUTH ABUMTMENT

2004 NDT Corporation GPR DATA ALONG CONCRETE SOUTH ABUTMENT WEST WING WALL apporimately 2 feet from top of wing wall (marks every 5 feet) horizontal line beginning 5 feet from abutment face back

APPENDIX 1

GROUND PENETRATING RADAR

.

.

.

APPENDIX: GROUND PENETRATING RADAR

OVERVIEW

Ground Penetrating Radar (GPR) is an electrical geophysical method which transmits high frequency electromagnetic waves into the ground and detects the energy reflected back to the surface. GPR utilizes various antennas (transmitter and receiver) with discrete frequencies ranging from 16 MHz to 2000 MHz. Electromagnetic signals are transmitted from the antenna (ground surface) and reflected back to the antenna (ground surface) from interfaces with differing electrical properties. Electrical properties such as dielectric permittivity (dielectric constant) and conductivity are the controlling parameters of the GPR. The greater the contrast in the dielectric constant between two materials, the more energy is reflected to the surface. Thus the greater the contrast in the dielectric constant between the host material and the "target" the more defined results.

GPR reflections typically occur at subsurface discontinuities, lithologic changes, and internal soil structures, such as:

- Buried metal objects (utilities, tanks, reinforcing)
- Open and Water filled voids
- Water table
- Top of bedrock
- Soil and rock stratification
- Seepage and leachate zones
- Bedrock Fractures
- Archaeological structures

The depth of penetration of GPR is site specific, limited by the attenuation of the electromagnetic energy. Signal attenuation is controlled by four different mechanisms listed below.

- Scattering: energy losses due to scattering occur when signals are dispersed in random direction, away from the receiving antenna, by large irregular shaped objects, such as boulders, tree stumps and closely spaced rebar.
- High conductivity layers: the greater the conductivity values of materials at a site, the more signal attenuation or less penetration. (mineral content, high moisture content, water table, metal plates, etc.
- Water/Moisture Content: water molecules polarize in the presence of the applied electromagnetic field. Electromagnetic energy is lost to the radar system when it is converted to kinetic and thermal energy as a result of rotation of water molecules.
- Clays, (Ion content): ions along clay surfaces polarize in the presence of the applied electromagnetic field. Electromagnetic energy is lost to the radar when migration and collisions of these charged particles causes electromagnetic energy to be converted to kinetic and thermal energy, which is lost to the radar system.

Signal penetration is also dependent of the frequency of the antenna. High frequency antennas have short wavelengths which are attenuated more rapidly with depth, but have better resolution. Low frequency antennas have long wavelengths which are attenuated slowly with depth but these antennas have lower resolution to details.

APPLICATIONS:

Ground Penetrating Radar (GPR) is a shallow penetrating geophysical profiling system used where rapid and accurate surveys are desired. GPR can be used for both area and source detection studies. GPR has been used to locate underground pipes, buried drums, foundations, void in rock and concrete, lithologic contacts, determine stratigraphy, depth to water table, depth to bedrock, buried archeological artifacts, excavations, filled pits and lagoons, and numerous other site specific applications. GPR is also an excellent tool for concrete structures such as bridges, walls, beams, ceilings, etc where the GPR can locate rebar and conduits, quantify rebar spacing, cover variability over reinforcing, and even concrete thickness. GPR can be used to locate voiding behind walls, delaminations, and moisture conditions.

Laterally GPR can cover large areas relatively quickly. Using a grid pattern of survey lines it is very effective in collecting data over close to 100% of the survey area. GPR can not only map the lateral extents of targeted features but also can be used to calculate the depth to the features of interest. Typically to perform depth calculations an onsite calibration, to determine the electrical properties of the materials at the site, is need. Depth calibrations typically consist of collecting GPR data over a metal target with a known depth. Known utilities, and buried metal plates are great targets for calibrations. Calibration lines near boreholes that are geologically logged are also good calibrations for depth to bedrock, water table and lithology/stratigraphy surveys.

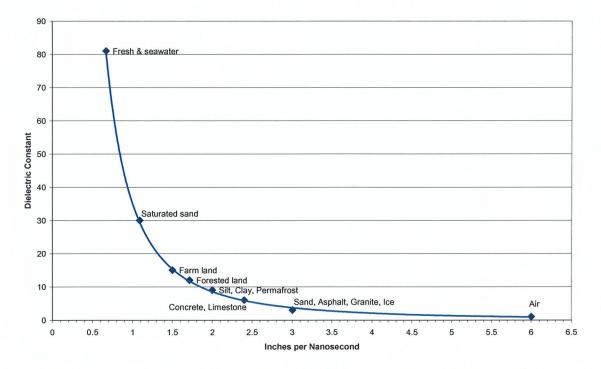
GPR surveys coupled with other geophysical surveys and/or ground truth methods are good ways to verify, correlate and extrapolate GPR results. GPR is a fast and effective method to cover large survey areas in a short amount of time. For example seismic refraction, boreholes, and/or test pits are good methods to verify depth to bedrock, water table and stratigraphy surveys. Magnetometer and electromagnetic induction methods are good methods to verify locations of metal tanks and metal utilities. Electromagnetic induction and electrical resistivity are good methods to verify the lateral extents of conductive plumes. GPR surveys are a fast and cost effective method to collect data over large or obstructed sites, and isolate anomalies and areas where borings or other methods can be focused for the best interest of a project.

EQUIPTMENT:

- Control unit (pulse transmitter, digital recorder, data storage, monitor)
- Antenna (s)
- Coaxial Cable
- Printer

GPR Control Units are computers which set up the parameters, such as sampling rate, range, gain control, filtering, etc. the control units also visually displays the data, digitally archives the data, and allows for play back of the data.

The coaxial cable connects the control unit to the Antenna. The Antenna(s) are sealed and shielded fiberglass housing for the transmitter and receiver. (In some cases the transmitter and receiver are placed in separate housings, usually the very low frequency antennas). Radar systems are designed to use antennas of various electrical characteristics. Selection of the antenna is dictated by the requirements of the survey. If high resolution, near-surface data is desired, a small, high frequency antenna is used; if the survey requires deeper penetration, a larger, lower frequency antenna is used. Commercially available antennas have the following frequencies: 16, 20, 32, 40, 80, 100, 120, 300, 400, 500, 900, 1000, 1500 and 2500 MHz. The drawback of using the lower frequency antennas is that resolution of data is sacrificed for penetration. Typically the 80 to 300 MHz antennas are used for geologic, environmental and archaeological surveys; 300 to 900 are used for utility, tank, foundation, etc surveys while the high frequency antenna 900 to 2500 is used for concrete assessment.

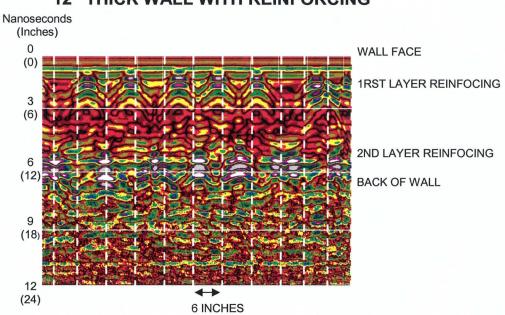

ACQUISTION AND INTERPETATION:

Site logistics and specifics are the most time consuming part of a GPR survey. The first step in any GPR survey is to get as much information about the site as possible, (Pre-survey site visits are very valuable but not always possible. Site specifics such as definition of the intent of the survey (utility, tank, water table survey etc), depth of survey, calibration areas/targets, accessibility and obstructions, should be gathered before the survey. Background information such as host materials, boring logs, electrical properties of host and targets. These considerations will aid in antenna selection, survey grid size, and the onsite calibration.

DIELECTRIC CONSTANTS OF SOME COMMON MATERIALS

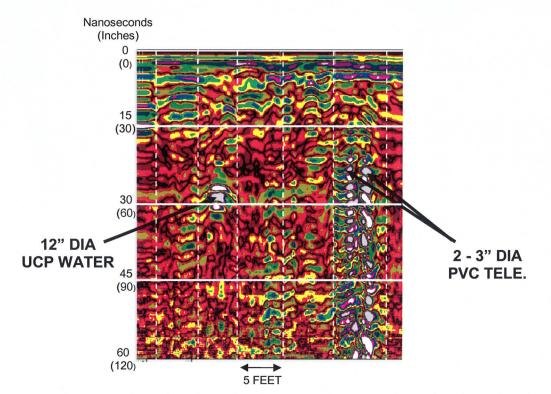
Air	1	BEDROCK	
Snow	1-2	Granite	4-7
PVC	3	Sandstone	6
Asphalt	3-5	Shale	5-15
Freshwater Ice	4	Limestone	4-8
Concrete	4-11	Basalt	8-9
Soil and Sediments	4-30		
Fresh and Saltwater	81		

At the time of the survey the survey grid should be marked out (a survey wheel attached to the system may be a valuable tool). The onsite calibration should be conducted such that a velocity for the materials can be set, depth of penetration can be determined and the correct acquisition parameter can be adjusted. (Large site and even small sites can be very electrically variable so be aware that these setting may have to be adjusted and other onsite calibrations may be needed.) A good rule of thumb when beginning the calibration is to assume a soil/concrete velocity of 2 inches per nanosecond. Set the time window for 2X the depth of interest when ever possible such that if the depth of interest is around 10 feet set the time window for approximately 100 to 120 nanoseconds. This should put the calibration "target" near the middle of the record, once the "target" is noted then the settings should be adjusted for the best resolution.



Material Velocity - Dielectric Constant

Once the settings are adjusted and a certain confidence level with the calibration is obtained then the survey can begin. Slowly walk the antenna along the grid lines. Speed at which the antenna is moved is determined by the type of survey and what the "target" is. Radar signals are propagated from the antenna in a 15 to 45 degree cone, thus the slower the speed of the antenna the greater the horizontal resolution. Slow walking speeds are recommended for most surveys, but if the target is a long continuous layer such as water table mapping the antenna may be towed from the back of a car of truck at speeds up to 10 miles/hours.


Each survey line should be printed and digitally saved to assure record security and for interpretation purposes. Station markers and any field notes can be written right on the printed copy and the digitally saved data can be used to reprint or to use with post processing software back at the office. Interpretation of GPR data is subjective, even among experienced interpreters. The strength of a reflected signal and/or the continuity of the reflector across the record may be indicative of a stratigraphic contact. FIGURES>>>> Point targets, such as buried drums, pipes, boulders, tree stumps, create a distinctive parabolic feature on GPR records. Positive identification of point targets is subjective, as the GPR signature of a pipe is similar to that of a large boulder.

Computer processing in the form of filtering, deconvolution, migration, color tables, gain enhancement etc. is available though it is somewhat costly and in most cases not necessary, except for presentation purposes.

GPR RECORD 12" THICK WALL WITH REINFORCING

UNDER GROUND UTILITY LOCATION/MAPPING

APPENDIX 2

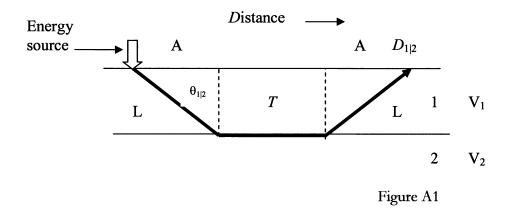
.

SONIC/ULTRASONIC MEASUREMENTS

APPENDIX

SONIC/ULTRASONIC NONDESTRUCTIVE TESTING OF CONCRETE

The sonic/ultrasonic measurements made to determine the characteristics of concrete (or rock) are generated by a relatively low energy source generally as a single discrete impulse caused by a pulsed transducer, projectile, mechanical hammer, laser, etc. as a single event wide band source. In the case of a pulsed transducer the energy may be input in the form of a series of tone bursts. Practical problems largely determine the source(s) to be used. Where concrete such as in an older tunnel liner is being investigated, then the condition of the concrete surface largely determines the selection. A rough concrete surface that has deposits of organic materials or mineral deposits generally requires a more powerful energy source whereas a relatively new or wet concrete may be inspected by the use of a pulsed transducer or other higher frequency source. In general high frequency sources that may work well in the laboratory may be unusable for the in-situ conditions. High frequency sources have the advantage of high resolution but the disadvantage of low penetration. While metals can be tested in the megahertz range, such signals in concrete will not have measurable signals for less than an inch in thickness. The energy source should be sufficient to maximize the resolution, have sufficient penetration to examine the concrete being tested and enough energy to excite the fundamental frequencies being sought.


The transmitted energy is in the form of three principal wave types, compressional (contraction expansion-spring like particle motion), shear (traction-sliding motion), and surface waves (combination of motions). Each boundary that has density and or velocity contrast will reflect and or refract these waves; for the present purposes, the compressional and shear waves will be discussed. The velocity values are determined by the Young's shear, and bulk moduli values as well as the density and Poisson's Ratio. In turn the velocity can be used to determine the moduli values and Poisson's Ratio given that the density is known. The moduli values measured are the dynamic moduli values at low strain. In general the difference between the dynamic values and the static values is almost entirely controlled by the crack densities of the concrete. Using the modulus values, a reasonable estimate of the unconfined compressive strength can be determined. The strength is largely dependent on the crack density of the concrete and for static tests the orientation of the cracks. Cracks perpendicular to the axis of the core and perpendicular to the directed stress will produce a strength (static) that is not greatly different from un-cracked concrete. The applied stress closes the cracks in compression. Cracks that are near 45° to the direction of stress will result in lower strength. The orientation of the cracks can be determined by measuring the velocity values in different directions.

NDT Engineering, Inc. makes several determinations from one energy impact. The velocity is measured directly from the energy point of impact to a linear array(s) of sensors on the surface their array length is usually in excess of the thickness of the concrete being tested. In addition to the velocity measurements, reflections are measured individually or more likely by examining the resonant frequency (multiple reflections) of the layered sequence in the frequency domain. Each reflecting surface (change of density and/or velocity) produces a multi-path reflection in the layer it bounds. For example the generated wave will travel to a delamination surface and then reflect back to the surface of the concrete in multi-reflections. These become apparent in the frequency domain where processing can enhance their presence (along with their higher modes). These reverberations (echoes) are particularly diagnostic of delaminations and thickness of the concrete. They will readily distinguish the presence of local delaminations, cracked or decomposed inclusions by the particular frequency band generated at the mechanical discontinuity, This is a drum head effect where the inclusion of differing properties from the host material resonates in a relatively narrow band usually quite distinguishable. This is the basis of the 'chain drag" using the human ear as the sensor to recognize frequency differences. The ear however is limited in its perception and will distinguish within the hearing range which is relatively small population of potential problems.

DIRECT AND REFRACTED ENERGY

One of the advantages of the sonic/ultrasonic method is its ability to "look through" overlying materials coatings particularly decomposed "softer layers" when the array(s) is configured properly. This is done using refracted waves associated with the different layer velocities or by careful examination of the resonant frequencies associated with such layering.

The diagram below shows the wave path for refracted energy generated for a softer (1) over harder (2) layer. The wave is bent (similar to the appearance of a stick in water) toward and travel along the boundary between the lower velocity layer and the harder concrete and radiates back to the surface. The higher velocity of the good concrete assures that the refracted wave (2) will overtake the direct wave (1) at some distance designated as D_{1/2}. To the left of this point the surface velocity (lower) will be measured and beyond it the velocity of the deeper layer is measured.

The time for the direct path is $D/V_{1;}$ the refracted path time is $2L/V_1+(D_{1|2}-2A)/V_2$. The array of sensors is placed in the distance direction and the time elapsed (travel time) from the time of energy impact to the sensor distance is measured. The velocity is determined from this time-distance measuremen(s). The angle θ is the angle between the perpendicular to the layer and the incident wave that is critically refracted. The sine of this angle is the velocity of the first layer divided by that of the second layer (Snell's Law). The distance shown $D_{1|2}$ is the point on the surface where the refracted time arrival equals that of the direct wave (the refracted wave travels at a higher velocity than the direct wave

$$\frac{D}{T} = \frac{D - 2\tan\Theta}{V_2} + \frac{2T}{V_1\cos\Theta}$$

With some substitutions and algebraic minipulations the thickness is expressed as:

$$T = \frac{D_{1|2}}{2} \sqrt{\frac{V_2 - V_1}{V_2 + V_1}}$$

D is the distance and T is the thickness. Since the times as well as the distances are measured, then V_1 and V_2 are determined. If a plot of distance versus time is made then the resulting graph will look like Figure A2.

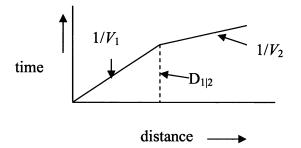


Figure A2

If there is no overlay then the velocity is simple D/T.

The resonant freuencies are determined by the thickness and the velocity of the material. Since the velocity is measured as above then the thickness can be determined directly.

The resonance of a simple beam is given by:

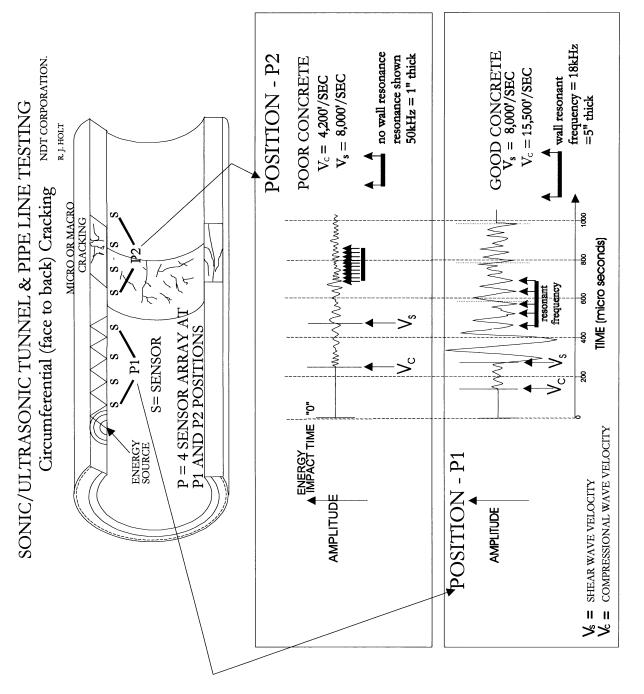
$$f = \frac{nV}{2L} \qquad (fixed - fixed, free - free) \quad where \ n = 1, 2, 3 - - -$$
$$f = \frac{nV}{4L} \quad (open - fixed), \quad where \quad n = 1, 3, 5, 7 - - -$$

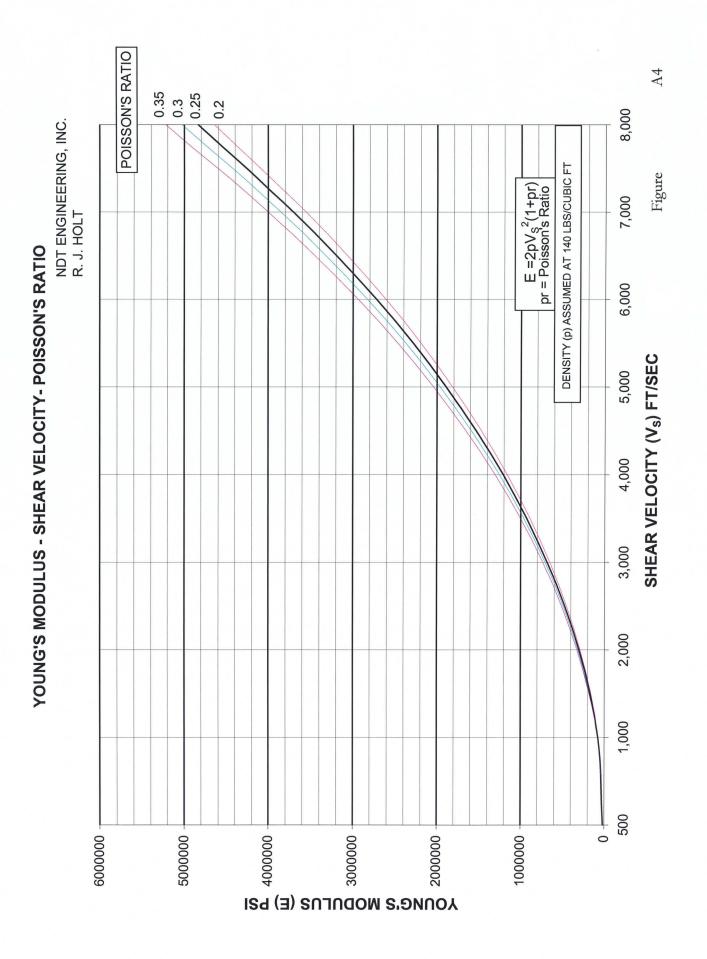
Since the frequency and velocity are measured, the thickness is determined. This thickness can be the thickness of the concrete slab(floor, deck),column, being measured or it can be the thickness of a delamination. The computation of the dimensions of an included body a zone of cracked, deteriorated concrete or a delamination can be determined from the measured frequency and velocity. While the refracted wave is dependent only on a contrast in velocity, a reflection can take place where there is a change in velocity or density or both. The impedance (RF reflection coefficient) which causes a wave to be reflected is given by:

RF =
$$\frac{\rho_2 V_2 - \rho_1 V_1}{\rho_2 V_2 + \rho V_{11}}$$

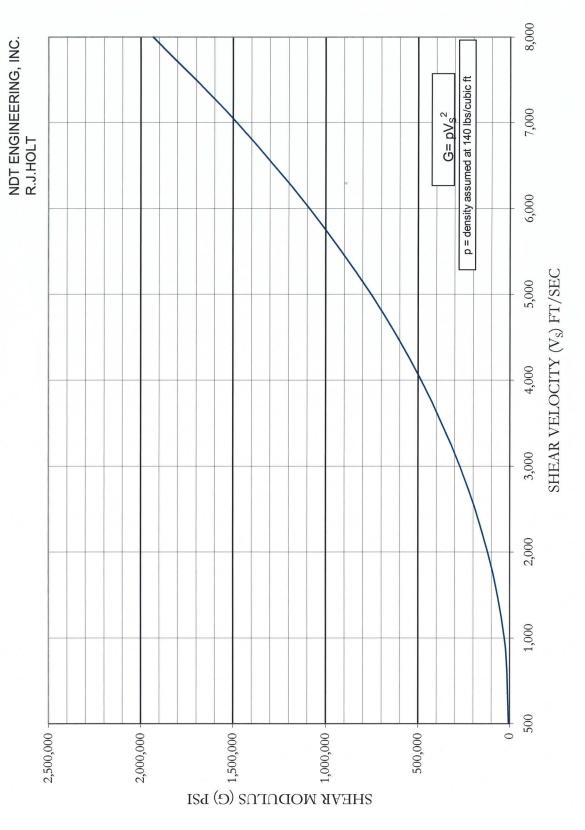
Where ρ is the density and V is the velocity of the material. The impedence determines the strength of the reflection. The contrast between an air filled void at the back of or within the concrete is significant, the velocity in air is 1,000ft/sec. and that in good concrete is 13,000ft/sec. The density differences are of course very large between the concrete and air. The same difference exists for a water filled void where the velocity in water is 5,000ft/sec. and concrete is nearly a factor of 2.5 denser. Voiding behind a liner or under a slab is usually well distinguished by a distinct resonant frequency.

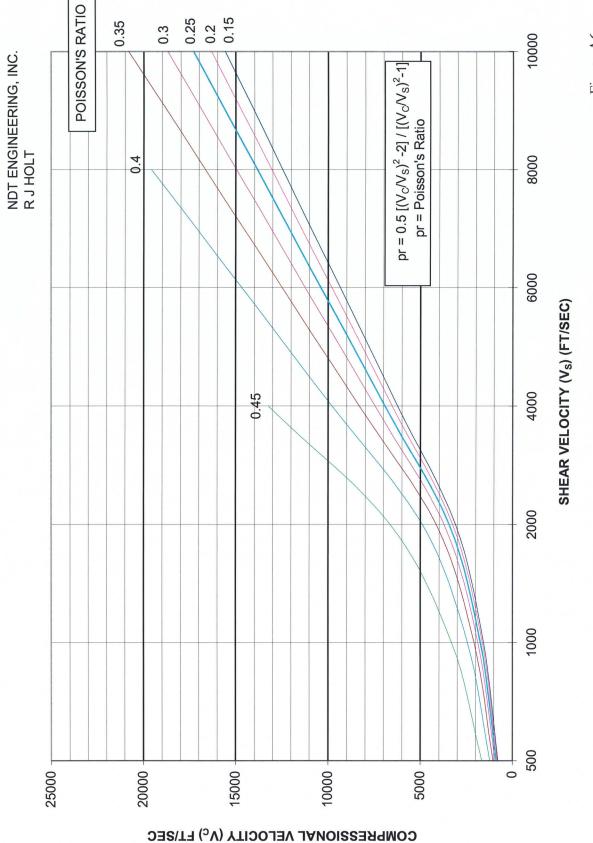
MODULI VALUES AND STRENGTH


The moduli values as stated above are determined from the velocity values using an assumed or measured density. The density is usually the best known or best estimated value for the concrete, its variance generally does not affect the calculations significantly.

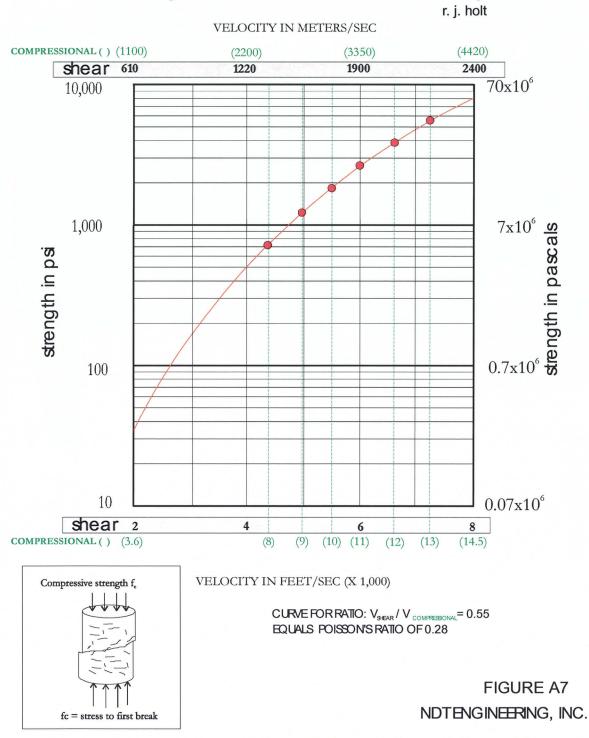

Figures are included with this appendix that show the relationships for Young's modulus vesrsus the compressional velocity Figure A4; shear modulus versus the shear velocity Figure A5; Poisson's Ratio versus the compressional and shear wave velocities Figure A6; and finally a relationship between the velocity values (compressional and shear) and the unconfined compressive strength of concrete, Figure A7.

The figure below Figure A3 is illustrative of a tunnel liner or pipe investigation where there has been circumferential damage perhaps at a construction joint, an outside zone of weakness (rock shear or fault, soil washout etc.) that has affected the liner. The damage need not be visible; there can be a 20% reduction in the strength of the concrete from micro-cracking that is not visible to the naked eye. The process of deteroration of most concrete starts at the micro level and with continued stress the micro cracks coalesce into macro cracks and finally to spalling. The ability to measure at the micro level well in advance of future needed repairs provides a management tool for establishing proirities for repair, projected budgets, and asset valuation





SHEAR MODULUS - SHEAR VELOCITY


Figure

A5

COMPRESSIONAL VELOCITY - SHEAR VELOCITY - POISSON'S RATIO

Figure A6

strength of concrete versus velocity

APPENDIX E

Calculations - Stone Masonry Abutment Stability Analyses

Analysis: Structure: Project Name: by: date: Sheets: check by:	Existi)4		ad footings	
$psf := \frac{lbf}{ft^2} pcf := \frac{lbf}{ft^3}$	Mg := 1000·kg	$kN := 1000 \cdot newto$	on kPa := $\frac{kN}{m^2}$	tonf := $g \cdot ton$	kip := 1000·lbf
ksf := $\frac{\text{kip}}{\text{ft}^2}$	ton := 2000·lbf	$tsf := \frac{tonf}{ft^2}$	$psi := \frac{lbf}{in^2}$	ksi := $\frac{\text{kip}}{\text{in}^2}$	

Assumptions

Minimum footing width is 7 ft

Base of stone footings are at approximately elev 17.0 ft (5.2 m). This results in 4.0 embedment for frost, assuming finished grade elevation of 21 feet. To be verified with a test pit during final design. Assume a footing embedment of 2 ft in this analysis

Supported on brown, wet dense, fine to coarse sand, trace silt and gravel, N=43, N=51 (BB-PRR-101)

Supported on Light brown, moist dense, fine to coarse SAND, trace silt and gravel (Fill - N=39) underlain by Brown moist very dense, fine to coarse SAND, little gravel, trace silt (N=59, N=47). Based on BB-PRR-102D.

Method used: Terzaghi, use strip footing equations since L>5B

Examine 1 conditions: (1) effective stress (unconservative)

Foundation soil values

 ϕ =30-34 degrees at ultimate strength for an effective stress analysis for a drained, effective stress analysis. Phi is 38 to 40 degrees at peak strength. (Lamb and Whitman, Table 11.3). Based on Bowles table 3-4 ϕ =40 for dense granular soils. Use 35 degrees

Available References:

φ: Lambe & Whitman Table 11.3 based on Hough, Basic Soils Engr, 1967 φ, SPT correlation, Lambe & Whitman, Fig 11.14, (from Peck, Hanson, Thornburn). φ and γ correlations to soil description and N values, Bowles 1977 Table 3-4 φ: Bowles (4 th Ed) Table 2-6 Mass Highway unnamed Table for γsat γ sat : Holtz, Kovacs, Table 2-1 1981

Footing Width and Depth

$$\mathbf{B} := \begin{pmatrix} 10 \\ 8 \\ 7 \end{pmatrix} \cdot \mathbf{f} \mathbf{t}$$
$$\mathbf{D}_{\mathbf{f}} := 2 \cdot \mathbf{f} \mathbf{t}$$

Soil Statigraphy

Depth to water table
$$D_w := 5 \cdot ft$$

Fill

$$\gamma 1_{\text{sat}} := 19.6 \cdot \frac{\text{kN}}{\text{m}^3}$$
 $\gamma 1_d := 18.9 \cdot \frac{\text{kN}}{\text{m}^3}$ $\gamma 1_{\text{sat}} = 124.771 \text{ pcf}$ $H_1 := 7 \cdot \text{ft}$ $N1 := 20$

 $\gamma_{w} := 62.4 \cdot pcf$

$$\gamma 1_t := \gamma 1_{sat}$$
 $\phi := 35 \cdot deg$ $c_1 := 0 \cdot psf$ $\gamma 1_d = 120.315 \text{ pcf}$

Bearing Capacity

Method 1 : Terzaghi Method - Drained, Effective Stress Analysis (unconservative)

$$N_{c} := \cot(\phi) \cdot \left[\frac{2 \cdot \left(3 \cdot \frac{\pi}{4} - \frac{\phi}{2}\right) \cdot \tan(\phi)}{2 \cdot \left(\cos\left(\frac{\pi}{4} + \frac{\phi}{2}\right)^{2}\right)} - 1 \right]$$
$$N_{q} := \frac{2 \cdot \left(3 \cdot \frac{\pi}{4} - \frac{\phi}{2}\right) \cdot \tan(\phi)}{2 \cdot \cos\left(45 \cdot \deg + \frac{\phi}{2}\right)^{2}}$$

$$N_{\gamma} := \frac{1}{2} \cdot \left(\frac{K_{p}}{\cos(\phi)^{2}} - 1 \right) \cdot \tan(\phi)$$

$$K_p := \tan\left[(45) \cdot \deg + \frac{\varphi}{2}\right]^2$$

the Kp is not fully explained in Terzaghi - back computed Kp from curve fit to data. Use Meyerhof $N\gamma$ if ϕ <40; or use Vesic or Spangler and Handy per Bowles page 187.

$$N_{\gamma} := 2 \cdot (N_q + 1) \cdot \tan(\phi)$$
 $N_{\gamma} = 59.433$

Spangler and Handy
$$N_{\gamma} := 1.1 \cdot (N_q - 1) \cdot \tan(1.3 \cdot \phi)$$
 $N_{\gamma} = 45.267$

SOUTH ABUTMENT

STONE MASONRY ABUTMENT SECTION

STABILITY ANALYSES

Km 12/04 DATE 9-23-04 PROJ. NO. 110158.00 PRELIM. BY OF LK FILE NO. FINAL CHK. BY ____ PORTLAND DATE LOCATION SH. NO. OF ITEM NO. SUBJECT SOUTH ABUTMENT - STONE MASONRY MASONRY GEOMETRY BASED STONE GPR /SONIC ON CORPOLATION , SCAN FIGURE LINE # 250 PER 2 NDT 9-2004 1 1.9 16"+16"+16 BR. ST. EL. 37,79 5.3' ÿ 6.2 6″ 6.3 .8 Ô 2 EL 21 NTIN YI BOF E CANITE 17. O EL, ABUTMENT T=0.4 EL, 14.79 ASHLAR STONE LONG

STATE OF MAINE - DEPARTMENT OF TRANSPORTATION

Terzaghi equation for continuous foundations (Bowles, Table 4-1, 4th Ed.)

$$q := (D_f) \cdot (\gamma 1_d)$$
 $q = 0.12 \operatorname{tsf}$

$$q_{u} := 1.0 \cdot c_{1} \cdot N_{c} + q \cdot N_{q} + 1.0 \cdot (\gamma 1_{d}) \cdot B \cdot N_{\gamma}$$

Solution

 $N_c = 57.754 \qquad \qquad N_q = 41.44 \qquad \qquad N_\gamma = 45.267$

$$q_{u} = \begin{pmatrix} 32.217 \\ 26.771 \\ 24.048 \end{pmatrix} \text{tsf} \qquad q_{allow} \coloneqq \frac{q_{u}}{3} \qquad q_{allow} = \begin{pmatrix} 10.739 \\ 8.924 \\ 8.016 \end{pmatrix} \text{tsf}$$

Terzaghi modified procedure with Vesic modification for Nq

$$N_{q_vesic} := e^{(3.8 \cdot \phi) \cdot tan(\phi)} \cdot tan\left(45 \cdot deg + \frac{\phi}{2}\right)^2 \qquad \qquad N_{q_vesic} = 18.747$$

continuous foundations

$$q_{u} \coloneqq (1.0 \cdot c_{1} \cdot N_{c}) + q \cdot N_{q_vesic} + 1.0 \cdot \gamma 1_{d} \cdot B \cdot N_{\gamma}$$

$$q_{u} = \begin{pmatrix} 29.487 \\ 24.041 \\ 21.318 \end{pmatrix} tsf$$

$$(0.82)$$

$$q_{allow} \coloneqq \frac{q_u}{3}$$
 $q_{allow} = \begin{pmatrix} 9.83\\ 8.01\\ 7.11 \end{pmatrix}$ tsf

Presumptive Bearing Capacity

4 tsf based on Table 1201, Massachusetts Building Code 1990 4 tsf based on NavFac DM 7.3

Use 4 tsf for allowable bearing capacity

TYLININTERNATIONAL

Maine Department of Transportation State House Station 16 Augusta, Maine 04333

From: Tim Merritt, P.E. T.Y. Lin International 5 Fundy Road Falmouth, Maine 04105

Date: July 9, 2004

Subject: Portland – Veranda St. over St. Lawrence & Atlantic Railway PIN 10158.00 (Bridge # 5052) Preliminary Abutment Reactions

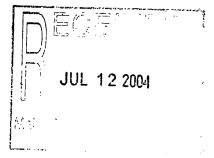
Copy: Mike Wight, File

MEMORANDUM

Dear Kate:

T. Y. Lin International (TYLI) has estimated preliminary abutment reactions for the subject project for your use in evaluating the re-use of the abutments. We have assumed a 3ft profile raise and included the extra dead load of the raised abutment seat and backwall, as well as half of a new approach slab. The voided slab alternative is the heaviest at this point. The unfactored Group I loading per abutment is:

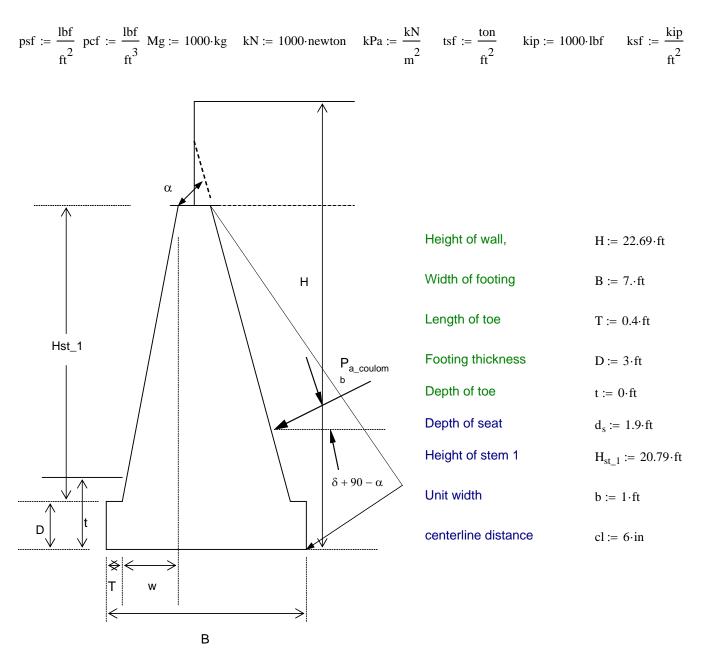
DL=3,125kN (700k) LL (HL-93)=960kN (215k)


As we previously mentioned, the 1930 existing bridge plans do not contain any soils information and there are notes that indicate that the footing elevation may have been changed during construction. There also is a note that indicates that piling should be used at the engineer's discretion. The existing plans also indicate that an approach slab was detailed, but we see no field evidence that would indicate this.

Please note that there is the possibility of locating new abutments inside the existing ones if the railroad indicates that is acceptable for their horizontal clearance needs and future track use. It is our understanding that a combination of soil borings and probes will be taken to identify soil conditions and abutment limits.

Please do not hesitate to call or email with any questions, concerns, or suggestions.

Thank you for your assistance,


T. Y. Lin International Tim Merritt, P.E. Associate

LetterKM070104.doc / twm

South Abutment Analysis - using field verified abutment dimensions and field-verified backfill. Uses Coulomb theory. Traffic Surcharge added (Coulomb). Existing conditions - no raise in grade Assuming no batter.

Footing toe of 0.4 ft based on test pit.

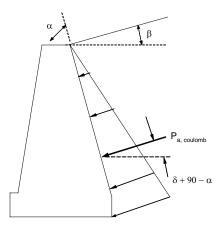
Assumed backfill and abutment proporties

granite unit weight	$\gamma_{\rm c} \coloneqq 170 \cdot \text{pcf}$ $\gamma_{\rm c} = 26.705 \frac{\text{kN}}{\text{m}^3}$					
backfill #1	$\gamma_1 := 125 \cdot pcf$	$\phi_1 := 32 \cdot \text{deg}$	$c_1 := 0 \cdot psf$	granular fill		
Backfill #2	$\gamma_{1b} := 120 \cdot pcf$	$\phi_{1b} \coloneqq 20 \cdot \text{deg}$	$c_{1b} := 700 \cdot psf$			

Portland Veranda St. Bridge PIN 10158.00	South At Portland south Sto	1/26/2009 2 of 11 KM 12/2004	
Rankine wall friction	$\delta := 0 \cdot deg$		
Coulomb wall friction	$\delta := 21 \cdot \deg$	2/3 phi	
Angle of backslope	$\beta := 0 \cdot \deg$		
α - Angle of abutment backwa true angle of gravity abutment	· · ·	Ise $\alpha := 85 \cdot \deg$	
α - Angle of abutment backfacture use α = 90 as Rankine acts of the heel up to	n a veritcal plane drawn		
α - For Coulomb Analysis on a angle of line drawn from back stem at the top of the wall.)	
Foundation material : sand	$\gamma_2 := 12$	$25 \cdot \text{pcf} \varphi_2 := 32 \cdot \text{deg} \qquad c_2 := 0 \cdot \text{psf}$	
concrete - sand friction angle	$\delta_2 := 24$	$t \cdot deg \qquad tan(\delta_2) = 0.445$	

DL and LL forces per linear foot of wall:

Tim Merritt, TYLin, calculate 700 kip per abutment of dead load. Tim calculated 215 kip per abutment of LL. Bridge seat is roughly 18 meters or 60 ft.


 $P_{dl} \coloneqq 700 \cdot \frac{kip}{60 \cdot ft} \qquad \qquad P_{dl} = 11.667 \frac{kip}{ft}$

$$P_{II} := 215 \cdot \frac{\text{kip}}{60 \cdot \text{ft}} \qquad \qquad P_{II} = 3.583 \frac{\text{kip}}{\text{ft}}$$

 $V_{ss} := (P_{dl} + P_{ll}) \cdot b$ $V_{ss} = 1.525 \times 10^{4} lbf$ $V_{ss} = 15.25 kip$

 $\mathbf{H}_{ss} := \left[\left(.1 \cdot \mathbf{P}_{dl} \right) + \left(0.05 \cdot \mathbf{P}_{ll} \right) \right] \cdot \mathbf{b} \qquad \qquad \mathbf{H}_{ss} = 1.346 \times 10^{3} \, \text{lbf} \ \mathbf{H}_{ss} = 1.346 \, \text{kip}$

Lateral Earth Pressure - use Coulomb - in failure, wedge of backfill soil slides upward along a plane matching the backwall of the gravity abutment

$$K_{a_rank} := \frac{\cos(\beta) - \left[\left(\cos(\beta)\right)^2 - \left(\cos(\varphi_1)\right)^2\right]^{0.5}}{\cos(\beta) + \left[\left(\cos(\beta)\right)^2 - \left(\cos(\varphi_1)\right)^2\right]^{0.5}} \cdot \cos(\beta) \qquad K_{a_rank} = 0.307$$

Coulomb Ka for granular backfill is very similar to the Rankine Value

$$K_{a_coulomb} := \frac{\sin(\phi_1 + \alpha)^2}{\left[\left(\sin(\alpha)^2 \cdot \sin(\alpha - \delta) \right) \cdot \left[1 + \sqrt{\frac{\sin(\phi_1 + \delta) \cdot \sin(\phi_1 - \beta)}{(\sin(\alpha - \delta) \cdot \sin(\alpha + \beta))}} \right]^2 \right]} K_{a_coulomb} = 0.313$$

Resultant Earth Pressure from backfill

$$P_{a1} \coloneqq \frac{1}{2} \! \cdot \! \gamma_1 \! \cdot \! H^2 \! \cdot \! K_{a_coulomb} \! \cdot \! b$$

 $P_{a1} = 10.057 \text{ kip}$

per linear foot of abutment

Portland Veranda St. Bridge PIN 10158.00	South Abutment Sta Portland south Stone Abut Co	1/26/2009 4 of 11 KM 12/2004	
Vertical Earth Pressure:			
$E_{avert} \coloneqq \sin(\delta + 90 \cdot deg - \alpha) \cdot P_{a1}$	$E_{avert} = 4.409 \times 10^3 lbf$	$E_{avert} = 4.409 \text{ kip}$	per linear foot of wall
Horizontal Earth Pressure:			
$E_{ahoriz} := \cos(\delta + 90 \cdot deg - \alpha) \cdot P_{a1}$	$E_{ahoriz} = 9039.227 lbf$	$E_{ahoriz} = 9.039 \text{ kip}$	per lin ft of wall

No approach slab; Force due traffic - model w/ surcharge of 2' of soil (using Coulomb earth pressure theory)

 $s := 2 \cdot ft \cdot \gamma_1 \qquad s = 250 \text{ psf}$

 $E_s := K_{a_coulomb} \cdot s \cdot H \cdot b$ $E_s = 1.773 \text{ kip}$

Vertical Surcharge Earth Pressure, Resultant acting at H/2:

$E_{surch_vert} := sin(\delta + 90 \cdot deg - \alpha) \cdot E_s$	$E_{surch_vert} = 0.777 \text{ kip}$	per Inr foot of wall
Horizontal Surcharge Earth Pressure,	Resultant acting at H/2:	

 $E_{surch_horiz} := \cos(\delta + 90 \cdot deg - \alpha) \cdot E_s$ $E_{ahoriz} = 9.039 \text{ kip}$ per lin ft of wall

Factor of safety against overturning and sliding

Resisting moments - abutment composed of granite stone masonry

$$A_1 := 7.0 \cdot 7.0 \cdot ft^2$$
 $F_1 := A_1 \cdot \gamma_c \cdot b$ $x_1 := \frac{7.0 \cdot ft}{2}$ $M_{r1} := F_1 \cdot x_1$ $M_{r1} = 29.155 \text{ kip} \cdot ft$

- $A_2 := 6.8 \cdot 2 \cdot ft^2 \qquad F_2 := A_2 \cdot \gamma_c \cdot b \qquad x_2 := \frac{6.8 \cdot ft}{2} + T \qquad M_{r2} := F_2 \cdot x_2 \qquad M_{r2} = 8.786 \ ft \cdot kip$
- $A_3 \coloneqq 6.3 \cdot ft \cdot 2 \cdot ft \qquad F_3 \coloneqq A_3 \cdot \gamma_c \cdot b \qquad \qquad x_3 \coloneqq \frac{6.3}{2} \cdot ft + T \qquad M_{r3} \coloneqq F_3 \cdot x_3 \qquad \qquad M_{r3} = 7.604 \ ft \cdot kip$
- $A_4 \coloneqq (6.2 \cdot 2) \cdot \text{ft}^2 \qquad F_4 \coloneqq A_4 \cdot \gamma_c \cdot b \qquad \qquad x_4 \coloneqq \frac{6.2}{2} \cdot \text{ft} + T \qquad M_{r4} \coloneqq F_4 \cdot x_4 \qquad \qquad M_{r4} = 7.378 \text{ ft} \cdot \text{kip}$

Portland Veranda St. Bridge PIN 10158.00		South Abutment Stabilit Portland south Stone Abut Coulor		1/26/2009 5 of 11 KM 12/2004
$A_5 \coloneqq 5.8 \cdot 2 \cdot \text{ft}^2$	$F_5 \coloneqq A_5 \cdot \gamma_c \cdot b$	$\mathbf{x}_5 \coloneqq \frac{5.8}{2} \cdot \mathbf{ft} + \mathbf{T}$	$\mathbf{M}_{r5} \coloneqq \mathbf{F}_5 \cdot \mathbf{x}_5$	$M_{r5} = 6.508 \text{ ft} \cdot \text{kip}$
$A_6 \coloneqq 5.7 \cdot 2 \cdot \text{ft}^2$	$F_6 \coloneqq A_6 \cdot \gamma_c \cdot b$	$\mathbf{x}_6 \coloneqq \frac{5.7}{2} \cdot \mathbf{ft} + \mathbf{T}$	$\mathbf{M}_{\mathbf{r6}} \coloneqq \mathbf{F}_{6} \cdot \mathbf{x}_{6}$	$M_{r6} = 6.299 \text{ ft} \cdot \text{kip}$
$A_7 \coloneqq 5.3 \cdot 4 \cdot {\rm ft}^2$	$F_7 \coloneqq A_7 \cdot \gamma_c \cdot b$	$\mathbf{x}_7 \coloneqq \frac{5.3}{2} \cdot \mathbf{ft} + \mathbf{T}$	$M_{r7} := F_7 \cdot x_7$	$M_{r7} = 10.992 \text{ ft} \cdot \text{kip}$
$A_8 \coloneqq 0.0.ft^2$	$F_8 \coloneqq A_8 \cdot \gamma_c \cdot b$	$\mathbf{x}_8 \coloneqq \frac{3.92}{2} \cdot \mathbf{ft} + \mathbf{T}$	$M_{r8} \coloneqq F_8 \cdot x_8$	$M_{r8} = 0 \text{ ft} \cdot \text{kip}$
$A_9 \coloneqq 0.0.\text{ft}^2$	$F_9 \coloneqq A_9 \cdot \gamma_c \cdot b$	$\mathbf{x}_9 \coloneqq \frac{2.75}{2} \cdot \mathbf{ft} + \mathbf{T}$	$M_{r9} := F_9 \cdot x_9$	$M_{r9} = 0$ ft·kip
$A_{10} := 0 \cdot ft \cdot ft$	$F_{10} := A_{10} \cdot \gamma_c \cdot b$	$\mathbf{x}_{10} \coloneqq \frac{2 \cdot 1.4}{3} \cdot \mathbf{ft}$	$M_{r10} := F_{10} \cdot x_{10}$	$M_{r10} = 0 \text{ ft} \cdot \text{kip}$

Resisting Moments - Soil over backwall and footing - neglect for Coulomb Analysis

Resisting moment due to (1) dead load on bridge seat, (2) vertical component of the Traffic Surcharge acting on the backface, and, (3) vertical component of Coulomb earth pressure acting on the backface.

1.
$$M_{rDL} \coloneqq P_{dl} \cdot (T + cl) \cdot b$$
 $M_{rDL} = 10.5 \text{ ft-kip}$ 2. $M_{rSCH} \coloneqq E_{surch_vert} \cdot (7 \cdot ft)$ $M_{rSCH} = 5.44 \text{ ft-kip}$ 3. $M_{r_Pa} \coloneqq E_{avert} \cdot (6.0) \cdot ft$ $M_{r_Pa} = 26.452 \text{ ft-kip}$ acts downward on
backface at point
 $x = H/3$

Portland
Veranda St. Bridge
PIN 10158.00

Driving moments

$M_{d_surch} := E_{surch_horiz} \cdot \frac{1}{2} \cdot H$	$M_{d_surch} = 18.078 ft$	·kip	
$\mathbf{M}_{\mathbf{d}}_{\mathbf{P}\mathbf{a}} \coloneqq \mathbf{E}_{\mathbf{a}\mathbf{h}\mathbf{o}\mathbf{r}\mathbf{i}\mathbf{z}} \cdot \frac{1}{3} \cdot \mathbf{H}$	$M_{d_Pa} = 6.837 \times 10^4 \text{ft·lbf}$	$M_{d_Pa} = 68.367 kip \cdot ft$	$M_{d_Pa} = 68.367 \text{ kip} \cdot \text{ft}$
$M_{d3} := H_{ss} \cdot 21 \cdot ft$	$M_{d3} = 28.262 \text{ ft} \cdot \text{kip}$		iving moment due to t of LL and DL in the load th the following values:
		$M_{d3} := 0 \cdot ft \cdot kip$	$H_{ss} := 0 \cdot kip$
Summation of forces and	moments		
$\Sigma \mathbf{V} \coloneqq \mathbf{F}_1 + \mathbf{F}_2 + \mathbf{F}_3 + \mathbf{F}_4 + \mathbf{F}_4$	$F_5 + F_6 + F_7 + F_8 + F_9 + F_{10} + F_{10}$	$E_{11} + F_{12} + E_{avert} + E_{surch_vert}$	+ P _{dl} ·b
$\Sigma V = 3.926 \times 10^4 \text{lbf}$			
$\Sigma V = 39.259 \text{ kip}$			

 $\Sigma H := E_{ahoriz} + E_{surch_horiz} + H_{ss}$ DO INCLUDE horizontal component of LL and DL in the load group (Hss)

 $\Sigma H = 10.633 \text{ kip}$

 $\Sigma H = 10.633 \text{ kip}$

 $\Sigma M_{r} := M_{r1} + M_{r2} + M_{r3} + M_{r4} + M_{r5} + M_{r6} + M_{r7} + M_{r8} + M_{r9} + M_{r10} + M_{r11} + M_{r12} + M_{rSCH} + M_{rDL} + M_{r_Pa}$ $\Sigma M_{r} = 1.191 \times 10^{5} \text{ ft·lbf}$ $\Sigma M_{r} = 119.114 \text{ ft·kip}$

 $\Sigma M_d \coloneqq M_{d_Pa} + M_{d_surch} + M_{d3}$

 $\Sigma M_d = 86.445 \, \text{ft} \cdot \text{kip}$

 $\Sigma M_d = 86.445 \text{ kip} \cdot \text{ft}$

Factor of safety against overturning

$$FS_{ot} := \frac{\Sigma M_r}{\Sigma M_d}$$

$$FS_{ot} = 1.378$$

AASHTO required factor of safety against overturning is 2.0

Factor of safety against sliding

friction at base + adhesion

$$\tan(\delta_2) = 0.445$$

$$FS_{sl} := \frac{\left[(\Sigma V) \cdot tan(\delta_2) \right] + \left[(B \cdot b) \cdot c_2 \right]}{\Sigma H}$$

 $FS_{sl} = 1.644$

AASHTO required factor of safety against sliding is 1.5

Bearing Capacity Factor of Safety

determine net moment

$$M_{net} := \Sigma M_r - \Sigma M_d$$
 $M_{net} = 3.267 \times 10^4 \, lbf \cdot ft$

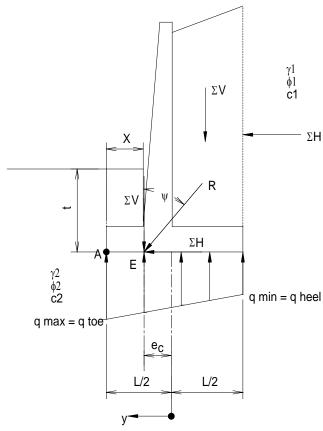
location of resultant

$$AE := \frac{M_{net}}{\Sigma V} \qquad AE = 0.832 \text{ ft} \qquad X := AE$$

determine eccentricity, if e > B/6, reproportion

$$e_c := \frac{B}{2} - AE$$
 $e_c = 2.668 \text{ ft}$
 $\frac{B}{6} = 1.167 \text{ ft}$ NO GOOD !!!!!!!!!

Determine pressure distribution under footing


$$q = \frac{\Sigma V}{A} + \frac{M_{net} \cdot y}{I}$$
$$q = \frac{\Sigma V}{A} - \frac{M_{net} \cdot y}{I}$$

where:A = area = b^*B I = moment of inertia = $1/12^*B^*2$

solving for \mathbf{q}_{max} and \mathbf{q}_{min}

$$q_{max} \coloneqq \left[\frac{\Sigma V}{B} \cdot \left(1 + \frac{6 \cdot e_c}{B}\right)\right] \cdot \frac{1}{b} \qquad q_{max} = 18433 \text{ psf} \qquad q_{max} = 18.433 \text{ ksf} \qquad q_{toe} \coloneqq q_{max}$$
$$q_{min} \coloneqq \left[\frac{\Sigma V}{B} \cdot \left(1 - \frac{6 \cdot e_c}{B}\right)\right] \cdot \frac{1}{b} \qquad q_{min} = -7216 \text{ psf} \qquad q_{min} = -7.216 \text{ ksf} \qquad q_{heel} \coloneqq q_{min}$$

 $B_e := B - 2 \cdot e_c$

Allowable Bearing Pressure:

 $q_u \coloneqq 24{\cdot}ksf$

$$q_{allow} \coloneqq \frac{q_u}{3}$$

 $q_{allow} = 8 \, ksf$

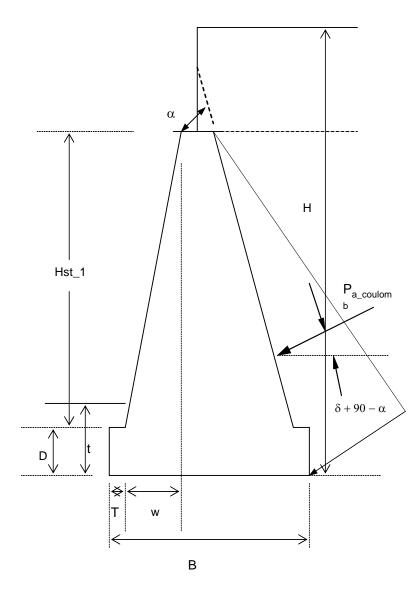
Applied Bearing Pressure:

$$q_a := \frac{\Sigma V}{B_e \cdot b}$$
 $q_a = 1.129 \times 10^3 \text{ kPa}$ $q_a = 24 \text{ ksf}$

Factor of Safety against BC failure:

$$FS_{bc} := \frac{q_u}{q_a}$$

 $FS_{bc} = 1.017$


A factor of safety of 2 to 3 against bearing capacity failure is recommended.

Portland	South Abutment Stability	12/9/2004
Veranda St. Bridge	with proposed 3 ft raise in profile	1 of 10
PIN 10158.00	Portland south Stone Abut Coulomb 3.mcd	

South Abutment Analysis - using field verified abutment dimensions and field-verified backfill. Uses Coulomb theory. Traffic Surcharge added (Coulomb). 3 foot raise in profile Assuming no batter.

Footing toe of 0.4 ft based on test pit.

$psf := \frac{lbf}{lbf}$	$pcf := \frac{lbf}{m}$ Mg	g := 1000·kg	kN := 1000 · newton	$kPa := \frac{kN}{k}$	$tsf := \frac{ton}{dt}$	kip := 1000·lbf	ksf := $\frac{\text{kip}}{1}$
ft ²	ft ³	6		m ²	ft^2	I	ft^2

Height of wall,	H := 25.69 · ft
Width of footing	$B := 7. \cdot ft$
Length of toe	$T := 0.4 \cdot ft$
Footing thickness	$D := 3 \cdot ft$
Depth of toe	$t := 0 \cdot ft$
Depth of seat	$d_s := 1.9 \cdot ft$
Height of stem 1	$H_{st_1} \coloneqq 20.79 \cdot ft$
Unit width	$b := 1 \cdot ft$
centerline distance	$cl := 6 \cdot in$

Assumed backfill and abutment proporties

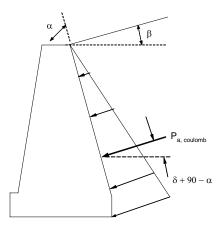
granite unit weight	$\gamma_c := 170 \cdot \text{pcf}$ $\gamma_c = 26.705 \frac{\text{kN}}{\text{m}^3}$					
backfill #1	$\gamma_1 := 125 \cdot pcf$	$\phi_1 := 32 \cdot \text{deg}$	$c_1 := 0 \cdot psf$	granular fill		
Backfill #2	$\gamma_{1b} \coloneqq 120 \cdot \text{pcf}$	$\phi_{1b} := 20 \cdot \text{deg}$	$c_{1b} := 700 \cdot psf$			

Portland Veranda St. Bridge PIN 10158.00	with propose	butment Stability ed 3 ft raise in profile one Abut Coulomb 3.mcd	12/9/2004 2 of 10
Rankine wall friction	$\delta := 0 \cdot \deg$		
Coulomb wall friction	$\delta := 21 \cdot \deg$	2/3 phi up to 24 degrees	
Angle of backslope	$\beta := 0 \cdot \deg$		
α - Angle of abutment backwa true angle of gravity abutmen		use $\alpha := 85 \cdot \deg$	
α - Angle of abutment backfa use α = 90 as Rankine acts of from the back of the heel up t	n a veritcal plane drawn		
α - For Coulomb Analysis on angle of line drawn from back stem at the top of the wall.		e	
Foundation material : sand	$\gamma_2 := 1$	$25 \cdot \text{pcf} \varphi_2 := 32 \cdot \text{deg} c_2 := 0 \cdot \text{psf}$	
concrete - sand friction angle	$\delta_2 := 2^2$	4 deg $\tan(\delta_2) = 0.445$	

DL and LL forces per linear foot of wall:

Tim Merritt, TYLin, calculate 700 kip per abutment of dead load. Tim calculated 215 kip per abutment of LL. Bridge seat is roughly 18 meters or 60 ft.

 $P_{dl} \coloneqq 700 \cdot \frac{kip}{60 \cdot ft} \qquad \qquad P_{dl} = 11.667 \frac{kip}{ft}$


$$P_{ll} := 215 \cdot \frac{kip}{60 \cdot ft} \qquad \qquad P_{ll} = 3.583 \frac{kip}{ft}$$

 $V_{ss} := (P_{dl} + P_{ll}) \cdot b$ $V_{ss} = 1.525 \times 10^{4} lbf$ $V_{ss} = 15.25 kip$

 $\mathbf{H}_{ss} := \left[\left(.1 \cdot \mathbf{P}_{dl} \right) + \left(0.05 \cdot \mathbf{P}_{ll} \right) \right] \cdot \mathbf{b} \qquad \qquad \mathbf{H}_{ss} = 1.346 \times 10^{3} \, \text{lbf} \ \mathbf{H}_{ss} = 1.346 \, \text{kip}$

Portland	South Abutment Stability	12/9/2004
Veranda St. Bridge	with proposed 3 ft raise in profile	3 of 10
PIN 10158.00	Portland south Stone Abut Coulomb 3.mcd	

Lateral Earth Pressure - use Coulomb - in failure, wedge of backfill soil slides upward along a plane matching the backwall of the gravity abutment

$$K_{a_rank} := \frac{\cos(\beta) - \left[\left(\cos(\beta)\right)^2 - \left(\cos(\varphi_1)\right)^2\right]^{0.5}}{\cos(\beta) + \left[\left(\cos(\beta)\right)^2 - \left(\cos(\varphi_1)\right)^2\right]^{0.5}} \cdot \cos(\beta) \qquad K_{a_rank} = 0.307$$

Coulomb Ka for granular backfill is very similar to the Rankine Value

$$K_{a_coulomb} := \frac{\sin(\phi_1 + \alpha)^2}{\left[\left(\sin(\alpha)^2 \cdot \sin(\alpha - \delta)\right) \cdot \left[1 + \sqrt{\frac{\sin(\phi_1 + \delta) \cdot \sin(\phi_1 - \beta)}{(\sin(\alpha - \delta) \cdot \sin(\alpha + \beta))}}\right]^2\right]} K_{a_coulomb} = 0.313$$

Resultant Earth Pressure from backfill

$$P_{a1} \coloneqq \frac{1}{2} \cdot \gamma_1 {\cdot} H^2 {\cdot} K_{a_coulomb} {\cdot} b$$

 $P_{a1} = 12.892 \text{ kip}$

per linear foot of abutment

Portland Veranda St. Bridge PIN 10158.00	South Abutment Stability with proposed 3 ft raise in profile Portland south Stone Abut Coulomb 3.mcd	12/9/2004 4 of 10
Vertical Earth Pressure:		

$E_{avert} \coloneqq \sin(\delta + 90 \cdot deg - \alpha) \cdot P_{a1}$	$E_{avert} = 5.652 \times 10^3 lbf$	$E_{avert} = 5.652 \text{ kip}$	per linear foot of wall

Horizontal Earth Pressure:

 $E_{ahoriz} := \cos(\delta + 90 \cdot \deg - \alpha) \cdot P_{a1} \qquad E_{ahoriz} = 11587.52 \text{ lbf} \qquad E_{ahoriz} = 11.588 \text{ kip} \qquad \text{per lin ft of wall}$

No approach slab; Force due traffic - model w/ surcharge of 2' of soil (using Coulomb earth pressure theory)

 $s \coloneqq 2 \cdot ft \cdot \gamma_1 \qquad s = 250 \text{ psf}$

 $E_s := K_{a_coulomb} \cdot s \cdot H \cdot b$ $E_s = 2.007 \text{ kip}$

Vertical Surcharge Earth Pressure, Resultant acting at H/2:

$E_{surch_vert} \coloneqq sin(\delta + 90 \cdot deg - \alpha) \cdot E_s$	$E_{surch_vert} = 0.88 kip$	per Inr foot of wall
Horizontal Surcharge Earth Pressure	e, Resultant acting at H/2:	
$E_{surch_horiz} := \cos(\delta + 90 \cdot deg - \alpha) \cdot E_s$	$E_{surch_{horiz}} = 1.804 \text{ kip}$	per lin ft of wall

Factor of safety against overturning and sliding

Resisting moments - abutment composed of granite stone masonry

$$A_1 := 7.0 \cdot 7.0 \cdot ft^2$$
 $F_1 := A_1 \cdot \gamma_c \cdot b$ $x_1 := \frac{7.0 \cdot ft}{2}$ $M_{r1} := F_1 \cdot x_1$ $M_{r1} = 29.155 \text{ kip} \cdot ft$

- $A_2 := 6.8 \cdot 2 \cdot ft^2 \qquad F_2 := A_2 \cdot \gamma_c \cdot b \qquad x_2 := \frac{6.8 \cdot ft}{2} + T \qquad M_{r2} := F_2 \cdot x_2 \qquad M_{r2} = 8.786 \ ft \cdot kip$
- $A_3 \coloneqq 6.3 \cdot ft \cdot 2 \cdot ft \qquad F_3 \coloneqq A_3 \cdot \gamma_c \cdot b \qquad \qquad x_3 \coloneqq \frac{6.3}{2} \cdot ft + T \qquad M_{r3} \coloneqq F_3 \cdot x_3 \qquad \qquad M_{r3} = 7.604 \ ft \cdot kip$
- $A_4 := (6.2 \cdot 2) \cdot ft^2 \qquad F_4 := A_4 \cdot \gamma_c \cdot b \qquad \qquad x_4 := \frac{6.2}{2} \cdot ft + T \qquad M_{r4} := F_4 \cdot x_4 \qquad \qquad M_{r4} = 7.378 \ ft \cdot kip$

South Abutment Stability with proposed 3 ft raise in profile Portland south Stone Abut Coulomb 3.mcd			12/9/2004 5 of 10
$F_5 := A_5 \cdot \gamma_c \cdot b$	$\mathbf{x}_5 \coloneqq \frac{5.8}{2} \cdot \mathbf{ft} + \mathbf{T}$	$\mathbf{M}_{r5} \coloneqq \mathbf{F}_5 \cdot \mathbf{x}_5$	$M_{r5} = 6.508 \text{ ft} \cdot \text{kip}$
$F_6 := A_6 \cdot \gamma_c \cdot b$	$\mathbf{x}_6 \coloneqq \frac{5.7}{2} \cdot \mathbf{ft} + \mathbf{T}$	$\mathbf{M}_{\mathbf{r6}} \coloneqq \mathbf{F_6} \cdot \mathbf{x_6}$	$M_{r6} = 6.299 \text{ ft} \cdot \text{kip}$
$F_7 := A_7 \cdot \gamma_c \cdot b$	$\mathbf{x}_7 \coloneqq \frac{5.3}{2} \cdot \mathbf{ft}$	$\mathbf{M}_{r7}\coloneqq \mathbf{F}_{7}{\cdot}\mathbf{x}_{7}$	$M_{r7} = 9.551 \text{ ft} \cdot \text{kip}$
$F_8 := A_8 \cdot \gamma_c \cdot b$	$\mathbf{x}_8 \coloneqq \frac{3.92}{2} \cdot \mathbf{ft} + \mathbf{T}$	$M_{r8}\coloneqq F_8{\cdot}x_8$	$M_{r8} = 0$ ft·kip
$F_9 := A_9 \cdot \gamma_c \cdot b$	$\mathbf{x}_9 \coloneqq \frac{2.75}{2} \cdot \mathbf{ft} + \mathbf{T}$	$M_{r9} \coloneqq F_9 \cdot x_9$	$M_{r9} = 0$ ft·kip
$F_{10} := A_{10} \cdot \gamma_c \cdot b$	$\mathbf{x}_{10} \coloneqq \frac{2 \cdot 1.4}{3} \cdot \mathbf{ft}$	$M_{r10} := F_{10} \cdot x_{10}$	$M_{r10} = 0 \text{ ft} \cdot \text{kip}$
	$F_{5} := A_{5} \cdot \gamma_{c} \cdot b$ $F_{6} := A_{6} \cdot \gamma_{c} \cdot b$ $F_{7} := A_{7} \cdot \gamma_{c} \cdot b$ $F_{8} := A_{8} \cdot \gamma_{c} \cdot b$ $F_{9} := A_{9} \cdot \gamma_{c} \cdot b$	with proposed 3 ft raise in Portland south Stone Abut Coul $F_5 := A_5 \cdot \gamma_c \cdot b$ $x_5 := \frac{5.8}{2} \cdot ft + T$ $F_6 := A_6 \cdot \gamma_c \cdot b$ $x_6 := \frac{5.7}{2} \cdot ft + T$ $F_7 := A_7 \cdot \gamma_c \cdot b$ $x_7 := \frac{5.3}{2} \cdot ft$ $F_8 := A_8 \cdot \gamma_c \cdot b$ $x_8 := \frac{3.92}{2} \cdot ft + T$ $F_9 := A_9 \cdot \gamma_c \cdot b$ $x_9 := \frac{2.75}{2} \cdot ft + T$	with proposed 3 ft raise in profile Portland south Stone Abut Coulomb 3.mcd $F_5 := A_5 \cdot \gamma_c \cdot b$ $x_5 := \frac{5.8}{2} \cdot ft + T$ $M_{r5} := F_5 \cdot x_5$ $F_6 := A_6 \cdot \gamma_c \cdot b$ $x_6 := \frac{5.7}{2} \cdot ft + T$ $M_{r6} := F_6 \cdot x_6$ $F_7 := A_7 \cdot \gamma_c \cdot b$ $x_7 := \frac{5.3}{2} \cdot ft$ $M_{r7} := F_7 \cdot x_7$ $F_8 := A_8 \cdot \gamma_c \cdot b$ $x_8 := \frac{3.92}{2} \cdot ft + T$ $M_{r8} := F_8 \cdot x_8$ $F_9 := A_9 \cdot \gamma_c \cdot b$ $x_9 := \frac{2.75}{2} \cdot ft + T$ $M_{r9} := F_9 \cdot x_9$

Resisting Moments - Soil over backwall and footing - neglect for Coulomb Analysis

Resisting moment due to (1) dead load on bridge seat, (2) vertical component of the Traffic Surcharge acting on the backface, and, (3) vertical component of Coulomb earth pressure acting on the backface.

1.	$M_{rDL} := P_{dl} \cdot (T + cl) \cdot b$	$M_{rDL} = 10.5 \text{ ft} \cdot \text{kip}$	
2.	$M_{rSCH} := E_{surch_vert} \cdot (7 \cdot ft)$	$M_{rSCH} = 6.16 \text{ft} \cdot \text{kip}$	
3.	$\mathbf{M}_{r_Pa} \coloneqq \mathbf{E}_{avert} \cdot (6.0) \cdot \mathbf{ft}$	$M_{r_Pa} = 33.91 \text{ ft} \cdot \text{kip}$	acts downward with a moment arm at point on the backface H/3 high

Portland	South Abutment Stability	12/9/2004
Veranda St. Bridge	with proposed 3 ft raise in profile	6 of 10
PIN 10158.00	Portland south Stone Abut Coulomb 3.mcd	

Driving moments

$$M_{d_surch} := E_{surch_horiz} \cdot \frac{1}{2} \cdot H$$
 $M_{d_surch} = 23.175 \text{ ft} \cdot \text{kip}$ $M_{d_Pa} := E_{ahoriz} \cdot \frac{1}{3} \cdot H$ $M_{d_Pa} = 9.923 \times 10^4 \text{ ft} \cdot \text{lbf}$ $M_{d_Pa} = 99.228 \text{ kip} \cdot \text{ft}$ $M_{d_Pa} = 99.228 \text{ kip} \cdot \text{ft}$ $M_{d3} := H_{ss} \cdot 21 \cdot \text{ft}$ $M_{d3} = 28.262 \text{ ft} \cdot \text{kip}$ DO NOT INCLUDE driving moment due to horizontal component of LL and DL in the load group, OVERRIDE with the following values:
 $M_{d3} := 0 \cdot \text{ft} \cdot \text{kip}$ Summation of forces and moments

 $\Sigma V \coloneqq F_1 + F_2 + F_3 + F_4 + F_5 + F_6 + F_7 + F_8 + F_9 + F_{10} + F_{11} + F_{12} + E_{avert} + E_{surch_vert} + P_{dl} \cdot b$

 $\Sigma V = 4.06 \times 10^4 \, \text{lbf}$

 $\Sigma V = 40.604 \text{ kip}$

 $\Sigma H := E_{ahoriz} + E_{surch_horiz} + H_{ss}$ DO INCLUDE horizontal component of LL and DL in the load group (Hss)

 $\Sigma H = 13.392 \text{ kip}$

 $\Sigma H = 13.392 \text{ kip}$

$$\begin{split} \Sigma M_r &:= M_{r1} + M_{r2} + M_{r3} + M_{r4} + M_{r5} + M_{r6} + M_{r7} + M_{r8} + M_{r9} + M_{r10} + M_{r11} + M_{r12} + M_{rSCH} + M_{rDL} + M_{r_Pa} \\ \Sigma M_r &= 1.258 \times 10^5 \, \text{ft·lbf} \\ \Sigma M_r &= 125.849 \, \text{ft·kip} \end{split}$$

 $\Sigma M_d := M_{d_Pa} + M_{d_surch} + M_{d3}$

 $\Sigma M_d = 122.403 \text{ ft} \cdot \text{kip}$

 $\Sigma M_d = 122.403 \text{ kip} \cdot \text{ft}$

Factor of safety against overturning

$$FS_{ot} := \frac{\Sigma M_r}{\Sigma M_d}$$

 $FS_{ot} = 1.028$

AASHTO required FS is 2.0

Factor of safety against sliding

friction at base + adhesion

$$\tan(\delta_2) = 0.445$$

$$FS_{sl} := \frac{\left[(\Sigma V) \cdot tan(\delta_2) \right] + \left[(B \cdot b) \cdot c_2 \right]}{\Sigma H}$$

AASHTO required FS is 1.5

Bearing Capacity Factor of Safety

determine net moment

$$M_{net} := \Sigma M_r - \Sigma M_d$$
 $M_{net} = 3.446 \times 10^3 lbf \cdot ft$

location of resultant

$$AE := \frac{M_{net}}{\Sigma V} \qquad AE = 0.085 \text{ ft} \qquad X := AE$$

$$e_c := \frac{B}{2} - AE \qquad e_c = 3.415 \text{ ft}$$
$$\frac{B}{c} = 1.167 \text{ ft} \qquad \text{NO GOOD}$$

6

Determine pressure distribution under footing

$$q = \frac{\sum V}{A} + \frac{M_{net} \cdot y}{I}$$
$$q = \frac{\sum V}{A} - \frac{M_{net} \cdot y}{I}$$

γ1 φ1 c1 ΣV ΣΗ Х R ψ ΣV ΣΗ A Е γ2 φ2 c2 q min = q heel q max = q toe e_{C} L/2 L/2 y

solving for \mathbf{q}_{\max} and \mathbf{q}_{\min}

$q_{max} := \left[\frac{\Sigma V}{B} \cdot \left(1 + \frac{6 \cdot e_c}{B}\right)\right] \cdot \frac{1}{b}$	$q_{max} = 22780 \text{ psf}$	$q_{max} = 22.78 \text{ ksf}$	$q_{toe} := q_{max}$
$q_{\min} := \left[\frac{\Sigma V}{B} \cdot \left(1 - \frac{6 \cdot e_c}{B}\right)\right] \cdot \frac{1}{b}$	$q_{min} = -11179 psf$	$q_{min} = -11.179 ksf$	$q_{heel} \coloneqq q_{min}$
$B_e := B - 2 \cdot e_c$			

I = moment of inertia = 1/12*B*2

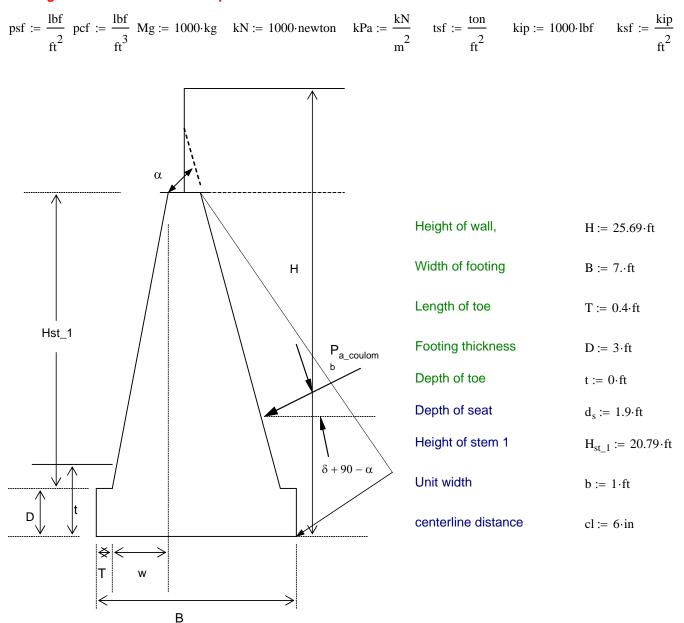
where: $A = area = b^*B$

Allowable Bearing Pressure: $q_u := 24 \cdot ksf$

 $q_{allow} := \frac{q_u}{3}$

 $q_{allow} = 8 \, ksf$

 $FS_{bc} \coloneqq \frac{q_u}{q_{max}}$


$FS_{bc} = 1.054$

AASHTO recommends a FS of 3

Portland	South Abutment Stability	1/27/2009
Veranda St. Bridge	with proposed 3 ft raise in profile	1 of 10
PIN 10158.00	Portland south Stone Abut Coulomb 4.xmcd	KM 12/04

South Abutment Analysis - using field verified abutment dimensions and field-verified backfill. Uses Coulomb theory. Assume approach slab is added, so ignore Traffic Surcharge. 3 foot raise in profile Assuming no batter.

Footing toe of 0.4 ft based on test pit.

Assumed backfill and abutment proporties

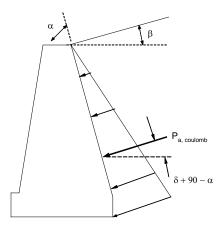
granite unit weight	$\gamma_c \coloneqq 170$	\cdot pcf $\gamma_c = 26.705$	$5\frac{kN}{m^3}$	
backfill #1	$\gamma_1 := 125 \cdot pcf$	$\phi_1 := 32 \cdot \deg$	$c_1 := 0 \cdot psf$	granular fill
Backfill #2	$\gamma_{1b} := 120 \cdot pcf$	$\phi_{1b} := 20 \cdot \text{deg}$	$c_{1b} \coloneqq 700 \cdot psf$	

Portland Veranda St. Bridge PIN 10158.00	with proposed	utment Stability 3 ft raise in profile e Abut Coulomb 4.xmcd	1/27/2009 2 of 10 KM 12/04
Rankine wall friction	$\delta := 0 \cdot deg$		
Coulomb wall friction	$\delta := 21 \cdot deg$	2/3 phi to maximum of 24 degrees	
Angle of backslope	$\beta \coloneqq 0 \cdot \deg$		
α - Angle of abutment backwall (for the true angle of gravity abutment backwall (for	-	$\alpha := 85 \cdot \deg$	
α - Angle of abutment backface (use α = 90 as Rankine acts on a from the back of the heel up to th	veritcal plane drawn		
α - For Coulomb Analysis on a C angle of line drawn from back of stem at the top of the wall.			
Foundation material : sand	$\gamma_2 := 123$	5 pcf $\phi_2 := 32 \cdot \deg$ $c_2 := 0 \cdot psf$	
concrete - sand friction angle	$\delta_2 := 24 \cdot$	deg $\tan(\delta_2) = 0.445$	

DL and LL forces per linear foot of wall:

Tim Merritt, TYLin, calculate 700 kip per abutment of dead load. Tim calculated 215 kip per abutment of LL. Bridge seat is roughly 18 meters or 60 ft.

 $P_{dl} := 700 \cdot \frac{kip}{60 \cdot ft} \qquad \qquad P_{dl} = 11.667 \frac{kip}{ft}$


$$P_{II} := 215 \cdot \frac{\text{kip}}{60 \cdot \text{ft}} \qquad \qquad P_{II} = 3.583 \frac{\text{kip}}{\text{ft}}$$

 $V_{ss} := (P_{dl} + P_{ll}) \cdot b$ $V_{ss} = 1.525 \times 10^{4} lbf$ $V_{ss} = 15.25 kip$

 $\mathbf{H}_{ss} := \left[\left(.1 \cdot \mathbf{P}_{dl} \right) + \left(0.05 \cdot \mathbf{P}_{ll} \right) \right] \cdot \mathbf{b} \qquad \qquad \mathbf{H}_{ss} = 1.346 \times 10^{3} \, \text{lbf} \ \mathbf{H}_{ss} = 1.346 \, \text{kip}$

Portland	South Abutment Stability	1/27/2009
Veranda St. Bridge	with proposed 3 ft raise in profile	3 of 10
PIN 10158.00	Portland south Stone Abut Coulomb 4.xmcd	KM 12/04

Lateral Earth Pressure - use Coulomb - in failure, wedge of backfill soil slides upward along a plane matching the backwall of the gravity abutment

$$K_{a_rank} := \frac{\cos(\beta) - \left[\left(\cos(\beta)\right)^2 - \left(\cos(\varphi_1)\right)^2\right]^{0.5}}{\cos(\beta) + \left[\left(\cos(\beta)\right)^2 - \left(\cos(\varphi_1)\right)^2\right]^{0.5}} \cdot \cos(\beta) \qquad K_{a_rank} = 0.307$$

Coulomb Ka for granular backfill is very similar to the Rankine Value

$$K_{a_coulomb} := \frac{\sin(\phi_1 + \alpha)^2}{\left[\left(\sin(\alpha)^2 \cdot \sin(\alpha - \delta) \right) \cdot \left[1 + \sqrt{\frac{\sin(\phi_1 + \delta) \cdot \sin(\phi_1 - \beta)}{(\sin(\alpha - \delta) \cdot \sin(\alpha + \beta))}} \right]^2 \right]} K_{a_coulomb} = 0.313$$

Resultant Earth Pressure from backfill

$$P_{a1} \coloneqq \frac{1}{2} \cdot \gamma_1 \cdot H^2 \cdot K_{a_coulomb} \cdot b$$

 $P_{a1} = 12.892 \text{ kip}$

per linear foot of abutment

Portland Veranda St. Bridge PIN 10158.00	South Abutment Stability with proposed 3 ft raise in profile Portland south Stone Abut Coulomb 4.xmcd		1/27/2009 4 of 10 KM 12/04	
Vertical Earth Pressure:				
$E_{avert} \coloneqq \sin(\delta + 90 \cdot deg - \alpha) \cdot P_{a1}$	$E_{avert} = 5.652 \times 10^3 lbf$	$E_{avert} = 5.652 \text{ kip}$	per linear foot of wall	
Horizontal Earth Pressure:				
$E_{ahoriz} \coloneqq \cos(\delta + 90 \cdot \text{deg} - \alpha) \cdot P_{a1}$	$E_{ahoriz} = 11587.52 lbf$	$E_{ahoriz} = 11.588 kip$	per lin ft of wall	

Assume approach slab is added; neglect Force due traffic - model w/ surcharge of 2' of soil (using Coulomb earth pressure theory)

 $s := 0 \cdot ft \cdot \gamma_1$ s = 0 psf

 $E_s := K_{a_coulomb} \cdot s \cdot H \cdot b$ $E_s = 0 kip$

Vertical Surcharge Earth Pressure, Resultant acting at H/2:

$E_{surch_vert} \coloneqq sin(\delta + 90 \cdot deg - \alpha) \cdot E_s$	$E_{surch_vert} = 0 kip$	per Inr foot of wall
Having what Sumahavana Earth Dragoung	Deputtent esting at 11/2	

Horizontal Surcharge Earth Pressure, Resultant acting at H/2:

 $E_{surch_horiz} \coloneqq \cos(\delta + 90 \cdot deg - \alpha) \cdot E_s \qquad E_{surch_horiz} = 0 \text{ kip} \qquad \text{per lin ft of wall}$

Factor of safety against overturning and sliding

Resisting moments - abutment composed of granite stone masonry

$$A_1 := 7.0 \cdot 7.0 \cdot ft^2$$
 $F_1 := A_1 \cdot \gamma_c \cdot b$ $x_1 := \frac{7.0 \cdot ft}{2}$ $M_{r1} := F_1 \cdot x_1$ $M_{r1} = 29.155 \text{ kip} \cdot ft$

- $A_2 := 6.8 \cdot 2 \cdot ft^2 \qquad F_2 := A_2 \cdot \gamma_c \cdot b \qquad x_2 := \frac{6.8 \cdot ft}{2} + T \qquad M_{r2} := F_2 \cdot x_2 \qquad M_{r2} = 8.786 \text{ ft} \cdot \text{kip}$
- $A_3 \coloneqq 6.3 \cdot ft \cdot 2 \cdot ft \qquad F_3 \coloneqq A_3 \cdot \gamma_c \cdot b \qquad \qquad x_3 \coloneqq \frac{6.3}{2} \cdot ft + T \qquad M_{r3} \coloneqq F_3 \cdot x_3 \qquad \qquad M_{r3} = 7.604 \ ft \cdot kip$
- $A_4 := (6.2 \cdot 2) \cdot ft^2 \qquad F_4 := A_4 \cdot \gamma_c \cdot b \qquad \qquad x_4 := \frac{6.2}{2} \cdot ft + T \qquad M_{r4} := F_4 \cdot x_4 \qquad \qquad M_{r4} = 7.378 \ ft \cdot kip$

Portland Veranda St. Bridge PIN 10158.00	Pi	South Abutment Stabili with proposed 3 ft raise in p ortland south Stone Abut Coulo	orofile	1/27/2009 5 of 10 KM 12/04
$A_5 := 5.8 \cdot 2 \cdot ft^2$	$F_5 \coloneqq A_5 \cdot \gamma_c \cdot b$	$\mathbf{x}_5 \coloneqq \frac{5.8}{2} \cdot \mathbf{ft} + \mathbf{T}$	$\mathbf{M}_{r5} \coloneqq \mathbf{F}_5 \cdot \mathbf{x}_5$	$M_{r5} = 6.508 \text{ ft} \cdot \text{kip}$
$A_6 \coloneqq 5.7 \cdot 2 \cdot ft^2$	$F_6 \coloneqq A_6 \cdot \gamma_c \cdot b$	$\mathbf{x}_6 \coloneqq \frac{5.7}{2} \cdot \mathbf{ft} + \mathbf{T}$	$\mathbf{M}_{\mathbf{r6}} \coloneqq \mathbf{F}_{6} \cdot \mathbf{x}_{6}$	$M_{r6} = 6.299 \text{ ft} \cdot \text{kip}$
$A_7 \coloneqq 5.3 \cdot 4 \cdot \text{ft}^2$	$F_7 \coloneqq A_7 \cdot \gamma_c \cdot b$	$\mathbf{x}_7 \coloneqq \frac{5.3}{2} \cdot \mathbf{ft}$	$\mathbf{M}_{\mathbf{r7}} \coloneqq \mathbf{F_7} \cdot \mathbf{x_7}$	$M_{r7} = 9.551 \text{ ft} \cdot \text{kip}$
$A_8 \coloneqq 0.0 \cdot ft^2$	$F_8 \coloneqq A_8 \cdot \gamma_c \cdot b$	$\mathbf{x}_8 \coloneqq \frac{3.92}{2} \cdot \mathbf{ft} + \mathbf{T}$	$M_{r8} \coloneqq F_8 \cdot x_8$	$M_{r8} = 0 \text{ ft} \cdot \text{kip}$
$A_9 \coloneqq 0.0 \cdot \text{ft}^2$	$F_9 \coloneqq A_9 \cdot \gamma_c \cdot b$	$\mathbf{x}_9 \coloneqq \frac{2.75}{2} \cdot \mathbf{ft} + \mathbf{T}$	$\mathbf{M}_{r9} \coloneqq \mathbf{F}_{9} \cdot \mathbf{x}_{9}$	$M_{r9} = 0 \text{ ft} \cdot \text{kip}$
$A_{10} := ft \cdot 0 \cdot ft$	$F_{10} := A_{10} \cdot \gamma_c \cdot b$	$\mathbf{x}_{10} \coloneqq \frac{2 \cdot 1.4}{3} \cdot \mathbf{ft}$	$M_{r10} \coloneqq F_{10} \cdot x_{10}$	$M_{r10} = 0 ft \cdot kip$

Resisting Moments - Soil over backwall and footing - neglect for Coulomb Analysis

Resisting moment due to (1) dead load on bridge seat, (2) vertical component of the Traffic Surcharge acting on the backface, and, (3) vertical component of Coulomb earth pressure acting on the backface.

1.
$$M_{rDL} \coloneqq P_{dl} \cdot (T + cl) \cdot b$$
 $M_{rDL} = 10.5 \text{ ft} \cdot \text{kip}$ 2. $M_{rSCH} \coloneqq E_{surch_vert} \cdot (6 \cdot ft)$ $M_{rSCH} = 0 \text{ ft} \cdot \text{kip}$ acts at H/2 $\frac{H}{2} = 12.845 \text{ ft}$ 3. $M_{r_Pa} \coloneqq E_{avert} \cdot (6) \cdot \text{ft}$ $M_{r_Pa} = 33.91 \text{ ft} \cdot \text{kip}$ acts at H/3 $\frac{H}{3} = 8.563 \text{ ft}$

Portland Veranda St. Bridge	with proposed 3		1/27/2009 6 of 10
PIN 10158.00	Portland south Stone	Abut Coulomb 4.xmcd	KM 12/04
Driving moments			
$\mathbf{M}_{d_surch} \coloneqq \mathbf{E}_{surch_horiz} \cdot \frac{1}{2} \cdot \mathbf{H}$	$\mathbf{M}_{d_surch} = 0 \text{ ft} \cdot \text{kip}$		
$\mathbf{M}_{d_Pa} \coloneqq \mathbf{E}_{ahoriz} \cdot \frac{1}{3} \cdot \mathbf{H}$	$M_{d_Pa} = 9.923 \times 10^4 \text{ft} \cdot \text{lbf}$	$M_{d_Pa} = 99.228 \text{ kip} \cdot \text{ft}$	$M_{d_Pa} = 99.228 \text{ kip} \cdot \text{ft}$
$M_{d3} := H_{ss} \cdot 21 \cdot ft$	$M_{d3} = 28.262 \text{ ft} \cdot \text{kip}$	horizontal compo	ving moment due to nent of LL and DL in the load with the following values:
		$M_{d3} := 0 \cdot ft \cdot kip$	$H_{ss} := 0 \cdot kip$
Summation of forces and	moments		
$\Sigma \mathbf{V} \coloneqq \mathbf{F}_1 + \mathbf{F}_2 + \mathbf{F}_3 + \mathbf{F}_4 + \mathbf{F}_4$	$F_5 + F_6 + F_7 + F_8 + F_9 + F_{10} + F_{10}$	$E_{11} + F_{12} + E_{avert} + E_{surch}$	$vert + P_{dl} \cdot b$
$\Sigma V = 3.972 \times 10^4 \text{lbf}$			
$\Sigma V = 39.724 \text{ kip}$			
$\Sigma H := E_{ahoriz} + E_{surch_horiz} +$	55	nclude horizontal comp e load group (Hss)	ponent of LL and
$\Sigma H = 11.588 kip$			
$\Sigma H = 11.588 \text{ kip}$			
$\Sigma M = M + M + M + N$	M . M . M . M . M .	MIMIMIM	
$\Sigma \mathbf{M}_{r} = \mathbf{M}_{r1} + \mathbf{M}_{r2} + \mathbf{M}_{r3} + \mathbf{M}_{r3}$ $\Sigma \mathbf{M}_{r} = 1.197 \times 10^{5} \text{ft} \cdot \text{lbf}$	$M_{r4} + M_{r5} + M_{r6} + M_{r7} + M_{r8} +$	$\mathbf{w}_{\mathbf{L}9} \perp \mathbf{w}_{\mathbf{L}10} \perp \mathbf{w}_{\mathbf{L}11} \perp \mathbf{w}_{\mathbf{L}11}$	$2 + i \mathbf{v}_{\mathbf{r}} \mathbf{SCH} + i \mathbf{v}_{\mathbf{r}} \mathbf{DL} + i \mathbf{v}_{\mathbf{r}} \mathbf{Pa}$
$\Sigma M_r = 119.689 \text{ ft} \cdot \text{kip}$			
$\Sigma M_d := M_{d_Pa} + M_{d_surch} + M_{d_surch}$	M _{d3}		
$\Sigma M_d = 99.228 \text{ft} \cdot \text{kip}$			

 $\Sigma M_d = 99.228 \, \text{kip} \cdot \text{ft}$

Factor of safety against overturning compared to AASHTO required FS of 2.0

$$FS_{ot} := \frac{\Sigma M_r}{\Sigma M_d}$$

$$FS_{ot} = 1.206$$

AASHTO requirements specify a factor of safety of 2.0 against overturning

Factor of safety against sliding - compared to AASHTO required FS of 1.5

friction at base + adhesion

$$\tan(\delta_2) = 0.445$$

$$FS_{sl} := \frac{\left[(\Sigma V) \cdot tan(\delta_2) \right] + \left[(B \cdot b) \cdot c_2 \right]}{\Sigma H}$$

 $FS_{sl} = 1.526$

AASHTO requirements specify a factor of safety of 2.0 against overturning

Bearing Capacity Factor of Safety

determine net moment

$$M_{net} := \Sigma M_r - \Sigma M_d$$
 $M_{net} = 2.046 \times 10^4 \, lbf \cdot ft$

location of resultant

$$AE := \frac{M_{net}}{\Sigma V} \qquad AE = 0.515 \text{ ft} \qquad X := AE$$

$$e_c := \frac{B}{2} - AE$$
 $e_c = 2.985 \text{ ft}$
 $\frac{B}{6} = 1.167 \text{ ft}$ NO GOOD

Determine pressure distribution under footing

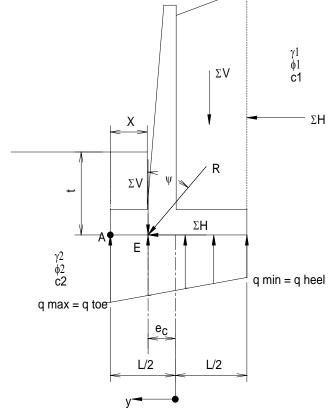
$$q = \frac{\Sigma V}{A} + \frac{M_{net} \cdot y}{I}$$
$$q = \frac{\Sigma V}{A} - \frac{M_{net} \cdot y}{I}$$

where:A = area = b*B I = moment of inertia = 1/12*B*2

solving for \mathbf{q}_{max} and \mathbf{q}_{min}

$$q_{max} \coloneqq \left[\frac{\Sigma V}{B} \cdot \left(1 + \frac{6 \cdot e_c}{B}\right)\right] \cdot \frac{1}{b} \qquad q_{max} = 20194 \text{ psf} \qquad q_{max} = 20.194 \text{ ksf} \qquad q_{toe} \coloneqq q_{max}$$

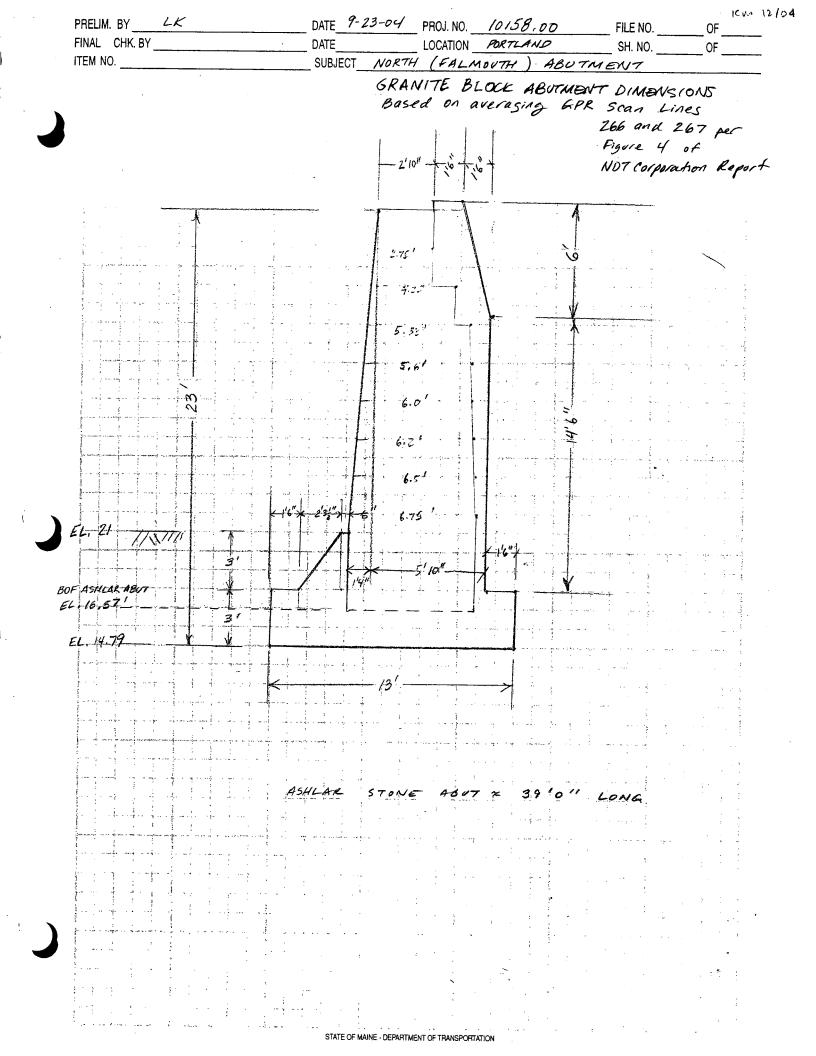
$$q_{min} \coloneqq \left[\frac{\Sigma V}{B} \cdot \left(1 - \frac{6 \cdot e_c}{B}\right)\right] \cdot \frac{1}{b} \qquad q_{min} = -8844 \text{ psf} \qquad q_{min} = -8.844 \text{ ksf} \qquad q_{heel} \coloneqq q_{min}$$


$$B_e \coloneqq B - 2 \cdot e_c$$
Allowable Bearing Pressure: $q_u \coloneqq 24 \cdot \text{ksf} \qquad q_{allow} \coloneqq \frac{q_u}{3} \qquad q_{allow} = 8 \text{ ksf}$

Factor of Safety against BC failure:

 $FS_{bc} := \frac{q_u}{q_{max}}$

 $FS_{bc} = 1.188$

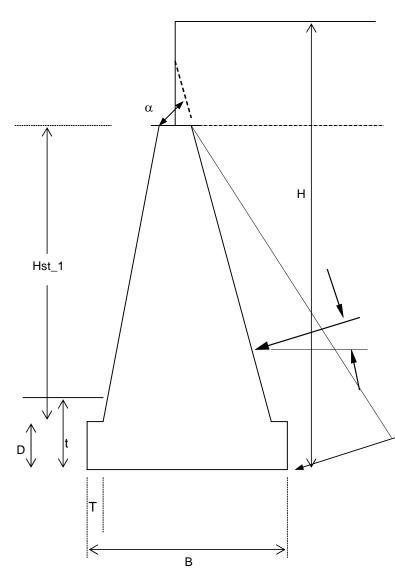

AASHTO recommends a FS of 3

NORTH ABUTMENT

STONE MASONRY ABUTMENT SECTION

STABILITY ANALYSES

÷


BASED ON 266 AND SIMPLIFIED BACK BAT	D GEDMETRY TO ACCOUNT FOR TE2 OF FACE (1:12 FACE BATTER E (6.3.2004) 1.9'
STONE MAS BASED ON 266 AND SIMPLIFIED BACK BAT	SUBJECT NORTH ABUTMENT. SO NRY ABUTMENT GEOMETRY AVERAGE OF GRR SCAN LINES 267. D GEOMETRY TO ACCOUNT FOR TEZ OF FACE (1:12 FACE BATTER & (1:12 FACE BATTER (1:12 FACE BATTER) (1:12 FACE BATTER)
BASED ON 266 AND SIMIPLIFIED BACK BAT	AVERAGE OF GAR SCAN LINES 267. D GEDMETRY TO ACCOUNT FOR TEL OF FACE (1:12 FACE BATTER ¢ 1.9' 1.9'
0.1	¢
	1.9'
0	7' - 2.75'
,	0.5'
	0.67' <u>4.93'</u> .83' <u>5.17'</u> Pa
1.0-	.83 - 5.17' $5.2' - (Pa)_h$ $(Pa)_h$
4.0'	H/3
TITE	EL. 16.57
	-> K-TCE = 0.4'
	×= 85°
ATOF	OF FOOTING AND DEPTH OF
EMBE	OF FOOTING AND DEPTH OF DOMONT PER TEST PIT TP-PRR-101

1/27/2009 1 of 10 KM 12/04

 $H := 22.9 \cdot ft$

North (Falmouth) Abutment Analysis Using field verified abutment dimensions and field-verified backfill. Uses Coulomb theory. Traffic Surcharge added (Coulomb). Existing profile conditions

psf := $\frac{\text{lbf}}{\text{ft}^2}$ pcf := $\frac{\text{lbf}}{\text{ft}^3}$ Mg := 1000 kg	kN := 1000 newton	$kPa := \frac{kN}{m^2}$	$tsf := \frac{ton}{ft^2}$	kip := 1000·lbf	ksf := $\frac{\text{kip}}{\text{ft}^2}$
---	-------------------	-------------------------	---------------------------	-----------------	---

Width of footing	$\mathbf{B} := 7.2 \cdot \mathrm{ft}$
Length of toe	$T := 0.4 \cdot ft$
	$w := 1.4 \cdot ft$
Footing thickness	D := 4.0.ft
Depth of toe	$t := 4 \cdot ft$
Depth of seat	$d_s := 1.9 \cdot ft$
Height of stem 1	$H_{st_1} := 21 \cdot ft$
Unit width	b := 1∙ft
centerline distance	cl := 6∙in

Height of wall,

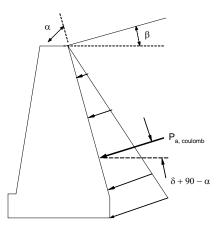
Assumed backfill and abutment proporties

 $\begin{array}{lll} \mbox{granite unit weight} & \gamma_c \coloneqq 170 \cdot pcf & \gamma_c = 26.705 \, \frac{kN}{m^3} \\ \mbox{backfill #1} & \gamma_1 \coloneqq 125 \cdot pcf & \varphi_1 \coloneqq 32 \cdot deg & c_1 \coloneqq 0 \cdot psf & \mbox{granular fill} \\ \mbox{Backfill #2} & \gamma_{1b} \coloneqq 120 \cdot pcf & \varphi_{1b} \coloneqq 20 \cdot deg & c_{1b} \coloneqq 700 \cdot psf \end{array}$

Portland Veranda St Bridge PIN 10158.00		nth) Abutment Stability one Abut Coulomb 3.xmcd	1/27/2009 2 of 10 KM 12/04	
Rankine wall friction	$\delta := 0 \cdot deg$			
Coulomb wall friction	$\delta := 21 \cdot \text{deg}$	2/3 phi		
Angle of backslope	$\beta := 0 \cdot \deg$			
α - Angle of abutment backwall (for true angle of gravity abutment bac	•	ise $\alpha := 85 \cdot \deg$		
α - Angle of abutment backface (for use α = 90 as Rankine acts on a v from the back of the heel up to the	eritcal plane drawn			
α - For Coulomb Analysis on a Ca angle of line drawn from back of he stem at the top of the wall.		e		
Foundation material : sand	$\gamma_2 \coloneqq 12$	$25 \cdot \text{pcf} \phi_2 := 32 \cdot \text{deg} c_2 := 0 \cdot \text{psf}$		
concrete - sand friction angle	$\delta_2 := 24$	$4 \cdot \deg \qquad \tan(\delta_2) = 0.445$		

DL and LL forces per linear foot of wall:

Tim Merritt, TYLin, calculate 700 kip per abutment of dead load. Tim calculated 215 kip per abutment of LL. Bridge seat is roughly 18 meters or 60 ft.


$$P_{dl} := 700 \cdot \frac{kip}{60 \cdot ft} \qquad \qquad P_{dl} = 11.667 \frac{kip}{ft}$$

$$P_{ll} := 215 \cdot \frac{kip}{60 \cdot ft} \qquad \qquad P_{ll} = 3.583 \frac{kip}{ft}$$

 $V_{ss} := (P_{dl} + P_{ll}) \cdot b$ $V_{ss} = 1.525 \times 10^{4} lbf$ $V_{ss} = 15.25 kip$

$$\mathbf{H}_{ss} \coloneqq \left[\left(.1 \cdot \mathbf{P}_{dl} \right) + \left(0.05 \cdot \mathbf{P}_{ll} \right) \right] \cdot \mathbf{b} \qquad \qquad \mathbf{H}_{ss} = 1.346 \times 10^{3} \, \text{lbf} \ \mathbf{H}_{ss} = 1.346 \, \text{kip}$$

Lateral Earth Pressure - use Coulomb - in failure, wedge of backfill soil slides upward along a plane matching the backwall of the gravity abutment

$$K_{a_rank} := \frac{\cos(\beta) - \left[\left(\cos(\beta)\right)^2 - \left(\cos(\varphi_1)\right)^2\right]^{0.5}}{\cos(\beta) + \left[\left(\cos(\beta)\right)^2 - \left(\cos(\varphi_1)\right)^2\right]^{0.5}} \cdot \cos(\beta)$$

$$K_{a_rank} = 0.307$$

Coulomb Ka for granular backfill is very similar to the Rankine Value

$$K_{a_coulomb} := \frac{\sin(\phi_1 + \alpha)^2}{\left[\left(\sin(\alpha)^2 \cdot \sin(\alpha - \delta)\right) \cdot \left[1 + \sqrt{\frac{\sin(\phi_1 + \delta) \cdot \sin(\phi_1 - \beta)}{(\sin(\alpha - \delta) \cdot \sin(\alpha + \beta))}}\right]^2\right]} K_{a_coulomb} = 0.313$$

Resultant Earth Pressure from backfill

$$P_{a1} \coloneqq \frac{1}{2} \cdot \gamma_1 \cdot H^2 \cdot K_{a_coulomb} \cdot b$$

 $P_{a1} = 10.244 \text{ kip}$

per linear foot of abutment

Portland Veranda St Bridge PIN 10158.00	North (Falmouth) Abutment Stability Portland North Stone Abut Coulomb 3.xmcd		1/27/2009 4 of 10 KM 12/04	
Vertical Earth Pressure:				
$E_{avert} := \sin(\delta + 90 \cdot deg - \alpha) \cdot P_{a1}$	$E_{avert} = 4.491 \times 10^3 lbf$	E _{avert} = 4.491 kip	per linear foot of wall	
Horizontal Earth Pressure:				
$E_{ahoriz} := \cos(\delta + 90 \cdot deg - \alpha) \cdot P_{a1}$	$E_{ahoriz} = 9207.321 \text{ lbf}$	$E_{ahoriz} = 9.207 \text{ kip}$	per lin ft of wall	

No approach slab; Force due traffic - model w/ surcharge of 2' of soil (using Coulomb earth pressure theory)

 $s := 2 \cdot ft \cdot \gamma_1$ $s = 250 \, psf$

 $E_s := K_{a_coulomb} \cdot s \cdot H \cdot b$ $E_s = 1.789 \text{ kip}$

Vertical Surcharge Earth Pressure, Resultant acting at H/2 on backface of wall:

 $E_{surch_vert} \coloneqq sin(\delta + 90 \cdot deg - \alpha) \cdot E_s \qquad \qquad E_{surch_vert} = 0.784 \ kip \qquad \qquad \text{per lnr foot of wall}$

Horizontal Surcharge Earth Pressure, Resultant acting at H/2 on backface of wall:

 $E_{surch_horiz} := \cos(\delta + 90 \cdot deg - \alpha) \cdot E_s$ $E_{ahoriz} = 9.207 \text{ kip}$ per lin ft of wall

Factor of safety against overturning and sliding

Resisting moments - abutment composed of granite stone masonry

$$A_{1} := 6.8 \cdot 4 \cdot ft^{2} \qquad F_{1} := A_{1} \cdot \gamma_{c} \cdot b \qquad x_{1} := \frac{6.8 \cdot ft}{2} + T \qquad M_{r1} := F_{1} \cdot x_{1} \qquad M_{r1} = 17.571 \text{ kip} \cdot ft$$

$$A_2 := 5.4 \cdot 1 \cdot ft^2 \qquad F_2 := A_2 \cdot \gamma_c \cdot b \qquad x_2 := \frac{5.4 \cdot ft}{2} + T + w \qquad M_{r2} := F_2 \cdot x_2 \qquad M_{r2} = 4.131 \text{ ft} \cdot \text{kip}$$

$$A_3 := 5.33 \cdot ft \cdot 2 \cdot ft \qquad F_3 := A_3 \cdot \gamma_c \cdot b \qquad x_3 := \frac{5.33}{2} \cdot ft + T + w \quad M_{r3} := F_3 \cdot x_3 \qquad M_{r3} = 8.091 \; ft \cdot kip$$

$$A_4 \coloneqq (5.2 \cdot 2) \cdot ft^2 \qquad F_4 \coloneqq A_4 \cdot \gamma_c \cdot b \qquad \qquad x_4 \coloneqq \frac{5.2}{2} \cdot ft + T + w \quad M_{r4} \coloneqq F_4 \cdot x_4 \qquad \qquad M_{r4} = 7.779 \ ft \cdot kip$$

Portland Veranda St Bridge PIN 10158.00	Ρ	North (Falmouth) Abutment Stability ortland North Stone Abut Coulomb 3.xmcd	1/27/2009 5 of 10 KM 12/04
$A_5 := 5.17 \cdot 2 \cdot ft^2$	$F_5 := A_5 {\cdot} \gamma_c {\cdot} b$	$\mathbf{x}_5 \coloneqq \frac{5.17}{2} \cdot \mathbf{ft} + \mathbf{T} + \mathbf{w} \mathbf{M}_{r5} \coloneqq \mathbf{F}_5 \cdot \mathbf{x}_5$	$M_{r5} = 7.708 \text{ ft} \cdot \text{kip}$
$A_6 := 4.39 \cdot 2 \cdot ft^2$	$F_6 := A_6 \cdot \gamma_c \cdot b$	$\mathbf{x}_6 \coloneqq \frac{4.93}{2} \cdot \mathbf{ft} + \mathbf{T} + \mathbf{w} \mathbf{M}_{r6} \coloneqq \mathbf{F}_6 \cdot \mathbf{x}_6$	$M_{r6} = 6.366 \text{ ft} \cdot \text{kip}$
$A_7 := 4.83 \cdot 2 \cdot ft^2$	$F_7 := A_7 \cdot \gamma_c \cdot b$	$x_7 := \frac{4.83}{2} \cdot ft + T + w M_{r7} := F_7 \cdot x_7$	$M_{r7} = 6.922 \text{ ft} \cdot \text{kip}$
$A_8 := 3.92 \cdot 2 \cdot ft^2$	$F_8 \coloneqq A_8 \cdot \gamma_c \cdot b$	$\mathbf{x}_8 \coloneqq \frac{3.92}{2} \cdot \mathbf{ft} + \mathbf{T} + \mathbf{w} \mathbf{M}_{r8} \coloneqq \mathbf{F}_8 \cdot \mathbf{x}_8$	$M_{r8} = 5.011 \text{ ft} \cdot \text{kip}$
$A_9 \coloneqq 2.75 \cdot 4 \cdot \mathrm{ft}^2$	$F_9 := A_9 \cdot \gamma_c \cdot b$	$x_9 := \frac{2.75}{2} \cdot ft + T + w M_{r9} := F_9 \cdot x_9$	$M_{r9} = 5.937 \text{ ft} \cdot \text{kip}$
17		2.1.4	

 $A_{10} := 1.4 \cdot ft \cdot \frac{17}{2} \cdot ft \qquad F_{10} := A_{10} \cdot \gamma_c \cdot b \qquad \qquad x_{10} := \frac{2 \cdot 1.4}{3} \cdot ft + w \qquad M_{r10} := F_{10} \cdot x_{10} \qquad \qquad M_{r10} = 4.72 \, ft \cdot kip$

Resisting Moments - Soil over backwall and footing - neglect for Coulomb Analysis

- $A_{11} \coloneqq 0 \cdot \mathrm{ft} \cdot 0 \cdot \mathrm{ft} \qquad \qquad F_{11} \coloneqq A_{11} \cdot \gamma_1 \cdot b \qquad \qquad x_{11} \coloneqq 7 \cdot \mathrm{ft} \qquad \qquad M_{r11} \coloneqq F_{11} \cdot x_{11} \cdot 0 \qquad \qquad M_{r11} = 0 \cdot \mathrm{ft} \cdot \mathrm{kip}$
- $A_{12} \coloneqq 0 \cdot ft \cdot ft \qquad F_{12} \coloneqq A_{12} \cdot \gamma_1 \cdot b \qquad x_{12} \coloneqq 4.5 \cdot ft \qquad M_{r12} \coloneqq F_{12} \cdot x_{12} \cdot 0 \qquad M_{r12} = 0 \ ft \cdot kip$

Resisting moment due to (1) dead load on bridge seat, (2) vertical component of the Traffic Surcharge acting on the backface, and, (3) vertical component of Coulomb earth pressure acting on the backface.

1. $M_{rDL} := P_{dl} \cdot (1.4 \cdot ft + cl) \cdot b$ $M_{rDL} = 22.167 \text{ ft} \cdot \text{kip}$ 2. $M_{rSCH} := E_{surch_vert} \cdot (5 \cdot ft)$ $M_{rSCH} = 3.922 \text{ ft} \cdot \text{kip}$ 3. $M_{r_Pa} := E_{avert} \cdot (5.5 \cdot ft)$ $M_{r_Pa} = 24.699 \text{ ft} \cdot \text{kip}$

Portland	
Veranda St Bridge	
PIN 10158.00	

Driving moments

$M_{d_surch} := E_{surch_horiz} \cdot \frac{1}{2} \cdot H$	$M_{d_surch} = 18.415 \text{ ft}$	kip		
$\mathbf{M}_{\mathbf{d}_{\mathbf{P}\mathbf{a}}} \coloneqq \mathbf{E}_{\mathbf{a}\mathbf{h}\mathbf{o}\mathbf{r}\mathbf{i}\mathbf{z}} \cdot \frac{1}{3} \cdot \mathbf{H}$	$M_{d_Pa} = 7.028 \times 10^4 \text{ft} \cdot \text{lbf}$	$M_{d_Pa} = 70.283 \text{kip} \cdot \text{ft}$	$M_{d_Pa} = 7$	'0.283 kip∙ft
$M_{d3} := H_{ss} \cdot 21 \cdot ft$	$M_{d3} = 28.262 \text{ft} \cdot \text{kip}$	DO NOT INCLUDE and DL in the load nor a horizontal fo values:	d group as a driv	ving moment
			$M_{d3} := 0 \cdot ft \cdot kip$	$H_{ss} := 0 \cdot kip$
Summation of forces and moments				
$\Sigma V := F_1 + F_2 + F_3 + F_4 + F_5 + F_6 + F_7 + F_8 + F_9 + F_{10} + F_{11} + F_{12} + E_{avert} + E_{surch_vert} + P_{dl} \cdot b$				

 $\Sigma V = 3.618 \times 10^4 \, \text{lbf}$

 $\Sigma V = 36.182 \text{ kip}$

 $\Sigma H := E_{ahoriz} + E_{surch_horiz} + H_{ss}$

DO NOT INCLUDE horizontal component of LL and DL in the load group (Hss) or Sum of driving moments

 $\Sigma H = 10.816 \, kip$

 $\Sigma H = 10.816 \, \text{kip}$

$$\begin{split} \Sigma M_r &\coloneqq M_{r1} + M_{r2} + M_{r3} + M_{r4} + M_{r5} + M_{r6} + M_{r7} + M_{r8} + M_{r9} + M_{r10} + M_{r11} + M_{r12} + M_{rSCH} + M_{rDL} + M_{r_Pa} \\ \Sigma M_r &= 1.25 \times 10^5 \, \text{ft·lbf} \\ \Sigma M_r &= 125.025 \, \text{ft·kip} \\ \end{split}$$

 $\Sigma M_d = 88.697 \, \text{ft} \cdot \text{kip}$

 $\Sigma M_d = 88.697 \, \text{kip} \cdot \text{ft}$

Factor of safety against overturning

$$FS_{ot} := \frac{\Sigma M_r}{\Sigma M_d}$$

 $FS_{ot} = 1.41$

AASHTO required minimum FS = 2.0

Factor of safety against sliding

friction at base + adhesion

$$\tan(\delta_2) = 0.445$$

$$FS_{sl} := \frac{\left[(\Sigma V) \cdot tan(\delta_2) \right] + \left[(B \cdot b) \cdot c_2 \right]}{\Sigma H}$$

$FS_{sl} = 1.489$

AASHTO required minimum FS = 1.5

Bearing Capacity Factor of Safety

determine net moment

$$M_{net} := \Sigma M_r - \Sigma M_d$$
 $M_{net} = 3.633 \times 10^4 \, lbf \cdot ft$

location of resultant

$$AE := \frac{M_{net}}{\Sigma V} \qquad AE = 1.004 \text{ ft} \qquad X := AE$$

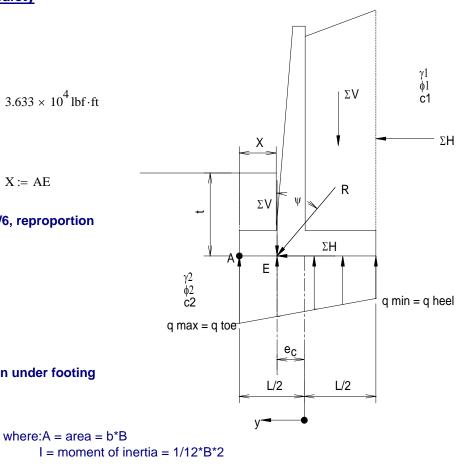
determine eccentricity, if e > B/6, reproportion

$$e_c := \frac{B}{2} - AE$$
 $e_c = 2.596 \text{ ft}$

 $\frac{B}{6} = 1.2 \, \text{ft}$ NOT GOOD

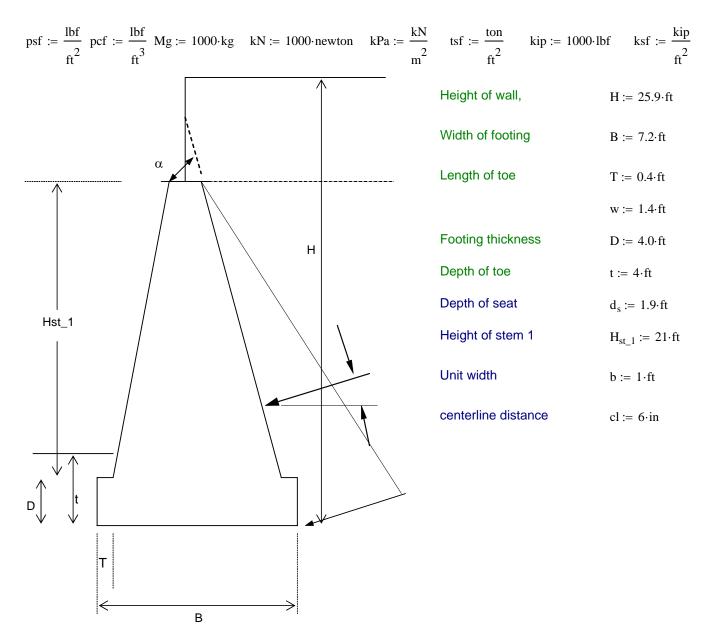
Determine pressure distribution under footing

$$q = \frac{\sum V}{A} + \frac{M_{net} \cdot y}{I}$$
$$q = \frac{\sum V}{A} - \frac{M_{net} \cdot y}{I}$$


solving for \boldsymbol{q}_{max} and \boldsymbol{q}_{min}

$$q_{max} := \left[\frac{\Sigma V}{B} \cdot \left(1 + \frac{6 \cdot e_c}{B}\right)\right] \cdot \frac{1}{b} \qquad q_{max} = 15897 \text{ psf} \qquad q_{max} = 15.897 \text{ ksf} \qquad q_{toe} := q_{max}$$

$$q_{min} := \left[\frac{\Sigma V}{B} \cdot \left(1 - \frac{6 \cdot e_c}{B}\right)\right] \cdot \frac{1}{b} \qquad q_{min} = -5846 \text{ psf} \qquad q_{min} = -5.846 \text{ ksf} \qquad q_{heel} := q_{min}$$


$$B_e := B - 2 \cdot e_c$$
Allowable Bearing Pressure: $q_u := 24 \cdot \text{ksf} \qquad q_{allow} := \frac{q_u}{3} \qquad q_{allow} = 8 \text{ ksf}$
Factor of Safety against BC failure: $FS_{bc} := \frac{q_u}{q_{max}}$

$$FS_{bc} = 1.51$$

North (Falmouth) Abutment Stability Portland North Stone Abut Coulomb 4.xmcd

North (Falmouth) Abutment Analysis Using field verified abutment dimensions and field-verified backfill. Uses Coulomb theory. Traffic Surcharge added (Coulomb). Assuming proposed profile raise by 3 ft

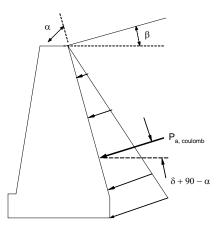
Assumed backfill and abutment proporties

 $\begin{array}{lll} \mbox{granite unit weight} & \gamma_c \coloneqq 170 \cdot pcf & \gamma_c = 26.705 \, \frac{kN}{m^3} \\ \mbox{backfill #1} & \gamma_1 \coloneqq 125 \cdot pcf & \varphi_1 \coloneqq 32 \cdot deg & c_1 \coloneqq 0 \cdot psf & \mbox{granular fill} \\ \mbox{Backfill #2} & \gamma_{1b} \coloneqq 120 \cdot pcf & \varphi_{1b} \coloneqq 20 \cdot deg & c_{1b} \coloneqq 700 \cdot psf \end{array}$

Portland Veranda St Bridge PIN 10158.00) Abutment Stability e Abut Coulomb 4.xmcd	1/27/2009 2 of 10 KM 12/04
Rankine wall friction	$\delta := 0 \cdot deg$		
Coulomb wall friction	$\delta := 21 \cdot \deg$	2/3 phi	
Angle of backslope	$\beta := 0 \cdot deg$		
α - Angle of abutment backwall (for true angle of gravity abutment back	-	e $\alpha := 85 \cdot \deg$	
α - Angle of abutment backface (for use α = 90 as Rankine acts on a ve from the back of the heel up to the 0	eritcal plane drawn		
α - For Coulomb Analysis on a Can angle of line drawn from back of here stem at the top of the wall.			
Foundation material : sand	$\gamma_2 := 125$	$\phi_2 := 32 \cdot \deg c_2 := 0 \cdot psf$	
concrete - sand friction angle	$\delta_2 := 24 \cdot c$	deg $\tan(\delta_2) = 0.445$	

DL and LL forces per linear foot of wall:

Tim Merritt, TYLin, calculate 700 kip per abutment of dead load. Tim calculated 215 kip per abutment of LL. Bridge seat is roughly 18 meters or 60 ft.


$$P_{dl} := 700 \cdot \frac{kip}{60 \cdot ft} \qquad \qquad P_{dl} = 11.667 \frac{kip}{ft}$$

$$P_{ll} := 215 \cdot \frac{\text{kip}}{60 \cdot \text{ft}} \qquad \qquad P_{ll} = 3.583 \frac{\text{kip}}{\text{ft}}$$

 $V_{ss} := (P_{dl} + P_{ll}) \cdot b$ $V_{ss} = 1.525 \times 10^{4} lbf$ $V_{ss} = 15.25 kip$

$$\mathbf{H}_{ss} \coloneqq \left[\left(.1 \cdot \mathbf{P}_{dl} \right) + \left(0.05 \cdot \mathbf{P}_{ll} \right) \right] \cdot \mathbf{b} \qquad \qquad \mathbf{H}_{ss} = 1.346 \times 10^{3} \, \text{lbf} \ \mathbf{H}_{ss} = 1.346 \, \text{kip}$$

Lateral Earth Pressure - use Coulomb - in failure, wedge of backfill soil slides upward along a plane matching the backwall of the gravity abutment

$$K_{a_rank} := \frac{\cos(\beta) - \left[\left(\cos(\beta)\right)^2 - \left(\cos(\varphi_1)\right)^2\right]^{0.5}}{\cos(\beta) + \left[\left(\cos(\beta)\right)^2 - \left(\cos(\varphi_1)\right)^2\right]^{0.5}} \cdot \cos(\beta)$$

$$K_{a_rank} = 0.307$$

Coulomb Ka for granular backfill is very similar to the Rankine Value

$$K_{a_coulomb} := \frac{\sin(\phi_1 + \alpha)^2}{\left[\left(\sin(\alpha)^2 \cdot \sin(\alpha - \delta)\right) \cdot \left[1 + \sqrt{\frac{\sin(\phi_1 + \delta) \cdot \sin(\phi_1 - \beta)}{(\sin(\alpha - \delta) \cdot \sin(\alpha + \beta))}}\right]^2\right]} K_{a_coulomb} = 0.313$$

Resultant Earth Pressure from backfill

$$P_{a1} \coloneqq \frac{1}{2} \cdot \gamma_1 \cdot H^2 \cdot K_{a_coulomb} \cdot b$$

 $P_{a1} = 13.104 \text{ kip}$

per linear foot of abutment

Portland Veranda St Bridge PIN 10158.00	North (Falmouth) Abutment Stability Portland North Stone Abut Coulomb 4.xmcd		1/27/2009 4 of 10 KM 12/04
Vertical Earth Pressure:			
$E_{avert} \coloneqq \sin(\delta + 90 \cdot deg - \alpha) \cdot P_{a1}$	$E_{avert} = 5.744 \times 10^3 lbf$	E _{avert} = 5.744 kip	per linear foot of wall
Horizontal Earth Pressure:			
$E_{ahoriz} := \cos(\delta + 90 \cdot deg - \alpha) \cdot P_{a1}$	$E_{ahoriz} = 11777.736 lbf$	$E_{ahoriz} = 11.778 kip$	per lin ft of wall

No approach slab; Force due traffic - model w/ surcharge of 2' of soil (using Coulomb earth pressure theory)

 $s := 2 \cdot ft \cdot \gamma_1$ s = 250 psf

 $E_s := K_{a_coulomb} \cdot s \cdot H \cdot b$ $E_s = 2.024 \text{ kip}$

Vertical Surcharge Earth Pressure, Resultant acting at H/2 on backface of wall:

 $E_{surch_vert} \coloneqq sin(\delta + 90 \cdot deg - \alpha) \cdot E_s \qquad \qquad E_{surch_vert} = 0.887 \ kip \qquad \qquad \text{per Inr foot of wall}$

Horizontal Surcharge Earth Pressure, Resultant acting at H/2 on backface of wall:

 $E_{surch_horiz} \coloneqq \cos(\delta + 90 \cdot deg - \alpha) \cdot E_s \qquad E_{ahoriz} = 11.778 \text{ kip} \qquad \text{per lin ft of wall}$

Factor of safety against overturning and sliding

Resisting moments - abutment composed of granite stone masonry

- $A_{1} := 6.8 \cdot 4 \cdot ft^{2} \qquad F_{1} := A_{1} \cdot \gamma_{c} \cdot b \qquad x_{1} := \frac{6.8 \cdot ft}{2} + T \qquad M_{r1} := F_{1} \cdot x_{1} \qquad M_{r1} = 17.571 \text{ kip} \cdot ft$
- $A_2 := 5.4 \cdot 1 \cdot ft^2 \qquad F_2 := A_2 \cdot \gamma_c \cdot b \qquad x_2 := \frac{5.4 \cdot ft}{2} + T + w \qquad M_{r2} := F_2 \cdot x_2 \qquad M_{r2} = 4.131 \ ft \cdot kip$
- $A_3 := 5.33 \cdot ft \cdot 2 \cdot ft \qquad F_3 := A_3 \cdot \gamma_c \cdot b \qquad x_3 := \frac{5.33}{2} \cdot ft + T + w \quad M_{r3} := F_3 \cdot x_3 \qquad M_{r3} = 8.091 \; ft \cdot kip$
- $A_4 \coloneqq (5.2 \cdot 2) \cdot \text{ft}^2 \qquad F_4 \coloneqq A_4 \cdot \gamma_c \cdot b \qquad \qquad x_4 \coloneqq \frac{5.2}{2} \cdot \text{ft} + T + w \qquad M_{r4} \coloneqq F_4 \cdot x_4 \qquad \qquad M_{r4} = 7.779 \text{ ft} \cdot \text{kip}$

$$A_5 := 5.17 \cdot 2 \cdot ft^2 \qquad F_5 := A_5 \cdot \gamma_c \cdot b \qquad x_5 := \frac{5.17}{2} \cdot ft + T + w \quad M_{r5} := F_5 \cdot x_5 \qquad M_{r5} = 7.708 \; ft \cdot kip$$

$$A_6 \coloneqq 4.39 \cdot 2 \cdot ft^2 \qquad F_6 \coloneqq A_6 \cdot \gamma_c \cdot b \qquad x_6 \coloneqq \frac{4.93}{2} \cdot ft + T + w \quad M_{r6} \coloneqq F_6 \cdot x_6 \qquad M_{r6} = 6.366 \text{ ft} \cdot \text{kip}$$

$$A_7 := 4.83 \cdot 2 \cdot ft^2 \qquad F_7 := A_7 \cdot \gamma_c \cdot b \qquad x_7 := \frac{4.83}{2} \cdot ft + T + w \quad M_{r7} := F_7 \cdot x_7 \qquad M_{r7} = 6.922 \ ft \cdot kip$$

 $A_8 := 3.92 \cdot 2 \cdot ft^2 \qquad F_8 := A_8 \cdot \gamma_c \cdot b \qquad x_8 := \frac{3.92}{2} \cdot ft + T + w \quad M_{r8} := F_8 \cdot x_8 \qquad M_{r8} = 5.011 \text{ ft} \cdot kip$

$$A_{9} := 2.75 \cdot 4 \cdot ft^{2} \qquad F_{9} := A_{9} \cdot \gamma_{c} \cdot b \qquad \qquad x_{9} := \frac{2.75}{2} \cdot ft + T + w \quad M_{r9} := F_{9} \cdot x_{9} \qquad \qquad M_{r9} = 5.937 \text{ ft} \cdot \text{kip}$$

 $A_{10} := 1.4 \cdot ft \cdot \frac{17}{2} \cdot ft \qquad F_{10} := A_{10} \cdot \gamma_c \cdot b \qquad \qquad x_{10} := \frac{2 \cdot 1.4}{3} \cdot ft + w \qquad M_{r10} := F_{10} \cdot x_{10} \qquad \qquad M_{r10} = 4.72 \ ft \cdot kip$

Resisting Moments - Soil over backwall and footing - neglect for Coulomb Analysis

Resisting moment due to (1) dead load on bridge seat, (2) vertical component of the Traffic Surcharge acting on the backface, and, (3) vertical component of Coulomb earth pressure acting on the backface.

1.
$$M_{rDL} := P_{dl} \cdot (1.4 \cdot ft + cl) \cdot b$$
 $M_{rDL} = 22.167 \text{ ft-kip}$ 2. $M_{rSCH} := E_{surch_vert} \cdot (5 \cdot ft)$ $M_{rSCH} = 4.436 \text{ ft-kip}$ 3. $M_{r_Pa} := E_{avert} \cdot (5.5 \cdot ft)$ $M_{r_Pa} = 31.594 \text{ ft-kip}$

Portland	
Veranda St Bridge	
PIN 10158.00	

Driving moments

$\mathbf{M}_{d_surch} \coloneqq \mathbf{E}_{surch_horiz} \cdot \frac{1}{2} \cdot \mathbf{H}$	$M_{d_surch} = 23.555 \text{ ft}$	kip		
$\mathbf{M}_{d_Pa} \coloneqq \mathbf{E}_{ahoriz} \cdot \frac{1}{3} \cdot \mathbf{H}$	$M_{d_Pa} = 1.017 \times 10^5 \text{ft·lbf}$	M _{d_Pa} = 101.681 kip∙ft	$M_{d_Pa} = 1$	01.681 kip∙ft
$M_{d3} := H_{ss} \cdot 21 \cdot ft$	$M_{d3} = 28.262 \text{ft} \cdot \text{kip}$	DO NOT INCLUDE and DL in the load nor a horizontal for values:	group as a driv	ving moment
			$M_{d3} := 0 \cdot ft \cdot kip$	$H_{ss} := 0 \cdot kip$
Summation of forces and moments				
$\Sigma V := F_1 + F_2 + F_3 + F_4 + F_5 + F_6 + F_7 + F_8 + F_9 + F_{10} + F_{11} + F_{12} + E_{avert} + E_{surch_vert} + P_{dl} \cdot b$				

 $\Sigma V = 3.754 \times 10^4 \, \text{lbf}$

 $\Sigma V = 37.539 \, \text{kip}$

 $\Sigma H := E_{ahoriz} + E_{surch_{horiz}} + H_{ss}$

DO NOT INCLUDE horizontal component of LL and DL in the load group (Hss) or Sum of driving moments

 $\Sigma H = 13.597 \text{ kip}$

 $\Sigma H = 13.597 \text{ kip}$

$$\begin{split} \Sigma M_r &\coloneqq M_{r1} + M_{r2} + M_{r3} + M_{r4} + M_{r5} + M_{r6} + M_{r7} + M_{r8} + M_{r9} + M_{r10} + M_{r11} + M_{r12} + M_{rSCH} + M_{rDL} + M_{r_Pa} \\ \Sigma M_r &= 1.324 \times 10^5 \, \text{ft·lbf} \\ \Sigma M_r &= 132.434 \, \text{ft·kip} \end{split}$$

 $\Sigma M_d := M_{d_Pa} + M_{d_surch} + M_{d3}$

 $\Sigma M_d = 125.237 \text{ ft} \cdot \text{kip}$

 $\Sigma M_d = 125.237 \text{ kip} \cdot \text{ft}$

Factor of safety against overturning

$$FS_{ot} := \frac{\Sigma M_r}{\Sigma M_d}$$

 $FS_{ot} = 1.057$

compared to AASHTO required factor of safety of 2.0

Factor of safety against sliding

friction at base + adhesion

$$\tan(\delta_2) = 0.445$$

$$FS_{sl} \coloneqq \frac{\left[(\Sigma V) \cdot tan(\delta_2)\right] + \left[(B \cdot b) \cdot c_2\right]}{\Sigma H}$$

 $FS_{sl} = 1.229$

compared to AASHTO required factor of safety of 2.0

Bearing Capacity Factor of Safety

determine net moment

$$M_{net} := \Sigma M_r - \Sigma M_d$$
 $M_{net} = 7.198 \times 10^3 \, lbf \cdot ft$

location of resultant

$$AE := \frac{M_{net}}{\Sigma V}$$
 $AE = 0.192 \text{ ft}$ $X := AE$

determine eccentricity, if e > B/6, reproportion

$$e_c := \frac{B}{2} - AE$$
 $e_c = 3.408 \text{ ft}$

 $\frac{B}{6} = 1.2 \, \text{ft}$ NOT GOOD

Determine pressure distribution under footing

$$q = \frac{\Sigma V}{A} + \frac{M_{net} \cdot y}{I}$$
$$q = \frac{\Sigma V}{A} - \frac{M_{net} \cdot y}{I}$$

where:A = area = b*B I = moment of inertia = 1/12*B*2

solving for \boldsymbol{q}_{max} and \boldsymbol{q}_{min}

q _{max} := [$\frac{\Sigma V}{B} \cdot \left(1\right)$	$\left[1 + \frac{6 \cdot e_{c}}{B}\right] \cdot \frac{1}{b}$	$q_{max} = 20022 psf$
-----------------------	---	--	------------------------

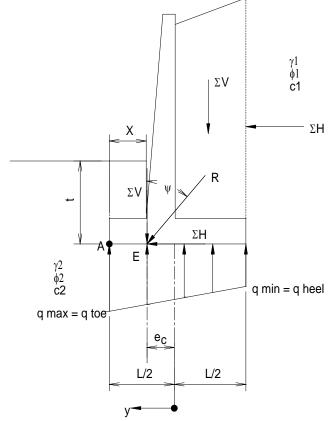
$$q_{\min} \coloneqq \left[\frac{\Sigma V}{B} \cdot \left(1 - \frac{6 \cdot e_c}{B}\right)\right] \cdot \frac{1}{b} \qquad q_{\min} = -9594 \, \text{psf}$$

 $B_e := B - 2 \cdot e_c$

Allowable Bearing Pressure: $q_u := 24 \cdot ksf$

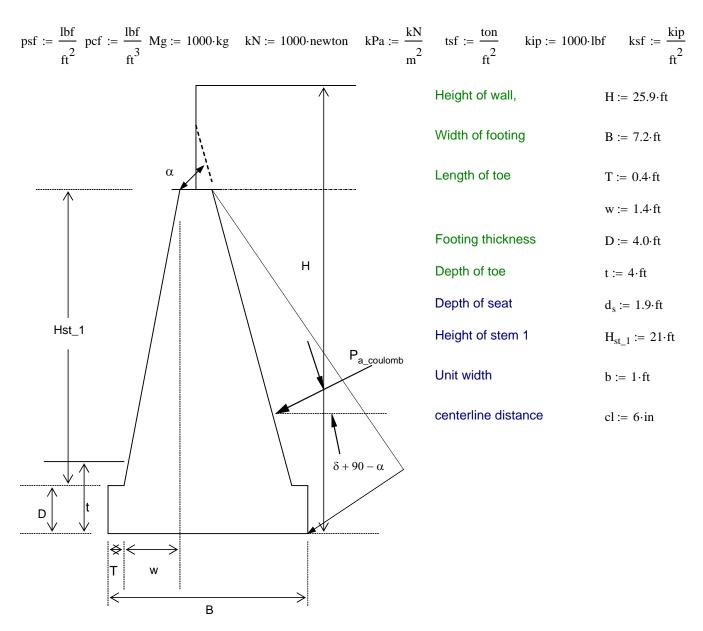
 $\frac{q_u}{3}$

 $q_{max} = 20.022 \text{ ksf}$


 $q_{min} = -9.594 \text{ ksf}$

 $q_{allow} = 8 \, ksf$

 $q_{toe} := q_{max}$


 $q_{heel} \coloneqq q_{min}$

Factor of Safety against BC failure:
$$FS_{bc} := \frac{q_u}{q_{max}}$$
 $FS_{bc} = 1.199$

North (Falmouth) Abutment Analysis. Using field verified abutment dimensions and field-verified backfill. Uses Coulomb theory.

Assume approach slab is added, so removed Traffic Surcharge. Assuming proposed profile raise by 3 ft

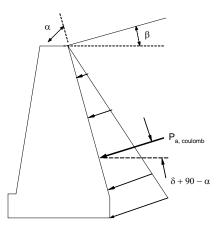
Assumed backfill and abutment proporties

granite unit weight $\gamma_c := 170 \cdot pcf$ $\gamma_c = 26.705 \frac{kN}{m^3}$ backfill #1 $\gamma_1 := 125 \cdot pcf$ $\phi_1 := 32 \cdot deg$ $c_1 := 0 \cdot psf$ granular fillBackfill #2 $\gamma_{1b} := 120 \cdot pcf$ $\phi_{1b} := 20 \cdot deg$ $c_{1b} := 700 \cdot psf$

Portland Veranda St Bridge PIN 10158.00		uth) Abutment Stability one Abut Coulomb 5.xmcd	1/27/2009 2 of 10 KM 12/04
Rankine wall friction	$\delta := 0 \cdot deg$		
Coulomb wall friction	$\delta := 21 \cdot \deg$	2/3 phi	
Angle of backslope	$\beta := 0 \cdot \deg$		
α - Angle of abutment backwall (for true angle of gravity abutment backwall)	•	use $\alpha := 85 \cdot \deg$	
α - Angle of abutment backface (f use α = 90 as Rankine acts on a from the back of the heel up to the	veritcal plane drawn		
α - For Coulomb Analysis on a Ca angle of line drawn from back of h stem at the top of the wall.		e	
Foundation material : sand	$\gamma_2 := 1$	$25 \cdot \text{pcf} \phi_2 := 32 \cdot \text{deg} c_2 := 0 \cdot \text{psf}$	
concrete - sand friction angle	$\delta_2 := 2^2$	$4 \cdot \deg \qquad \tan(\delta_2) = 0.445$	

DL and LL forces per linear foot of wall:

Tim Merritt, TYLin, calculate 700 kip per abutment of dead load. Tim calculated 215 kip per abutment of LL. Bridge seat is roughly 18 meters or 60 ft.


$$P_{dl} := 700 \cdot \frac{kip}{60 \cdot ft} \qquad \qquad P_{dl} = 11.667 \frac{kip}{ft}$$

$$P_{ll} := 215 \cdot \frac{\text{kip}}{60 \cdot \text{ft}} \qquad \qquad P_{ll} = 3.583 \frac{\text{kip}}{\text{ft}}$$

 $V_{ss} := (P_{dl} + P_{ll}) \cdot b$ $V_{ss} = 1.525 \times 10^{4} lbf$ $V_{ss} = 15.25 kip$

$$\mathbf{H}_{ss} \coloneqq \left[\left(.1 \cdot \mathbf{P}_{dl} \right) + \left(0.05 \cdot \mathbf{P}_{ll} \right) \right] \cdot \mathbf{b} \qquad \qquad \mathbf{H}_{ss} = 1.346 \times 10^{3} \, \text{lbf} \ \mathbf{H}_{ss} = 1.346 \, \text{kip}$$

Lateral Earth Pressure - use Coulomb - in failure, wedge of backfill soil slides upward along a plane matching the backwall of the gravity abutment

$$K_{a_rank} := \frac{\cos(\beta) - \left[\left(\cos(\beta)\right)^2 - \left(\cos(\varphi_1)\right)^2\right]^{0.5}}{\cos(\beta) + \left[\left(\cos(\beta)\right)^2 - \left(\cos(\varphi_1)\right)^2\right]^{0.5}} \cdot \cos(\beta)$$

$$K_{a_rank} = 0.307$$

Coulomb Ka for granular backfill is very similar to the Rankine Value

$$K_{a_coulomb} := \frac{\sin(\phi_1 + \alpha)^2}{\left[\left(\sin(\alpha)^2 \cdot \sin(\alpha - \delta)\right) \cdot \left[1 + \sqrt{\frac{\sin(\phi_1 + \delta) \cdot \sin(\phi_1 - \beta)}{(\sin(\alpha - \delta) \cdot \sin(\alpha + \beta))}}\right]^2\right]} K_{a_coulomb} = 0.313$$

Resultant Earth Pressure from backfill

$$P_{a1} := \frac{1}{2} \cdot \gamma_1 \cdot H^2 \cdot K_{a_coulomb} \cdot b$$

 $P_{a1} = 13.104 \text{ kip}$

per linear foot of abutment

Portland Veranda St Bridge PIN 10158.00	North (Falmouth) Abutment Stability Portland North Stone Abut Coulomb 5.xmcd		1/27/2009 4 of 10 KM 12/04	
Vertical Earth Pressure:				
$E_{avert} \coloneqq \sin(\delta + 90 \cdot deg - \alpha) \cdot P_{a1}$	$E_{avert} = 5.744 \times 10^3 lbf$	E _{avert} = 5.744 kip	per linear foot of wall	
Horizontal Earth Pressure:				
$E_{ahoriz} := \cos(\delta + 90 \cdot deg - \alpha) \cdot P_{a1}$	$E_{ahoriz} = 11777.736 lbf$	$E_{ahoriz} = 11.778 kip$	per lin ft of wall	

Assume approach slab; so ignore Force due traffic - model w/ surcharge of 2' of soil (using Coulomb earth pressure theory)

 $s := 0 \cdot ft \cdot \gamma_1$ s = 0 psf

 $E_s := K_{a_coulomb} \cdot s \cdot H \cdot b$ $E_s = 0 \text{ kip}$

Vertical Surcharge Earth Pressure, Resultant acting at H/2 on backface of wall:

 $E_{surch_vert} \coloneqq sin(\delta + 90 \cdot deg - \alpha) \cdot E_s \qquad \qquad E_{surch_vert} = 0 \ kip \qquad \qquad \text{per lnr foot of wall}$

Horizontal Surcharge Earth Pressure, Resultant acting at H/2 on backface of wall:

 $E_{surch_horiz} \coloneqq cos(\delta + 90 \cdot deg - \alpha) \cdot E_s \qquad \qquad E_{surch_horiz} = 0 \text{ kip} \qquad \qquad \text{per lin ft of wall}$

Factor of safety against overturning and sliding

Resisting moments - abutment composed of granite stone masonry

$$A_{1} := 6.8 \cdot 4 \cdot ft^{2} \qquad F_{1} := A_{1} \cdot \gamma_{c} \cdot b \qquad x_{1} := \frac{6.8 \cdot ft}{2} + T \qquad M_{r1} := F_{1} \cdot x_{1} \qquad M_{r1} = 17.571 \text{ kip} \cdot ft$$

$$A_2 := 5.4 \cdot 1 \cdot ft^2 \qquad F_2 := A_2 \cdot \gamma_c \cdot b \qquad x_2 := \frac{5.4 \cdot ft}{2} + T + w \qquad M_{r2} := F_2 \cdot x_2 \qquad M_{r2} = 4.131 \text{ ft} \cdot \text{kip}$$

$$A_3 \coloneqq 5.33 \cdot ft \cdot 2 \cdot ft \qquad F_3 \coloneqq A_3 \cdot \gamma_c \cdot b \qquad \qquad x_3 \coloneqq \frac{5.33}{2} \cdot ft + T + w \quad M_{r3} \coloneqq F_3 \cdot x_3 \qquad \qquad M_{r3} = 8.091 \text{ ft} \cdot kip$$

$$A_4 \coloneqq (5.2 \cdot 2) \cdot \text{ft}^2 \qquad F_4 \coloneqq A_4 \cdot \gamma_c \cdot b \qquad \qquad x_4 \coloneqq \frac{5.2}{2} \cdot \text{ft} + T + w \quad M_{r4} \coloneqq F_4 \cdot x_4 \qquad \qquad M_{r4} = 7.779 \text{ ft} \cdot \text{kip}$$

	North (Falmouth) Abutment Stability Portland North Stone Abut Coulomb 5.xmcd	1/27/2009 5 of 10 KM 12/04
$F_5 := A_5 \cdot \gamma_c \cdot b$	$x_5 := \frac{5.17}{2} \cdot ft + T + w M_{r5} := F_5 \cdot x_5$	$M_{r5} = 7.708 \text{ ft} \cdot \text{kip}$
$F_6 := A_6 \cdot \gamma_c \cdot b$	$\mathbf{x}_6 \coloneqq \frac{4.93}{2} \cdot \mathbf{ft} + \mathbf{T} + \mathbf{w} \mathbf{M}_{r6} \coloneqq \mathbf{F}_6 \cdot \mathbf{x}_6$	$M_{r6} = 6.366 \text{ft} \cdot \text{kip}$
$F_7 := A_7 \cdot \gamma_c \cdot b$	$x_7 := \frac{4.83}{2} \cdot ft + T + w M_{r7} := F_7 \cdot x_7$	$M_{r7} = 6.922 \text{ ft} \cdot \text{kip}$
$F_8 \coloneqq A_8 \cdot \gamma_c \cdot b$	$x_8 := \frac{3.92}{2} \cdot ft + T + w M_{r8} := F_8 \cdot x_8$	$M_{r8} = 5.011 \text{ ft} \cdot \text{kip}$
$F_9 := A_9 \cdot \gamma_c \cdot b$	$x_9 := \frac{2.75}{2} \cdot ft + T + w M_{r9} := F_9 \cdot x_9$	$M_{r9} = 5.937 \text{ ft} \cdot \text{kip}$
	$F_{6} := A_{6} \cdot \gamma_{c} \cdot b$ $F_{7} := A_{7} \cdot \gamma_{c} \cdot b$ $F_{8} := A_{8} \cdot \gamma_{c} \cdot b$	Portland North Stone Abut Coulomb 5.xmcd $F_5 := A_5 \cdot \gamma_c \cdot b$ $x_5 := \frac{5.17}{2} \cdot ft + T + w$ $M_{r5} := F_5 \cdot x_5$ $F_6 := A_6 \cdot \gamma_c \cdot b$ $x_6 := \frac{4.93}{2} \cdot ft + T + w$ $M_{r6} := F_6 \cdot x_6$ $F_7 := A_7 \cdot \gamma_c \cdot b$ $x_7 := \frac{4.83}{2} \cdot ft + T + w$ $M_{r7} := F_7 \cdot x_7$ $F_8 := A_8 \cdot \gamma_c \cdot b$ $x_8 := \frac{3.92}{2} \cdot ft + T + w$ $M_{r8} := F_8 \cdot x_8$

 $A_{10} \coloneqq 1.4 \cdot ft \cdot \frac{17}{2} \cdot ft \qquad F_{10} \coloneqq A_{10} \cdot \gamma_c \cdot b \qquad \qquad x_{10} \coloneqq \frac{2 \cdot 1.4}{3} \cdot ft + w \qquad M_{r10} \coloneqq F_{10} \cdot x_{10} \qquad \qquad M_{r10} = 4.72 \ ft \cdot kip$

Resisting Moments - Soil over backwall and footing - neglect for Coulomb Analysis

$$A_{11} := \frac{1}{2} \cdot 0 \cdot ft \cdot ft \qquad F_{11} := A_{11} \cdot \gamma_1 \cdot b \qquad x_{11} := 7 \cdot ft \qquad M_{r11} := F_{11} \cdot x_{11} \qquad M_{r11} = 0 \ ft \cdot kip \\ A_{12} := 0 \cdot ft^2 \qquad F_{12} := A_{12} \cdot \gamma_1 \cdot b \qquad x_{12} := 4.5 \cdot ft \qquad M_{r12} := F_{12} \cdot x_{12} \qquad M_{r12} = 0 \ ft \cdot kip$$

Resisting moment due to (1) dead load on bridge seat, (2) vertical component of the Traffic Surcharge acting on the backface, and, (3) vertical component of Coulomb earth pressure acting on the backface.

- 1. $M_{rDL} := P_{dl} \cdot (1.4 \cdot ft + cl) \cdot b$ $M_{rDL} = 22.167 \text{ ft} \cdot \text{kip}$
- 2. $M_{rSCH} := E_{surch_vert} \cdot (5 \cdot ft)$ $M_{rSCH} = 0 ft \cdot kip$
- 3. $M_{r_Pa} := E_{avert} \cdot (5.5 \cdot ft)$ $M_{r_Pa} = 31.594 \text{ ft} \cdot kip$

Portland
Veranda St Bridge
PIN 10158.00

Driving moments

$M_{d_surch} \coloneqq E_{surch_horiz} \cdot \frac{1}{2} \cdot H$	$M_{d_surch} = 0 \text{ ft} \cdot \text{kip}$			
$\mathbf{M}_{\mathbf{d}_{\mathbf{P}a}} := \mathbf{E}_{\mathrm{ahoriz}} \cdot \frac{1}{3} \cdot \mathbf{H}$	$M_{d_Pa} = 1.017 \times 10^5 \text{ft·lbf}$	$M_{d_Pa} = 101.681 \text{ kip} \cdot \text{ft}$	$\mathbf{M}_{d_Pa} = 101.681 \text{ kip} \cdot \text{ft}$	
$M_{d3} := H_{ss} \cdot 21 \cdot ft$	$M_{d3} = 28.262 \text{ft} \cdot \text{kip}$		zontal component of LL up as a driving moment Override with these	
		M _{d3}	$:= 0 \cdot ft \cdot kip \qquad H_{ss} := 0 \cdot kip$	
Summation of forces and moments				
$\Sigma \mathbf{V} := \mathbf{F}_1 + \mathbf{F}_2 + \mathbf{F}_3 + \mathbf{F}_4 + \mathbf{F}_5 + \mathbf{F}_6 + \mathbf{F}_7 + \mathbf{F}_8 + \mathbf{F}_9 + \mathbf{F}_{10} + \mathbf{F}_{11} + \mathbf{F}_{12} + \mathbf{E}_{avert} + \mathbf{E}_{surch_vert} + \mathbf{P}_{dl} \cdot \mathbf{b}$				

 $\Sigma V = 3.665 \times 10^4 \, \text{lbf}$

 $\Sigma V = 36.652 \, kip$

 $\Sigma H := E_{ahoriz} + E_{surch_horiz} + H_{ss}$

DO NOT INCLUDE horizontal component of LL and DL in the load group (Hss) or Sum of driving moments

- $\Sigma H = 11.778 \text{ kip}$
- $\Sigma H = 11.778 \, kip$

$$\begin{split} \Sigma M_r &\coloneqq M_{r1} + M_{r2} + M_{r3} + M_{r4} + M_{r5} + M_{r6} + M_{r7} + M_{r8} + M_{r9} + M_{r10} + M_{r11} + M_{r12} + M_{rSCH} + M_{rDL} + M_{r_Pa} \\ \Sigma M_r &= 1.28 \times 10^5 \, \text{ft·lbf} \\ \Sigma M_r &= 127.998 \, \text{ft·kip} \end{split}$$

 $\Sigma M_d \coloneqq M_{d_Pa} + M_{d_surch} + M_{d3}$

 $\Sigma M_d = 101.681 \text{ ft} \cdot \text{kip}$

 $\Sigma M_d = 101.681 \text{ kip} \cdot \text{ft}$

Factor of safety against overturning

$$FS_{ot} := \frac{\Sigma M_r}{\Sigma M_d}$$

AASHTO required Factor of Safety against overturning is 2.0

Factor of safety against sliding

friction at base + adhesion

$$\tan(\delta_2) = 0.445$$

$$FS_{sl} := \frac{\left[(\Sigma V) \cdot tan(\delta_2) \right] + \left[(B \cdot b) \cdot c_2 \right]}{\Sigma H}$$

 $FS_{sl} = 1.386$

AASHTO required Factor of Safety against sliding is 1.5

Bearing Capacity Factor of Safety

determine net moment

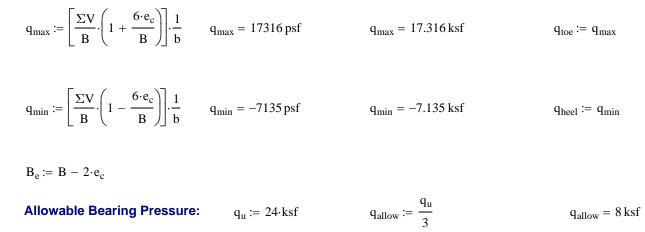
$$M_{net} := \Sigma M_r - \Sigma M_d$$
 $M_{net} = 2.632 \times 10^4 \, lbf \cdot ft$

location of resultant

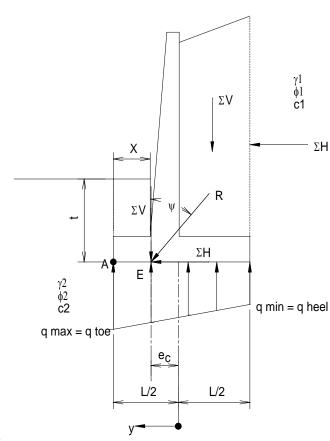
$$AE := \frac{M_{net}}{\Sigma V}$$
 $AE = 0.718 \text{ ft}$ $X := AE$

determine eccentricity, if e > B/6, reproportion

$$e_c := \frac{B}{2} - AE$$
 $e_c = 2.882 \text{ ft}$
 $\frac{B}{6} = 1.2 \text{ ft}$ NO GOOD !!!


Determine pressure distribution under footing

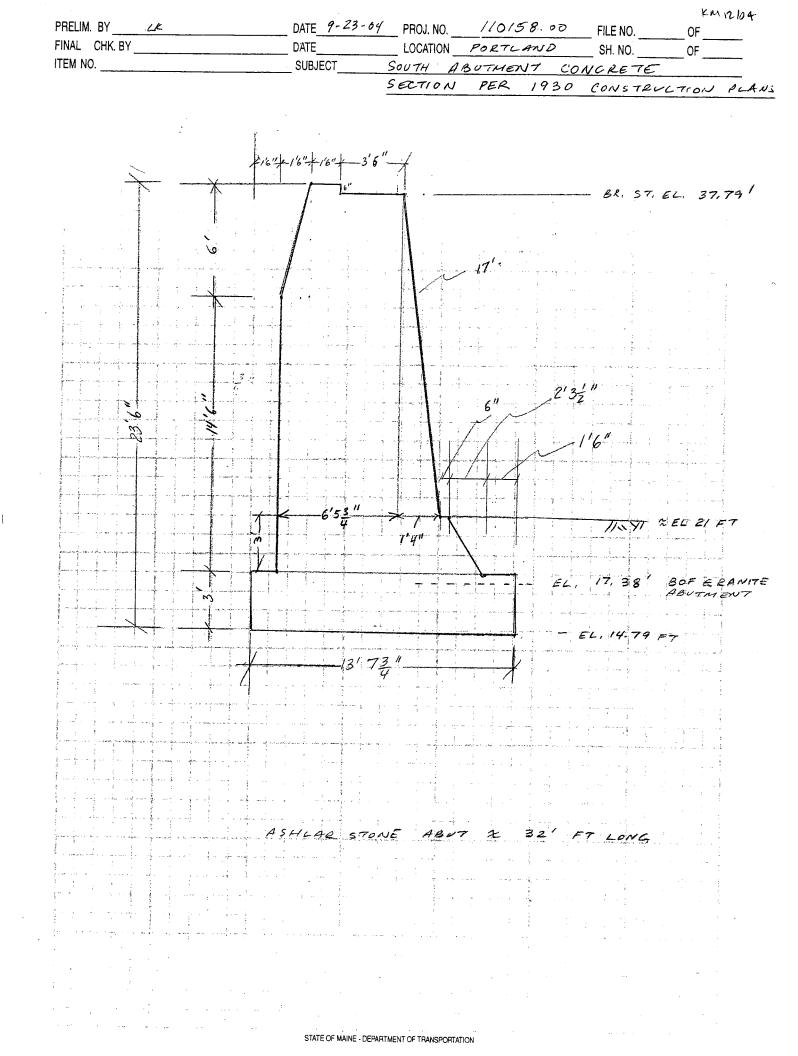
NO GOOD !!!!!!!!


$$q = \frac{\sum V}{A} + \frac{M_{net} \cdot y}{I}$$
$$q = \frac{\sum V}{A} - \frac{M_{net} \cdot y}{I}$$

where: $A = area = b^*B$ I = moment of inertia = 1/12*B*2

solving for \mathbf{q}_{\max} and \mathbf{q}_{\min}

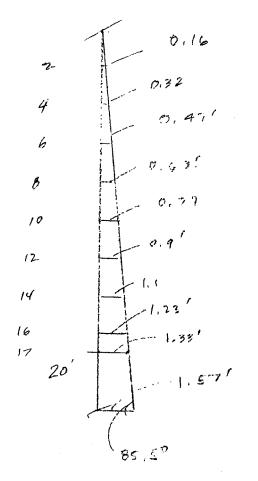
$FS_{bc} \coloneqq \frac{q_u}{q_{max}}$ Factor of Safety against BC failure: $FS_{bc} = 1.386$

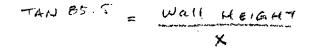

APPENDIX F

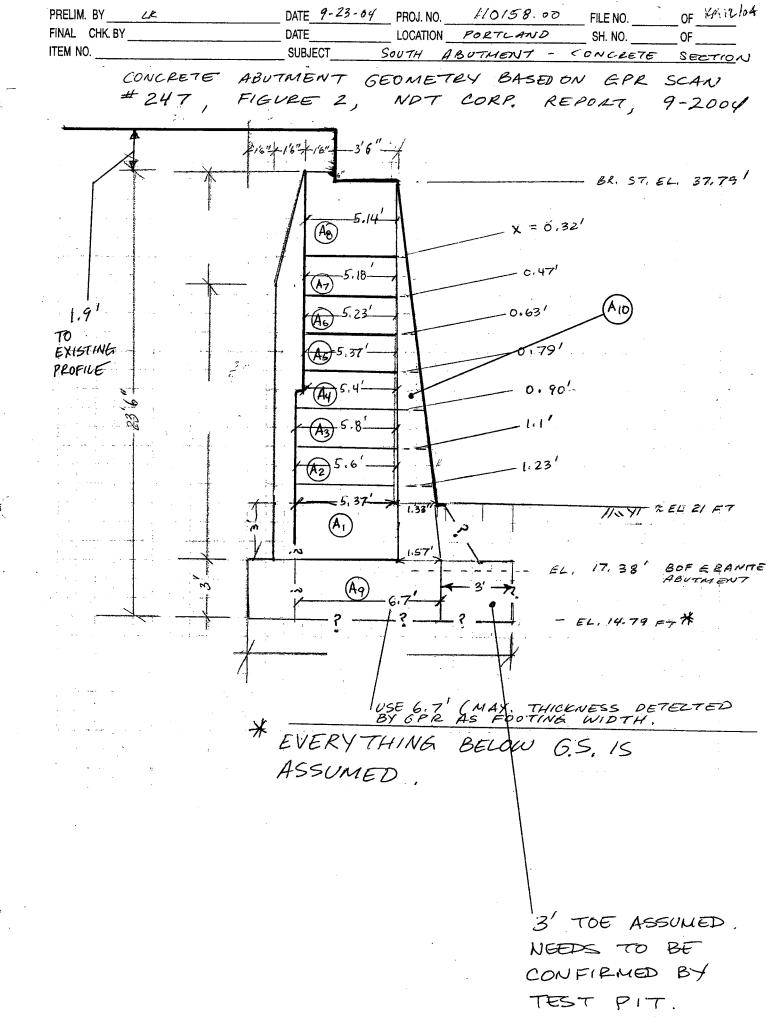
Calculations - Unreinforced Concrete Abutment Stability Analyses

SOUTH ABUTMENT

CONCRETE ABUTMENT SECTION

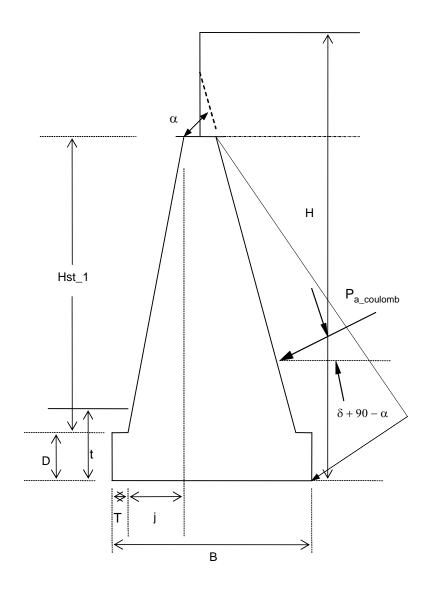

STABILITY ANALYSES


Km 12/04 DATE 9-23-04 PROJ. NO. 110158.00 PRELIM. BY LK FILE NO. ÔF FINAL CHK. BY DATE LOCATION PORTLAND SH. NO. OF ITEM NO. SOUTH ABUTMENT SUBJECT 17 CONCRETE ABUTMENT DIMENSIONS based on GPR scan # 247, Figure 2 NDT CORPORATION REPORT, 9-2004 3'6 16"-... jo. . . BR. ST. EL. 37.79 53 0 \$-5. 5.7 6.5 Ż 64 2 de . R. EL 21 1 11.57 m 17, 38 BOF ERANITE EL, ABUTMENT 7 EL, 14 ASHLAR STONE 32 z LONG


				KW12/04-
PRELIM. BY	DATE	PROJ. NO	FILE NO.	OF
FINAL CHK. BY	DATE	LOCATION	SH. NO.	OF
ITEM NO	SUBJECT S	SOUTH ABUTMENT	- CONCRETE	X - SECTION

DELLELOP GEOMETRY AND AREA OF BATTELED SECTION FOR STABILITY ANALYSIS .:

.



South (Portland) Concrete Abutment (1930) Analysis

- using field verified abutment dimensions and 1930's plans for footing dimensions. field-verified backfill.
- Uses Coulomb theory. Traffic Surcharge added (Coulomb).
- Existing conditions no raise in grade

- Assuming full footing toe as shown on the 1930 plans - but shorter footing (B) than shown on plans. I use max. value confirmed from GPR + assumed 3' long toe- this needs to be confirmed with a test pit.

 $psf := \frac{lbf}{ft^2} pcf := \frac{lbf}{ft^3} Mg := 1000 \cdot kg \quad kN := 1000 \cdot newton \quad kPa := \frac{kN}{m^2} \quad tsf := \frac{ton}{ft^2} \quad kip := 1000 \cdot lbf \quad ksf := \frac{kip}{ft^2}$

Height of wall,	$H := 25.5 \cdot ft$
Width of footing	$\mathbf{B} := 9.7 \cdot \mathrm{ft}$
Length of toe	$T := 3 \cdot ft$
Footing thickness	$D := 3.0 \cdot ft$
Depth of toe	$t := 3 \cdot ft$
Depth of seat	$d_s := 1.9 \cdot ft$
Height of stem 1	$H_{st_1} \coloneqq 23.5 \cdot ft$
Unit width	$b := 1 \cdot ft$
centerline distance	cl := 6∙in
	:. 157 ft
	j := 1.57∙ft

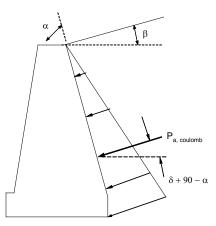
Assumed backfill and abutment proporties

concrete unit weight	$\gamma_{\rm c} := 150 \cdot \text{pcf}$ $\gamma_{\rm c} = 23.563 \frac{\text{kN}}{\text{m}^3}$			
backfill #1	$\gamma_1 := 125 \cdot \text{pcf}$	$\phi_1 := 32 \cdot deg$	$c_1 := 0 \cdot psf$	granular fill
Backfill #2	$\gamma_{1b} := 120 \cdot pcf$	$\phi_{1b} := 20 \cdot \deg$	$c_{1b} := 700 \cdot psf$	

Portland Veranda St. Bridge PIN 10158.00		e Abutment Stability rete Abut Coulomb 1.xmcd	1/27/2009 2 of 10 KM 12/04
Rankine wall friction	$\delta := 0 \cdot \deg$		
Coulomb wall friction	$\delta \coloneqq 21 \cdot deg$	2/3 phi	
Angle of backslope	$\beta := 0 \cdot \deg$		
$\alpha\text{-}$ Angle of abutment backwall (for true angle of gravity abutment bac	-	se $\alpha := 90 \cdot \deg$	
α - Angle of abutment backface (for use α = 90 as Rankine acts on a v from the back of the heel up to the	eritcal plane drawn		
α - For Coulomb Analysis on a Calangle of line drawn from back of he stem at the top of the wall.			
Foundation material : sand	$\gamma_2 := 12.$	5·pcf $\phi_2 := 32 \cdot \text{deg}$ $c_2 := 0 \cdot \text{psf}$	
concrete - sand friction angle	$\delta_2 := 24 \cdot$	deg $\tan(\delta_2) = 0.445$	

DL and LL forces per linear foot of wall:

Tim Merritt, TYLin, calculate 700 kip per abutment of dead load. Tim calculated 215 kip per abutment of LL. Bridge seat is roughly 18 meters or 60 ft.


 $P_{dl} \coloneqq 700 \cdot \frac{kip}{60 \cdot ft} \qquad \qquad P_{dl} = 11.667 \frac{kip}{ft}$

$$P_{ll} := 215 \cdot \frac{\text{kip}}{60 \cdot \text{ft}} \qquad \qquad P_{ll} = 3.583 \frac{\text{kip}}{\text{ft}}$$

 $V_{ss} := (P_{dl} + P_{ll}) \cdot b$ $V_{ss} = 1.525 \times 10^{4} lbf$ $V_{ss} = 15.25 kip$

 $\mathbf{H}_{ss} := \left[\left(.1 \cdot \mathbf{P}_{dl} \right) + \left(0.05 \cdot \mathbf{P}_{ll} \right) \right] \cdot \mathbf{b} \qquad \qquad \mathbf{H}_{ss} = 1.346 \times 10^{3} \, \text{lbf} \ \mathbf{H}_{ss} = 1.346 \, \text{kip}$

Lateral Earth Pressure - use Coulomb - in failure, wedge of backfill soil slides upward along a plane matching the backwall of the gravity abutment

$$K_{a_rank} := \frac{\cos(\beta) - \left[\left(\cos(\beta)\right)^2 - \left(\cos(\varphi_1)\right)^2\right]^{0.5}}{\cos(\beta) + \left[\left(\cos(\beta)\right)^2 - \left(\cos(\varphi_1)\right)^2\right]^{0.5}} \cdot \cos(\beta) \qquad K_{a_rank} = 0.307$$

Coulomb Ka for granular backfill is very similar to the Rankine Value

$$K_{a_coulomb} := \frac{\sin(\phi_1 + \alpha)^2}{\left[\left(\sin(\alpha)^2 \cdot \sin(\alpha - \delta) \right) \cdot \left[1 + \sqrt{\frac{\sin(\phi_1 + \delta) \cdot \sin(\phi_1 - \beta)}{(\sin(\alpha - \delta) \cdot \sin(\alpha + \beta))}} \right]^2 \right]} K_{a_coulomb} = 0.275$$

Resultant Earth Pressure from backfill

$$P_{a1} \coloneqq \frac{1}{2} \cdot \gamma_1 {\cdot} H^2 {\cdot} K_{a_coulomb} {\cdot} b$$

 $P_{a1} = 11.182 \text{ kip}$

per linear foot of abutment

Portland Veranda St. Bridge PIN 10158.00	South Concrete Abutme Portland South Concrete Abut	1/27/2009 4 of 10 KM 12/04	
Vertical Earth Pressure:			
$E_{avert} \coloneqq \sin(\delta + 90 \cdot deg - \alpha) \cdot P_{a1}$	$E_{avert} = 4.007 \times 10^3 lbf$	$E_{avert} = 4.007 kip$	per linear foot of wall
Horizontal Earth Pressure:			
$E_{ahoriz} := \cos(\delta + 90 \cdot deg - \alpha) \cdot P_{a1}$	$E_{ahoriz} = 10438.979 lbf$	$E_{ahoriz} = 10.439 kip$	per lin ft of wall

No approach slab; Force due traffic - model w/ surcharge of 2' of soil (using Coulomb earth pressure theory)

 $s\coloneqq 2{\cdot}ft{\cdot}\gamma_1 \qquad s=250\,psf$

 $E_s := K_{a_coulomb} \cdot s \cdot H \cdot b$ $E_s = 1.754 \text{ kip}$

Vertical Surcharge Earth Pressure:

$E_{surch_vert} := sin(\delta + 90 \cdot deg - \alpha) \cdot E_s$	$E_{surch_vert} = 0.629 \text{ kip}$	per Inr foot of wall
Horizontal Surcharge Earth Pressure) :	
$E_{surch horiz} := \cos(\delta + 90 \cdot deg - \alpha) \cdot E_s$	$E_{surch horiz} = 1.637 kip$	per lin ft of wall

Factor of safety against overturning and sliding

Resisting moments - abutment composed of granite stone masonry

- $A_{1} := 5.37 \cdot 4 \cdot ft^{2} \qquad F_{1} := A_{1} \cdot \gamma_{c} \cdot b \qquad x_{1} := \frac{5.37 \cdot ft}{2} + T + j \qquad M_{r1} := F_{1} \cdot x_{1} \qquad M_{r1} = 23.376 \text{ kip} \cdot ft$
- $A_2 := 5.6 \cdot 2 \cdot ft^2 \qquad F_2 := A_2 \cdot \gamma_c \cdot b \qquad x_2 := \frac{5.6 \cdot ft}{2} + T + j \qquad M_{r2} := F_2 \cdot x_2 \qquad M_{r2} = 12.382 \text{ ft} \cdot \text{kip}$
- $A_3 \coloneqq 5.8 \cdot ft \cdot 2 \cdot ft \qquad F_3 \coloneqq A_3 \cdot \gamma_c \cdot b \qquad \qquad x_3 \coloneqq \frac{5.8}{2} \cdot ft + T + j \qquad M_{r3} \coloneqq F_3 \cdot x_3 \qquad \qquad M_{r3} = 12.998 \ ft \cdot kip$
- $A_4 \coloneqq (5.4 \cdot 2) \cdot ft^2 \qquad F_4 \coloneqq A_4 \cdot \gamma_c \cdot b \qquad \qquad x_4 \coloneqq \frac{5.4}{2} \cdot ft + T + j \qquad M_{r4} \coloneqq F_4 \cdot x_4 \qquad \qquad M_{r4} = 11.777 \text{ ft-kip}$

Portland Veranda St. Bridge PIN 10158.00	I	South Concrete Abutment Stal Portland South Concrete Abut Coulor		1/27/2009 5 of 10 KM 12/04
$A_5 := 5.37 \cdot 2 \cdot ft^2$	$F_5 := A_5 \cdot \gamma_c \cdot b$	$\mathbf{x}_5 \coloneqq \frac{5.37}{2} \cdot \mathbf{ft} + \mathbf{T} + \mathbf{j}$	$M_{r5} \coloneqq F_5 \cdot x_5$	$M_{r5} = 11.688 \text{ ft} \cdot \text{kip}$
$A_6 := 5.23 \cdot 2 \cdot ft^2$	$F_6 := A_6 \cdot \gamma_c \cdot b$	$\mathbf{x}_6 \coloneqq \frac{5.23}{2} \cdot \mathbf{ft} + \mathbf{T} + \mathbf{j}$	$\mathbf{M}_{\mathbf{r}6} \coloneqq \mathbf{F}_{6} \cdot \mathbf{x}_{6}$	$M_{r6} = 11.273 \text{ ft} \cdot \text{kip}$
$A_7 \coloneqq 5.18 \cdot 2 \cdot ft^2$	$F_7 \coloneqq A_7 {\cdot} \gamma_c {\cdot} b$	$\mathbf{x}_7 \coloneqq \frac{5.18}{2} \cdot \mathbf{ft} + \mathbf{T} + \mathbf{j}$	$M_{r7} \coloneqq F_7 \cdot x_7$	$M_{r7} = 11.127 \text{ ft} \cdot \text{kip}$
$A_8 \coloneqq 5.14 \cdot 4 \cdot {\rm ft}^2$	$F_8 \coloneqq A_8 \cdot \gamma_c \cdot b$	$\mathbf{x}_8 \coloneqq \frac{5.14}{2} \cdot \mathbf{ft} + \mathbf{T} + \mathbf{j}$	$M_{r8} \coloneqq F_8 \cdot x_8$	$M_{r8} = 22.02 \text{ ft} \cdot \text{kip}$
$A_9 \coloneqq 3.9.7 \cdot \text{ft}^2$	$F_9 := A_9 \cdot \gamma_c \cdot b$	$\mathbf{x}_9 \coloneqq \frac{9.7}{2} \cdot \mathbf{ft}$	$M_{r9} := F_9 \cdot x_9$	$M_{r9} = 21.17 \text{ ft} \cdot \text{kip}$
$A_{10} \coloneqq 1.4 \cdot ft \cdot \frac{17}{2} \cdot ft$	$F_{10} \coloneqq A_{10} \cdot \gamma_c \cdot b$	$\mathbf{x}_{10} \coloneqq \frac{2 \cdot 1.4}{3} \cdot \mathbf{ft} + \mathbf{T}$	$M_{r10} := F_{10} \cdot x_{10}$	$M_{r10} = 7.021 \text{ ft} \cdot \text{kip}$
$A_{11} \coloneqq 3 \cdot 0 \cdot ft^2$	$F_{11} \coloneqq A_{11} \cdot \gamma_c \cdot b$	$x_{11} := 6.5 \cdot ft$	$M_{r11} := F_{11} \cdot x_{11}$	$M_{r11} = 0 \text{ ft} \cdot \text{kip}$

Resisting Moments - Soil over backwall and footing - neglect for Coulomb Analysis

 $A_{12} := \frac{1}{2} \cdot 9.5 \cdot 0 \cdot ft^2 \qquad F_{12} := A_{12} \cdot \gamma_1 \cdot b \qquad \qquad x_{12} := 4.5 \cdot ft \qquad \qquad M_{r12} := F_{12} \cdot x_{12} \qquad \qquad M_{r12} = 0 \ ft \cdot kip$

Resisting moment due to (1) dead load on bridge seat, (2) vertical component of the Traffic Surcharge acting on the backface, and, (3) vertical component of Coulomb earth pressure acting on the backface.

1.	$M_{rDL} := P_{dl} \cdot (T + j + cl) \cdot b$	$M_{rDL} = 59.15 \text{ ft} \cdot \text{kip}$	
2.	$M_{rSCH} := E_{surch_vert} \cdot (10 \cdot ft)$	M _{rSCH} = 6.286 ft⋅kip	acts a point on backface H/2 above BOF
3.	$M_{r_Pa} := E_{avert} \cdot (10 \cdot ft)$	$M_{r_Pa} = 40.071 \text{ ft} \cdot \text{kip}$	acts at a point on backface H/3 above BOF

Portland	South Concrete Abutment Stability	
Veranda St. Bridge PIN 10158.00	Portland South Concrete Abut Coulomb 1.xmcd	

1/27/2009 6 of 10 KM 12/04

Driving moments

$\mathbf{M}_{d_surch} \coloneqq \mathbf{E}_{surch_horiz} \cdot \frac{1}{2} \cdot \mathbf{H}$	M _{d_surch} = 20.878	ft·kip					
$\mathbf{M}_{d_Pa} \coloneqq \mathbf{E}_{ahoriz} \cdot \frac{1}{3} \cdot \mathbf{H}$	$M_{d_Pa} = 8.873 \times 10^4 \text{ft·lbf}$	$M_{d_Pa} = 88.731 \text{ kip} \cdot \text{ft}$	$M_{d_Pa} = 88.731 \text{ kip} \cdot \text{ft}$				
$M_{d3} := H_{ss} \cdot 21 \cdot ft$	$M_{d3} = 28.262 \text{ft} \cdot \text{kip}$	DO NOT INCLUDE horizontal component of LL and DL in the load group. Override lateral load and moment due to this component:					
		$M_{d3} := 0 \cdot ft \cdot kip$	$H_{ss} := 0 \cdot kip$				
Summation of forces and	moments						
$\Sigma \mathbf{V} \coloneqq \mathbf{F}_1 + \mathbf{F}_2 + \mathbf{F}_3 + \mathbf{F}_4 + \mathbf{F}_5 + \mathbf{F}_6 + \mathbf{F}_7 + \mathbf{F}_8 + \mathbf{F}_9 + \mathbf{F}_{10} + \mathbf{F}_{11} + \mathbf{F}_{12} + \mathbf{E}_{avert} + \mathbf{E}_{surch_vert} + \mathbf{P}_{dl} \cdot \mathbf{b}$							
$\Sigma V = 3.853 \times 10^4 \text{lbf}$							
$\Sigma V = 38.532 \text{ kip}$							
$\Sigma H := E_{ahoriz} + E_{surch_horiz} + H_{ss}$ DO NOT INCLUDE horizontal component of LL and DL in the load group (Hss)							
Σ H = 12.076 kip							
$\Sigma H = 12.076 \text{ kip}$							
$\Sigma M_r := M_{r1} + M_{r2} + M_{r3} + M_{r4} + M_{r5} + M_{r6} + M_{r7} + M_{r8} + M_{r9} + M_{r10} + M_{r11} + M_{r12} + M_{rSCH} + M_{rDL} + M_{r_{1}Pa}$							
$\Sigma M_r = 2.503 \times 10^5 \text{ ft} \cdot \text{lbf}$							

 $\Sigma M_r = 250.338 \text{ ft} \cdot \text{kip}$

 $\Sigma M_d := M_{d_Pa} + M_{d_surch} + M_{d_s}$

 $\Sigma M_d = 109.609 \text{ ft} \cdot \text{kip}$

 $\Sigma M_d = 109.609 \text{ kip} \cdot \text{ft}$

Factor of safety against overturning

$$FS_{ot} := \frac{\Sigma M_r}{\Sigma M_d}$$

 $FS_{ot} = 2.284$

AASHTO required factor of safety is 2.0

Factor of safety against sliding

friction at base + adhesion

 $tan(\delta_2) = 0.445$

$$FS_{sl} \coloneqq \frac{\left[(\Sigma V) \cdot tan(\delta_2)\right] + \left[(B \cdot b) \cdot c_2\right]}{\Sigma H}$$

 $FS_{sl} = 1.421$

AASHTO required factor of safety is 1.5

Bearing Capacity Factor of Safety

determine net moment

$$M_{net} := \Sigma M_r - \Sigma M_d$$
 $M_{net} = 1.407 \times 10^3 lbf \cdot ft$

location of resultant

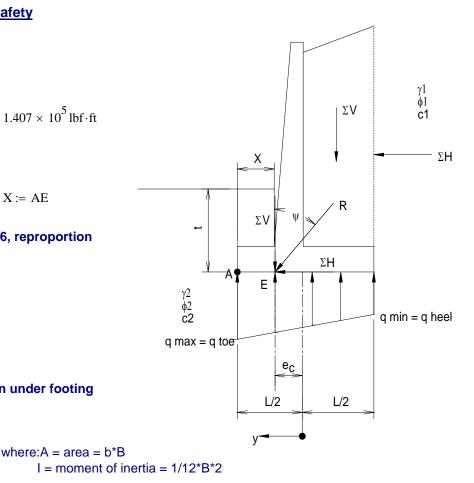
$$AE := \frac{M_{net}}{\Sigma V} \qquad AE = 3.652 \text{ ft} \qquad X := AE$$

determine eccentricity, if e > B/6, reproportion

$$\mathbf{e}_{\mathrm{c}} \coloneqq \frac{\mathrm{B}}{2} - \mathrm{AE} \qquad \mathbf{e}_{\mathrm{c}} = 1.198 \, \mathrm{ft}$$

 $\frac{B}{6} = 1.617 \text{ ft} \qquad \text{OK}$

Determine pressure distribution under footing

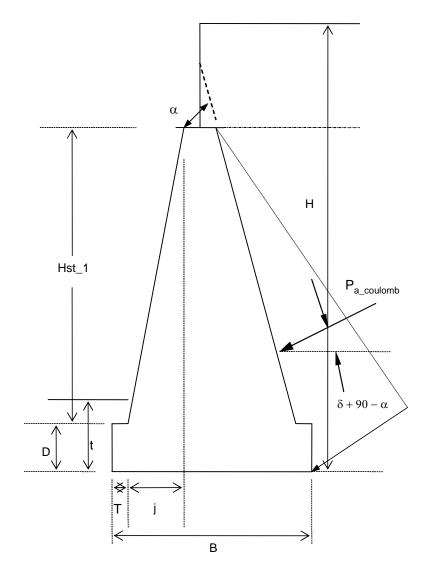

$$q = \frac{\Sigma V}{A} + \frac{M_{net} \cdot y}{I}$$
$$q = \frac{\Sigma V}{A} - \frac{M_{net} \cdot y}{I}$$

solving for \mathbf{q}_{\max} and \mathbf{q}_{\min}

$$q_{max} := \left[\frac{\Sigma V}{B} \cdot \left(1 + \frac{6 \cdot e_c}{B}\right)\right] \cdot \frac{1}{b} \qquad q_{max} = 6916 \text{ psf} \qquad q_{max} = 6.916 \text{ ksf} \qquad q_{toe} := q_{max}$$

$$q_{min} := \left[\frac{\Sigma V}{B} \cdot \left(1 - \frac{6 \cdot e_c}{B}\right)\right] \cdot \frac{1}{b} \qquad q_{min} = 1029 \text{ psf} \qquad q_{min} = 1.029 \text{ ksf} \qquad q_{heel} := q_{min}$$

$$B_e := B - 2 \cdot e_c$$
Allowable Bearing Pressure: $q_u := 24 \cdot \text{ksf} \qquad q_{allow} := \frac{q_u}{3} \qquad q_{allow} = 8 \text{ ksf}$
Factor of Safety against BC failure: $FS_{bc} := \frac{q_u}{q_{max}}$



South (Portland) Concrete Abutment (1930) Analysis

- using field verified abutment dimensions and 1930's plans for footing dimensions. field-verified backfill.
- Uses Coulomb theory. Assume approach slab is added. So, no traffic surcharge.
- Proposed conditions 3 foot raise in profile

- Assuming full footing toe as shown on the 1930 plans - but shorter footing (B) than shown on plans. I use max. value confirmed from GPR + assumed 3' long toe- this needs to be confirmed with a test pit.

 $psf := \frac{lbf}{ft^2} pcf := \frac{lbf}{ft^3} Mg := 1000 \cdot kg \quad kN := 1000 \cdot newton \quad kPa := \frac{kN}{m^2} \quad tsf := \frac{ton}{ft^2} \quad kip := 1000 \cdot lbf \quad ksf := \frac{kip}{ft^2}$

Height of wall,	$H := 28.5 \cdot ft$
Width of footing	$B := 9.7 \cdot ft$
Length of toe	$T := 3 \cdot ft$
Footing thickness	D := 3.0·ft
Depth of toe	$t := 3 \cdot ft$
Depth of seat	$d_s := 1.9 \cdot ft$
Height of stem 1	$H_{st_1} \coloneqq 23.5 \cdot ft$
Unit width	$b := 1 \cdot ft$
centerline distance	$cl := 6 \cdot in$
	j := 1.57∙ft

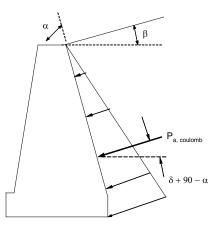
Assumed backfill and abutment proporties

concrete unit weight	$\gamma_c := 150$ ·	pcf $\gamma_c = 23.563$	$\frac{kN}{m^3}$	
backfill #1	$\gamma_1 := 125 \cdot pcf$	$\phi_1 := 32 \cdot \text{deg}$	$c_1 := 0 \cdot psf$	granular fill
Backfill #2	$\gamma_{1b} := 120 \cdot pcf$	$\phi_{1b} := 20 \cdot \deg$	$c_{1b} := 700 \cdot psf$	

Portland Veranda St. Bridge PIN 10158.00		e Abutment Stability rete Abut Coulomb 2.xmcd	1/27/2009 2 of 10 KM 12/04
Rankine wall friction	$\delta := 0 \cdot \deg$		
Coulomb wall friction	$\delta := 21 \cdot \deg$	2/3 phi	
Angle of backslope	$\beta := 0 \cdot \deg$		
α - Angle of abutment backwall (for true angle of gravity abutment bac	-	se $\alpha := 90 \cdot \deg$	
α - Angle of abutment backface (for use α = 90 as Rankine acts on a v from the back of the heel up to the	eritcal plane drawn		
α - For Coulomb Analysis on a Ca angle of line drawn from back of he stem at the top of the wall.			
Foundation material : sand	$\gamma_2 := 12$	5 · pcf $\phi_2 := 32 \cdot \text{deg}$ $c_2 := 0 \cdot \text{psf}$	
concrete - sand friction angle	$\delta_2 := 24$	deg $\tan(\delta_2) = 0.445$	

DL and LL forces per linear foot of wall:

Tim Merritt, TYLin, calculate 700 kip per abutment of dead load. Tim calculated 215 kip per abutment of LL. Bridge seat is roughly 18 meters or 60 ft.


 $P_{dl} := 700 \cdot \frac{kip}{60 \cdot ft} \qquad \qquad P_{dl} = 11.667 \frac{kip}{ft}$

$$P_{II} := 215 \cdot \frac{\text{kip}}{60 \cdot \text{ft}} \qquad \qquad P_{II} = 3.583 \frac{\text{kip}}{\text{ft}}$$

 $V_{ss} := (P_{dl} + P_{ll}) \cdot b$ $V_{ss} = 1.525 \times 10^{4} lbf$ $V_{ss} = 15.25 kip$

 $\mathbf{H}_{ss} := \left[\left(.1 \cdot \mathbf{P}_{dl} \right) + \left(0.05 \cdot \mathbf{P}_{ll} \right) \right] \cdot \mathbf{b} \qquad \qquad \mathbf{H}_{ss} = 1.346 \times 10^{3} \, \text{lbf} \ \mathbf{H}_{ss} = 1.346 \, \text{kip}$

Lateral Earth Pressure - use Coulomb - in failure, wedge of backfill soil slides upward along a plane matching the backwall of the gravity abutment

$$K_{a_rank} := \frac{\cos(\beta) - \left[\left(\cos(\beta)\right)^2 - \left(\cos(\varphi_1)\right)^2\right]^{0.5}}{\cos(\beta) + \left[\left(\cos(\beta)\right)^2 - \left(\cos(\varphi_1)\right)^2\right]^{0.5}} \cdot \cos(\beta) \qquad K_{a_rank} = 0.307$$

Coulomb Ka for granular backfill is very similar to the Rankine Value

$$K_{a_coulomb} := \frac{\sin(\phi_1 + \alpha)^2}{\left[\left(\sin(\alpha)^2 \cdot \sin(\alpha - \delta) \right) \cdot \left[1 + \sqrt{\frac{\sin(\phi_1 + \delta) \cdot \sin(\phi_1 - \beta)}{(\sin(\alpha - \delta) \cdot \sin(\alpha + \beta))}} \right]^2 \right]} K_{a_coulomb} = 0.275$$

Resultant Earth Pressure from backfill

$$P_{a1} \coloneqq \frac{1}{2} \cdot \gamma_1 \cdot H^2 \cdot K_{a_coulomb} \cdot b$$

 $P_{a1} = 13.967 \text{ kip}$

per linear foot of abutment

Portland Veranda St. Bridge PIN 10158.00		South Concrete Abutment Stability Portland South Concrete Abut Coulomb 2.xmcd		
Vertical Earth Pressure:				
$E_{avert} := \sin(\delta + 90 \cdot deg - \alpha) \cdot P_{a1}$	$E_{avert} = 5.005 \times 10^3 lbf$	$E_{avert} = 5.005 \text{ kip}$	per linear foot of wall	
Horizontal Earth Pressure:				
$E_{ahoriz} := \cos(\delta + 90 \cdot deg - \alpha) \cdot P_{a1}$	$E_{ahoriz} = 13039.693 lbf$	$E_{ahoriz} = 13.04 \text{ kip}$	per lin ft of wall	

Add an approach slab; so can neglect force due traffic - model w/ surcharge of 2' of soil (using Coulomb earth pressure theory)

 $s := 0 \cdot ft \cdot \gamma_1 \qquad s = 0 \, psf$

 $E_s := K_{a_coulomb} \cdot s \cdot H \cdot b \qquad \qquad E_s = 0 \text{ kip}$

Vertical Surcharge Earth Pressure:

$E_{surch_vert} \coloneqq sin(\delta + 90 \cdot deg - \alpha) \cdot E_s$	$E_{surch_vert} = 0 kip$	per Inr foot of wall
Horizontal Surcharge Earth Pressure	:	
$E_{surch_horiz} \coloneqq cos(\delta + 90 \cdot deg - \alpha) \cdot E_s$	$E_{surch_horiz} = 0 kip$	per lin ft of wall

Factor of safety against overturning and sliding

Resisting moments - abutment composed of granite stone masonry

- $A_{1} := 5.37 \cdot 4 \cdot ft^{2} \qquad F_{1} := A_{1} \cdot \gamma_{c} \cdot b \qquad x_{1} := \frac{5.37 \cdot ft}{2} + T + j \qquad M_{r1} := F_{1} \cdot x_{1} \qquad M_{r1} = 23.376 \text{ kip} \cdot ft$
- $A_2 := 5.6 \cdot 2 \cdot ft^2 \qquad F_2 := A_2 \cdot \gamma_c \cdot b \qquad x_2 := \frac{5.6 \cdot ft}{2} + T + j \qquad M_{r2} := F_2 \cdot x_2 \qquad M_{r2} = 12.382 \text{ ft-kip}$
- $A_3 \coloneqq 5.8 \cdot ft \cdot 2 \cdot ft \qquad F_3 \coloneqq A_3 \cdot \gamma_c \cdot b \qquad \qquad x_3 \coloneqq \frac{5.8}{2} \cdot ft + T + j \qquad M_{r3} \coloneqq F_3 \cdot x_3 \qquad \qquad M_{r3} = 12.998 \ ft \cdot kip$
- $A_4 \coloneqq (5.4 \cdot 2) \cdot ft^2 \qquad F_4 \coloneqq A_4 \cdot \gamma_c \cdot b \qquad \qquad x_4 \coloneqq \frac{5.4}{2} \cdot ft + T + j \qquad M_{r4} \coloneqq F_4 \cdot x_4 \qquad \qquad M_{r4} = 11.777 \ ft \cdot kip$

Portland		outh Concrete Abutment Stal		1/27/2009
Veranda St. Bridge PIN 10158.00	Portland	South Concrete Abut Coulor	mb 2.xmcd	5 of 10 KM 12/04
$A_5 := 5.37 \cdot 2 \cdot ft^2$	$F_5 \coloneqq A_5 {\cdot} \gamma_c {\cdot} b$	$\mathbf{x}_5 \coloneqq \frac{5.37}{2} \cdot \mathbf{ft} + \mathbf{T} + \mathbf{j}$	$\mathbf{M}_{r5} \coloneqq \mathbf{F}_5 \cdot \mathbf{x}_5$	$M_{r5} = 11.688 \text{ft} \cdot \text{kip}$
$A_6 := 5.23 \cdot 2 \cdot ft^2$	$F_6 := A_6 \cdot \gamma_c \cdot b$	$\mathbf{x}_6 \coloneqq \frac{5.23}{2} \cdot \mathbf{ft} + \mathbf{T} + \mathbf{j}$	$\mathbf{M}_{\mathbf{r}6} \coloneqq \mathbf{F}_{6} \cdot \mathbf{x}_{6}$	$M_{r6} = 11.273 \text{ ft} \cdot \text{kip}$
$A_7 \coloneqq 5.18 \cdot 2 \cdot ft^2$	$F_7 \coloneqq A_7 {:} \gamma_c {\cdot} b$	$\mathbf{x}_7 \coloneqq \frac{5.18}{2} \cdot \mathbf{ft} + \mathbf{T} + \mathbf{j}$	$\mathbf{M}_{r7} \coloneqq \mathbf{F}_7 \cdot \mathbf{x}_7$	M _{r7} = 11.127 ft·kip
$A_8 \coloneqq 5.14 \cdot 4 \cdot ft^2$	$F_8 \coloneqq A_8 {\cdot} \gamma_c {\cdot} b$	$\mathbf{x}_8 \coloneqq \frac{5.14}{2} \cdot \mathbf{ft} + \mathbf{T} + \mathbf{j}$	$M_{r8}\coloneqq F_8{\cdot}x_8$	$M_{r8} = 22.02 \text{ ft} \cdot \text{kip}$
$A_9 := 6.7 \cdot 3 \cdot ft^2$	$F_9 \coloneqq A_9 \cdot \gamma_c \cdot b$	$\mathbf{x}_9 := \frac{9.7}{2} \cdot \mathbf{ft}$	$M_{r9} := F_9 \cdot x_9$	$M_{r9} = 14.623 \text{ ft} \cdot \text{kip}$
$A_{10} \coloneqq 1.4 \cdot ft \cdot \frac{17}{2} \cdot ft$	$F_{10} := A_{10} \cdot \gamma_c \cdot b$	$\mathbf{x}_{10} \coloneqq \frac{2 \cdot 1.4}{3} \cdot \mathbf{ft} + \mathbf{T}$	$M_{r10} := F_{10} \cdot x_{10}$	$M_{r10} = 7.021 \text{ ft} \cdot \text{kip}$
$A_{11} := 3 \cdot 0 \cdot ft^2$	$F_{11} \coloneqq A_{11} \cdot \gamma_c \cdot b$	$x_{11} := 6.5 \cdot ft$	$M_{r11} := F_{11} \cdot x_{11}$	$M_{r11} = 0 \text{ ft} \cdot \text{kip}$

Resisting Moments - Soil over backwall and footing - neglect for Coulomb Analysis

 $A_{12} := \frac{1}{2} \cdot 9.5 \cdot 0 \cdot ft^2 \qquad F_{12} := A_{12} \cdot \gamma_1 \cdot b \qquad \qquad x_{12} := 4.5 \cdot ft \qquad \qquad M_{r12} := F_{12} \cdot x_{12} \qquad \qquad M_{r12} = 0 \ ft \cdot kip$

Resisting moment due to (1) dead load on bridge seat, (2) vertical component of the Traffic Surcharge acting on the backface, and, (3) vertical component of Coulomb earth pressure acting on the backface.

1.	$M_{rDL} := P_{dl} \cdot (T + j + cl) \cdot b$	$M_{rDL} = 59.15 \text{ ft} \cdot \text{kip}$	
2.	$M_{rSCH} := E_{surch_vert} \cdot (9 \cdot ft)$	$M_{rSCH} = 0 \text{ ft} \cdot \text{kip}$	acts downward at point H/2 above BOF
3.	$M_{r_Pa} := E_{avert} \cdot (9 \cdot ft)$	$M_{r_Pa} = 45.049 \text{ ft} \cdot \text{kip}$	acts downward at point H/3 above BOF

Portland
Veranda St. Bridge
PIN 10158.00

Driving moments

$$\begin{split} & M_{d_s surch} \coloneqq E_{surch_borr} \frac{1}{2} \cdot H & M_{d_s surch} = 0 \ ft \cdot kip \\ \\ \hline \\ & M_{d_s} \simeq E_{aborr} \frac{1}{3} \cdot H & M_{d_s} P_a = 1.239 \times 10^5 \ ft \cdot lbf & M_{d_s} P_a = 123.877 \ kip \cdot ft & M_{d_s} = 0 \ kip & M_{d_s} = 0 \ kip$$

 $\Sigma M_r = 242.483 \text{ ft} \cdot \text{kip}$

 $\Sigma M_d := M_{d_Pa} + M_{d_surch} + M_{d_s}$

 $\Sigma M_d = 123.877 \text{ ft} \cdot \text{kip}$

 $\Sigma M_d = 123.877 \text{ kip} \cdot \text{ft}$

Factor of safety against overturning

$$FS_{ot} := \frac{\Sigma M_r}{\Sigma M_d}$$

 $FS_{ot} = 1.957$

AASHTO required factor of safety is 2.0

Factor of safety against sliding

friction at base + adhesion

$$\tan(\delta_2) = 0.445$$

$$FS_{sl} := \frac{\left[(\Sigma V) \cdot tan(\delta_2) \right] + \left[(B \cdot b) \cdot c_2 \right]}{\Sigma H}$$

 $FS_{sl} = 1.282$

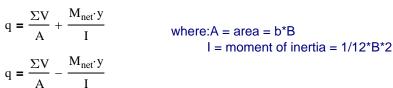
AASHTO required factor of safety is 1.5

Bearing Capacity Factor of Safety

determine net moment

$$M_{net} := \Sigma M_r - \Sigma M_d$$
 $M_{net} = 1.186 \times 10^3 lbf \cdot ft$

location of resultant


$$AE := \frac{M_{net}}{\Sigma V}$$
 $AE = 3.158 \text{ ft}$ $X := AE$

determine eccentricity, if e > B/6, reproportion

$$e_c := \frac{B}{2} - AE$$
 $e_c = 1.692 \text{ ft}$

 $\frac{B}{6} = 1.617 \text{ ft}$ OK

Determine pressure distribution under footing

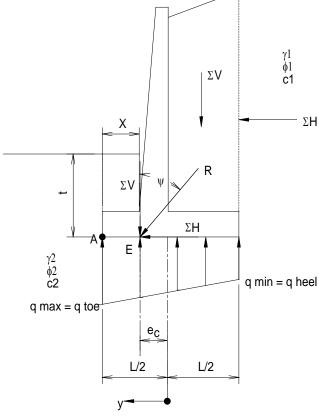
solving for q_{max} and q_{min}

$q_{\text{max}} \coloneqq \left[\frac{\Sigma V}{B} \cdot \left(1 + \frac{6 \cdot e_c}{B}\right)\right] \cdot \frac{1}{b} \qquad q_{\text{max}} = 7922 \text{psf} \qquad q_{\text{max}} = 7.922 \text{ksf} \qquad q_{\text{toe}} \coloneqq q_n$	q _{max} :=	$\left[\frac{\Sigma V}{B} \cdot \left(1 + \frac{6 \cdot e_c}{B}\right)\right] \cdot \frac{1}{b}$	$q_{max} = 7922 psf$	$q_{max} = 7.922 \text{ ksf}$	$q_{toe} := q_{ma}$
--	---------------------	--	-----------------------	-------------------------------	---------------------

$q_{\min} := \left\lfloor \frac{\Sigma V}{B} \cdot \left(1 - \frac{6 \cdot e_c}{B} \right) \right\rfloor \cdot \frac{1}{b} \qquad q_n$	$= -179 \text{ psf}$ $q_{\min} = -0.179 \text{ ksf}$
---	--

 $B_e := B - 2 \cdot e_c$

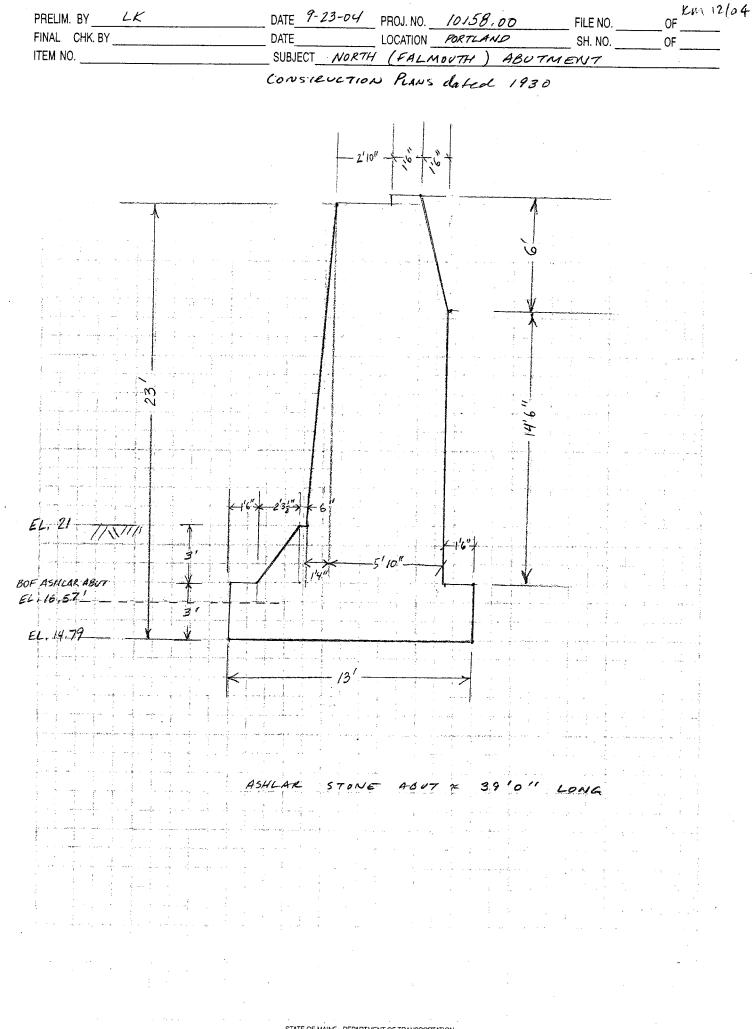
Allowable Bearing Pressure:
$$q_u := 24 \cdot ksf$$
 $q_{allow} := \frac{q_u}{3}$ $q_{allow} =$

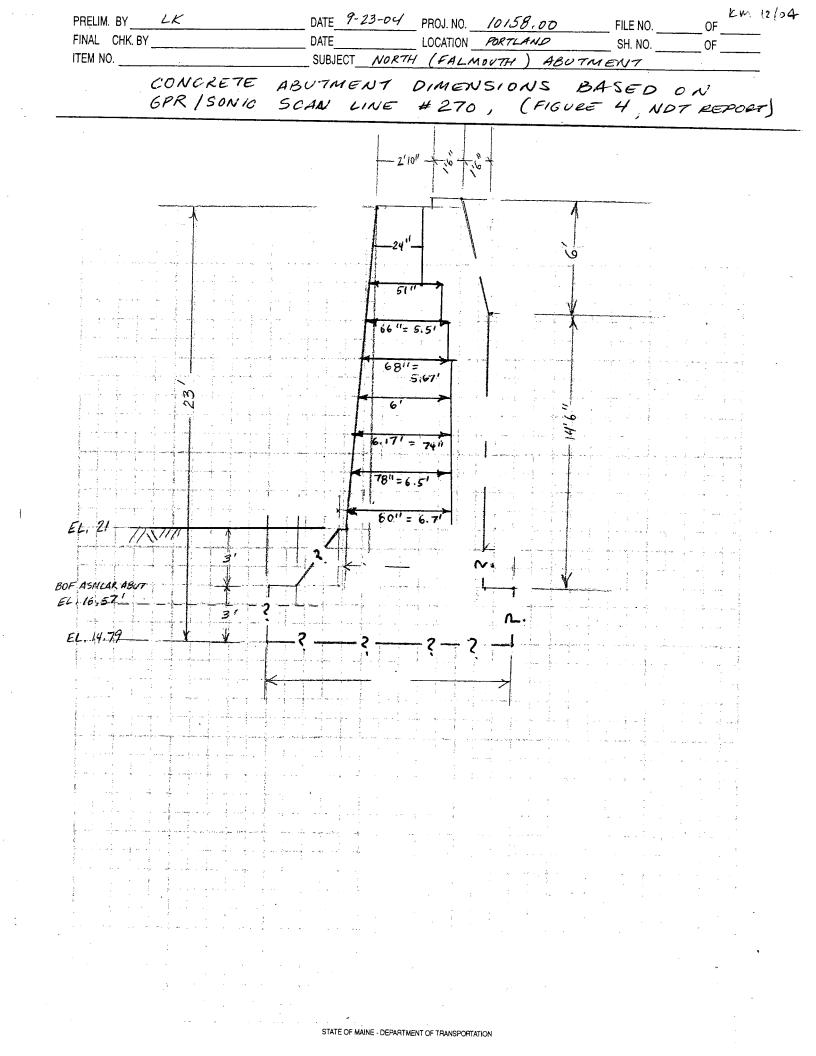

Factor of Safety against BC failure:

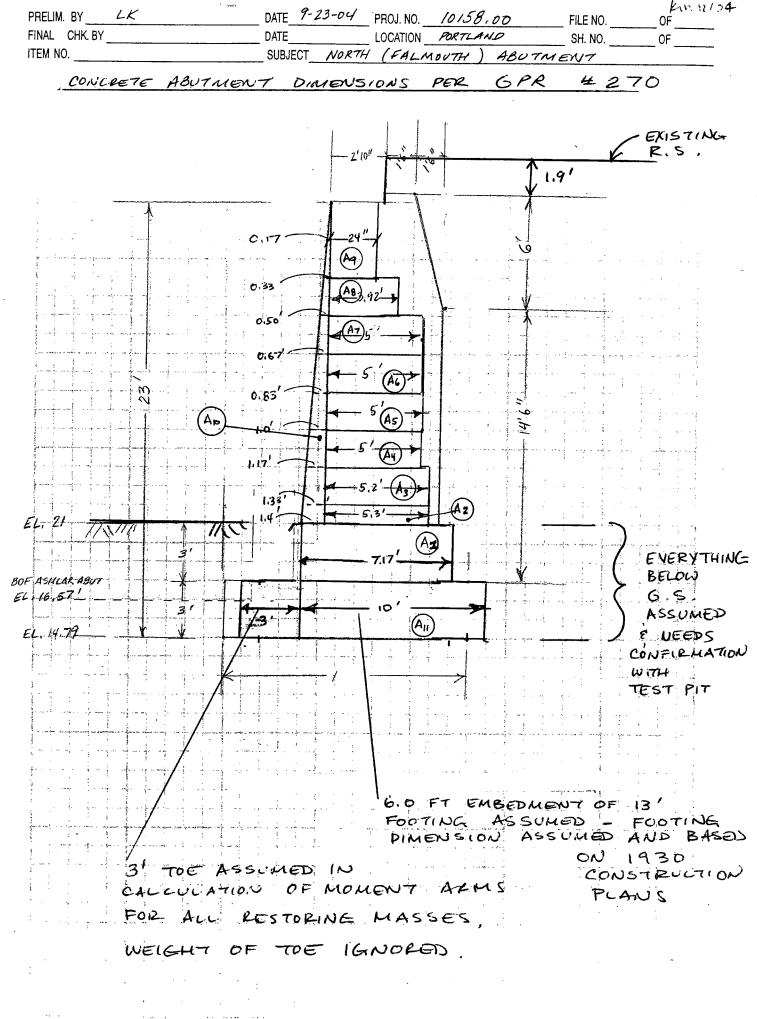
 $FS_{bc} := \frac{q_u}{q_{max}}$

8 ksf

 $q_{heel} := q_{min}$

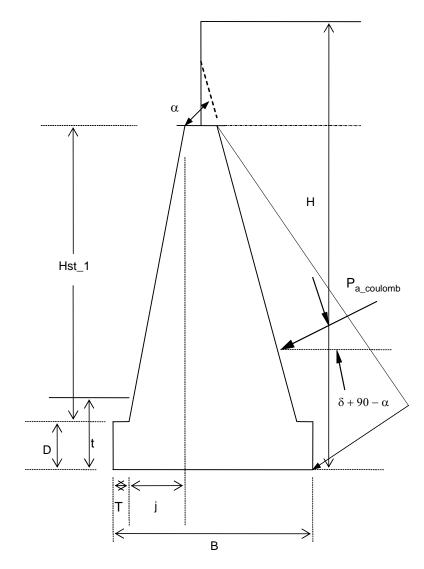

AASHTO recommends a FS of 3


NORTH ABUTMENT


CONCRETE ABUTMENT SECTION

STABILITY ANALYSES

STATE OF MAINE - DEPARTMENT OF TRANSPORTATION



North (Falmouth) Concrete Abutment (1930) Analysis - using field verified abutment dimensions and 1930's plans for footing dimensions. field-verified backfill.

Uses Coulomb theory. Traffic Surcharge added (Coulomb). Existing conditions - no raise in grade

Assuming full footing toe and footing width as shown on the 1930 plans - this needs to be confirmed with a test pit

 $psf := \frac{lbf}{ft^2} pcf := \frac{lbf}{ft^3} Mg := 1000 \cdot kg \quad kN := 1000 \cdot newton \quad kPa := \frac{kN}{m^2} \quad tsf := \frac{ton}{ft^2} \quad kip := 1000 \cdot lbf \quad ksf := \frac{kip}{ft^2}$

Height of wall,	$H \coloneqq 24.9 \cdot ft$
Width of footing	B := 13·ft
Length of toe	$T := 3 \cdot ft$
Footing thickness	$D := 3.0 \cdot ft$
Depth of toe	$t := 4 \cdot ft$
Depth of seat	$d_s := 1.9 \cdot ft$
Height of stem 1	$H_{st_1} := 23 \cdot ft$
Unit width	$b := 1 \cdot ft$
centerline distance	$cl := 6 \cdot in$
	$j := 1.4 \cdot ft$

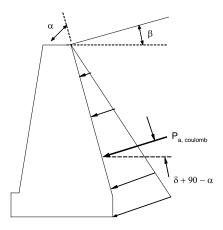
Assumed backfill and abutment proporties

concrete unit weight	$\gamma_c \coloneqq 150$ ·	pcf $\gamma_c = 23.563$	$\frac{kN}{m^3}$	
backfill #1	$\gamma_1 := 125 \cdot \text{pcf}$	$\phi_1 := 32 \cdot \text{deg}$	$c_1 := 0 \cdot psf$	granular fill
Backfill #2	$\gamma_{1b} := 120 \cdot \text{pcf}$	$\phi_{1b} := 20 \cdot \deg$	$c_{1b} := 700 \cdot psf$	

Portland Veranda St. Bridge PIN 10158.00		te Abutment Stability crete Abut Coulomb 1.xmcd	1/27/2009 2 of 10 KM 12/04
Rankine wall friction	$\delta := 0 \cdot \deg$		
Coulomb wall friction	$\delta := 21 \cdot \text{deg}$	2/3 phi	
Angle of backslope	$\beta := 0 \cdot \deg$		
α - Angle of abutment backwall (fo true angle of gravity abutment bac	-	se $\alpha := 80 \cdot \deg$	
α - Angle of abutment backface (for use α = 90 as Rankine acts on a v from the back of the heel up to the	veritcal plane drawn		
α - For Coulomb Analysis on a Ca angle of line drawn from back of h stem at the top of the wall.		•	
Foundation material : sand	$\gamma_2 := 12$	25 · pcf $\phi_2 := 32 \cdot \deg$ $c_2 := 0 \cdot psf$	
concrete - sand friction angle	$\delta_2 := 24$	$\cdot \deg \qquad \tan(\delta_2) = 0.445$	

DL and LL forces per linear foot of wall:

Tim Merritt, TYLin, calculate 700 kip per abutment of dead load. Tim calculated 215 kip per abutment of LL. Bridge seat is roughly 18 meters or 60 ft.


 $P_{dl} := 700 \cdot \frac{kip}{60 \cdot ft} \qquad \qquad P_{dl} = 11.667 \frac{kip}{ft}$

$$P_{II} := 215 \cdot \frac{\text{kip}}{60 \cdot \text{ft}} \qquad \qquad P_{II} = 3.583 \frac{\text{kip}}{\text{ft}}$$

 $V_{ss} := (P_{dl} + P_{ll}) \cdot b$ $V_{ss} = 1.525 \times 10^{4} lbf$ $V_{ss} = 15.25 kip$

 $\mathbf{H}_{ss} := \left[\left(.1 \cdot \mathbf{P}_{dl} \right) + \left(0.05 \cdot \mathbf{P}_{ll} \right) \right] \cdot \mathbf{b} \qquad \qquad \mathbf{H}_{ss} = 1.346 \times 10^{3} \, lbf \ \mathbf{H}_{ss} = 1.346 \, kip$

Lateral Earth Pressure - use Coulomb - in failure, wedge of backfill soil slides upward along a plane matching the backwall of the gravity abutment

$$K_{a_rank} := \frac{\cos(\beta) - \left[\left(\cos(\beta)\right)^2 - \left(\cos(\varphi_1)\right)^2\right]^{0.5}}{\cos(\beta) + \left[\left(\cos(\beta)\right)^2 - \left(\cos(\varphi_1)\right)^2\right]^{0.5}} \cdot \cos(\beta) \qquad K_{a_rank} = 0.307$$

Coulomb Ka for granular backfill is very similar to the Rankine Value

$$K_{a_coulomb} := \frac{\sin(\phi_1 + \alpha)^2}{\left[\left(\sin(\alpha)^2 \cdot \sin(\alpha - \delta)\right) \cdot \left[1 + \sqrt{\frac{\sin(\phi_1 + \delta) \cdot \sin(\phi_1 - \beta)}{(\sin(\alpha - \delta) \cdot \sin(\alpha + \beta))}}\right]^2\right]} K_{a_coulomb} = 0.354$$

Resultant Earth Pressure from backfill

$$P_{a1} \coloneqq \frac{1}{2} \cdot \gamma_1 \cdot H^2 \cdot K_{a_coulomb} \cdot b$$

 $P_{a1} = 13.735 \text{ kip}$

per linear foot of abutment

Portland Veranda St. Bridge PIN 10158.00	North Concrete Abutment Stability Portland North Concrete Abut Coulomb 1.xmcd		1/27/2009 4 of 10 KM 12/04
Vertical Earth Pressure:			
$E_{avert} \coloneqq \sin(\delta + 90 \cdot deg - \alpha) \cdot P_{a1}$	$E_{avert} = 7.074 \times 10^3 lbf$	$E_{avert} = 7.074 \text{ kip}$	per linear foot of wall
Horizontal Earth Pressure:			
$E_{ahoriz} := \cos(\delta + 90 \cdot deg - \alpha) \cdot P_{a1}$	$E_{ahoriz} = 11773.37 lbf$	$E_{ahoriz} = 11.773 kip$	per lin ft of wall

No approach slab; Force due traffic - model w/ surcharge of 2' of soil (using Coulomb earth pressure theory)

 $s\coloneqq 2{\cdot}ft{\cdot}\gamma_1 \qquad s=250\,psf$

 $E_s := K_{a_coulomb} \cdot s \cdot H \cdot b$ $E_s = 2.206 \text{ kip}$

Vertical Surcharge Earth Pressure:

$E_{surch_vert} \coloneqq sin(\delta + 90 \cdot deg - \alpha) \cdot E_s$	$E_{surch_vert} = 1.136 kip$	per Inr foot of wall
Horizontal Surcharge Earth Pressure:		
$E_{surch_horiz} := \cos(\delta + 90 \cdot deg - \alpha) \cdot E_s$	E _{surch_horiz} = 1.891 kip	per lin ft of wall

Factor of safety against overturning and sliding

Resisting moments - abutment composed of granite stone masonry

- $A_1 \coloneqq 7.17 \cdot 3 \cdot ft^2 \qquad F_1 \coloneqq A_1 \cdot \gamma_c \cdot b \qquad x_1 \coloneqq \frac{7.17 \cdot ft}{2} + T \qquad M_{r1} \coloneqq F_1 \cdot x_1 \qquad M_{r1} = 21.247 \text{ kip} \cdot ft$
- $A_2 := 5.3 \cdot 1 \cdot ft^2 \qquad F_2 := A_2 \cdot \gamma_c \cdot b \qquad x_2 := \frac{5.3 \cdot ft}{2} + T + j \qquad M_{r2} := F_2 \cdot x_2 \qquad M_{r2} = 5.605 \text{ ft} \cdot \text{kip}$
- $A_3 \coloneqq 5.2 \cdot ft \cdot 2 \cdot ft \qquad F_3 \coloneqq A_3 \cdot \gamma_c \cdot b \qquad \qquad x_3 \coloneqq \frac{5.2}{2} \cdot ft + T + j \qquad M_{r3} \coloneqq F_3 \cdot x_3 \qquad \qquad M_{r3} = 10.92 \; ft \cdot kip$
- $A_4 := (5.0 \cdot 2) \cdot ft^2 \qquad F_4 := A_4 : \gamma_c \cdot b \qquad x_4 := \frac{5.0}{2} \cdot ft + T + j \qquad M_{r4} := F_4 \cdot x_4 \qquad M_{r4} = 10.35 \ ft \cdot kip$

Portland Veranda St. Bridge PIN 10158.00	Port	North Concrete Abutment Stat land North Concrete Abut Coulor		1/27/2009 5 of 10 KM 12/04
$A_5 := 5.0 \cdot 2 \cdot ft^2$	$F_5 := A_5 \cdot \gamma_c \cdot b$	$\mathbf{x}_5 \coloneqq \frac{5.0}{2} \cdot \mathbf{ft} + \mathbf{T} + \mathbf{j}$	$M_{r5} \coloneqq F_5 \cdot x_5$	$M_{r5} = 10.35 \text{ ft} \cdot \text{kip}$
$A_6 := 5.0 \cdot 2 \cdot ft^2$	$F_6 := A_6 \cdot \gamma_c \cdot b$	$\mathbf{x}_6 \coloneqq \frac{5.0}{2} \cdot \mathbf{ft} + \mathbf{T} + \mathbf{j}$	$\mathbf{M}_{\mathbf{r6}} \coloneqq \mathbf{F}_{6} \cdot \mathbf{x}_{6}$	$M_{r6} = 10.35 \text{ ft} \cdot \text{kip}$
$A_7 := 5.0 \cdot 2 \cdot \text{ft}^2$	$F_7 := A_7 \cdot \gamma_c \cdot b$	$\mathbf{x}_7 \coloneqq \frac{5}{2} \cdot \mathbf{ft} + \mathbf{T} + \mathbf{j}$	$M_{r7} \coloneqq F_7 \cdot x_7$	M _{r7} = 10.35 ft⋅kip
$A_8 \coloneqq 3.92 \cdot 2 \cdot ft^2$	$F_8 := A_8 \cdot \gamma_c \cdot b$	$\mathbf{x}_8 \coloneqq \frac{3.92}{2} \cdot \mathbf{ft} + \mathbf{T} + \mathbf{j}$	$M_{r8} \coloneqq F_8 \cdot x_8$	$M_{r8} = 7.479 \text{ ft} \cdot \text{kip}$
$A_9 \coloneqq 2 \cdot 4 \cdot ft^2$	$F_9 := A_9 \cdot \gamma_c \cdot b$	$x_9 \coloneqq \frac{2}{2} \cdot ft + T + j$	$M_{r9} \coloneqq F_9 \cdot x_9$	$M_{r9} = 6.48 \text{ ft} \cdot \text{kip}$
$A_{10} := 1.4 \cdot ft \cdot \frac{17}{2} \cdot ft$	$F_{10} \coloneqq A_{10} \cdot \gamma_c \cdot b$	$\mathbf{x}_{10} \coloneqq \frac{2 \cdot 1.4}{3} \cdot \mathbf{ft} + \mathbf{T}$	$M_{r10} := F_{10} \cdot x_{10}$	$M_{r10} = 7.021 \text{ ft} \cdot \text{kip}$
$A_{11} \coloneqq 3 \cdot 13 \cdot ft^2$	$\mathbf{F}_{11} := \mathbf{A}_{11} \cdot \boldsymbol{\gamma}_{c} \cdot \mathbf{b}$	$x_{11} := 8 \cdot ft$	$M_{r11} := F_{11} \cdot x_{11}$	$M_{r11} = 46.8 \text{ ft} \cdot \text{kip}$

Resisting Moments - Soil over backwall and footing - neglect for Coulomb Analysis

$A_{12} := 0 \cdot ft^2$	$\mathbf{F}_{12} \coloneqq \mathbf{A}_{12} \cdot \boldsymbol{\gamma}_1 \cdot \mathbf{b}$	$x_{12} := 4.5 \cdot ft$	$M_{r12} := F_{12} \cdot x_{12}$	$M_{r12} = 0 \text{ ft} \cdot \text{kip}$

Resisting moment due to (1) dead load on bridge seat, (2) vertical component of the Traffic Surcharge acting on the backface, and, (3) vertical component of Coulomb earth pressure acting on the backface.

1.
$$M_{rDL} := P_{dl} \cdot (T + j + cl) \cdot b$$
 $M_{rDL} = 57.167 \text{ ft kip}$ 2. $M_{rSCH} := E_{surch_vert} \cdot (6 \cdot ft)$ $M_{rSCH} = 6.818 \text{ ft kip}$ acts downward on
backface at H/2 above
BOF $\frac{H}{2} = 12.45 \text{ ft}$ 3. $M_{r_Pa} := E_{avert} \cdot (6.5 \cdot ft)$ $M_{r_Pa} = 45.982 \text{ ft kip}$ acts downward on
backface at H/3 above
BOF $\frac{H}{3} = 8.3 \text{ ft}$

Portland
Veranda St. Bridge
PIN 10158.00

Driving moments

$$\begin{split} \mathsf{M}_{d_s \text{surch}} &\coloneqq \mathsf{E}_{\text{surch},\text{horiz}} \cdot \frac{1}{2} \cdot \mathsf{H} & \mathsf{M}_{d_s \text{surch}} = 23.547 \, \mathrm{fr} \cdot \mathrm{kip} \\ \\ \hline \mathsf{M}_{d_s \text{pa}} &\coloneqq \mathsf{E}_{\text{aboriz}} \cdot \frac{1}{3} \cdot \mathsf{H} & \mathsf{M}_{d_s \text{pa}} = 9.772 \times 10^4 \, \mathrm{fr} \cdot \mathrm{lbf} & \mathsf{M}_{d_s \text{pa}} = 97.719 \, \mathrm{kip} \cdot \mathrm{fr} & \mathsf{M}_{d_s \text{pa}} = 97.719 \, \mathrm{kip} \cdot \mathrm{fr} \\ \\ \mathsf{M}_{d_3} &\coloneqq \mathsf{H}_{a_s} \cdot 21 \cdot \mathrm{fr} & \mathsf{M}_{d_3} = 28.262 \, \mathrm{fr} \cdot \mathrm{kip} & \text{does not include horizontal component of LL} \\ \\ \mathsf{m}_{d_3} &\coloneqq \mathsf{H}_{a_s} \cdot 21 \cdot \mathrm{fr} & \mathsf{M}_{d_3} = 28.262 \, \mathrm{fr} \cdot \mathrm{kip} & \text{does not include horizontal component of LL} \\ \\ \mathsf{M}_{d_3} &\coloneqq \mathsf{O} \cdot \mathrm{fr} \cdot \mathrm{kip} & \mathsf{H}_{a_s} \coloneqq \mathsf{O} \cdot \mathrm{kip} \\ \\ \mathsf{Summation of forces and moments} \\ \\ \mathsf{SV} &\coloneqq \mathsf{F}_1 + \mathsf{F}_2 + \mathsf{F}_3 + \mathsf{F}_4 + \mathsf{F}_5 + \mathsf{F}_6 + \mathsf{F}_7 + \mathsf{F}_8 + \mathsf{F}_9 + \mathsf{F}_{10} + \mathsf{F}_{11} + \mathsf{F}_{12} + \mathsf{E}_{avert} + \mathsf{E}_{surch_avert} + \mathsf{P}_{d1} \cdot \mathsf{b} \\ \\ \mathsf{SV} &= 41.47 \times 10^4 \, \mathrm{lbf} \\ \\ \mathsf{SV} &= 41.47 \, \mathrm{kip} \\ \\ \mathsf{SH} &\coloneqq \mathsf{E}_{ahoriz} + \mathsf{E}_{surch_ahoriz} + \mathsf{H}_{ss} & \text{does not include horizontal component of LL} \\ \\ \mathsf{and DL} & \text{in the load group (Hss)} \\ \\ \mathsf{SH} &= 13.665 \, \mathrm{kip} \\ \\ \\ \mathsf{SMr} &\coloneqq \mathsf{M}_{r1} + \mathsf{M}_{r2} + \mathsf{M}_{r3} + \mathsf{M}_{r4} + \mathsf{M}_{r5} + \mathsf{M}_{r6} + \mathsf{M}_{r7} + \mathsf{M}_{r8} + \mathsf{M}_{r9} + \mathsf{M}_{r10} + \mathsf{M}_{r11} + \mathsf{M}_{r12} + \mathsf{M}_{rSCH} + \mathsf{M}_{rDL} + \mathsf{M}_{r,p} \mathsf{m} \\ \end{aligned}$$

 $\Sigma M_r = 2.569 \times 10^5 \text{ ft·lbf}$ $\Sigma M_r = 256.919 \text{ ft·kip}$ $\Sigma M_d := M_{d_Pa} + M_{d_surch} + M_{d3}$

 $\Sigma M_d = 121.266 \text{ ft} \cdot \text{kip}$

 $\Sigma M_d = 121.266 \text{ kip} \cdot \text{ft}$

Factor of safety against overturning

$$FS_{ot} := \frac{\Sigma M_r}{\Sigma M_d}$$

 $FS_{ot} = 2.119$

AASHTO required factor of safety is 2.0

Factor of safety against sliding

friction at base + adhesion

$$\tan(\delta_2) = 0.445$$

$$FS_{sl} := \frac{\left[(\Sigma V) \cdot tan(\delta_2) \right] + \left[(B \cdot b) \cdot c_2 \right]}{\Sigma H}$$

 $FS_{sl} = 1.351$

AASHTO required factor of safety is 1.5

Bearing Capacity Factor of Safety

determine net moment

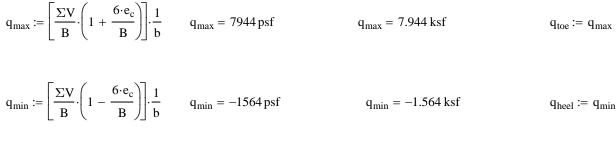
$$M_{net} := \Sigma M_r - \Sigma M_d$$
 $M_{net} = 1.357 \times 10^3 \, lbf \cdot ft$

location of resultant

$$AE := \frac{M_{net}}{\Sigma V}$$
 $AE = 3.271 \text{ ft}$ $X := AE$

determine eccentricity, if e > B/6, reproportion

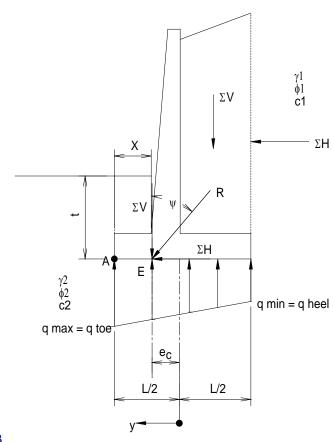
$$e_c := \frac{B}{2} - AE$$
 $e_c = 3.229 \text{ ft}$


 $\frac{B}{6} = 2.167 \text{ ft} \qquad \text{OK}$

Determine pressure distribution under footing

$$q = \frac{\Sigma V}{A} + \frac{M_{net} \cdot y}{I}$$
$$q = \frac{\Sigma V}{A} - \frac{M_{net} \cdot y}{I}$$

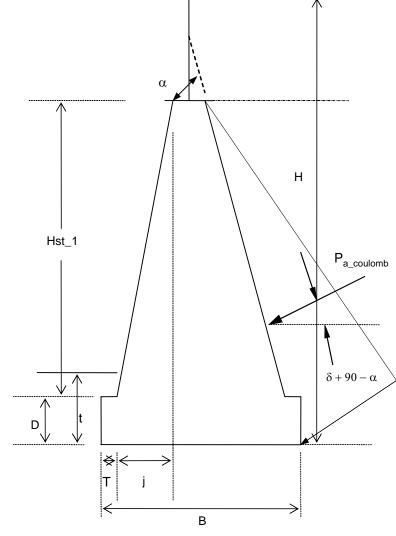
where:A = area = b*B I = moment of inertia = 1/12*B*2


solving for \mathbf{q}_{\max} and \mathbf{q}_{\min}

 $B_e := B - 2 \cdot e_c$

Allowable Bearing Pressure:	$q_u \coloneqq 24 \cdot ksf$	$q_{\text{allow}} \coloneqq \frac{q_{\text{u}}}{3}$	$q_{allow} = 8 ksf$
		9	

Factor of Safety against BC failure:
$$FS_{bc} := \frac{q_u}{q_{max}}$$
 $FS_{bc} = 3.021$


North (Falmouth) Concrete Abutment (1930) Analysis - using field verified abutment dimensions and 1930's plans for footing dimensions and field-verified backfill. Uses Coulomb theory.

Traffic Surcharge neglected because assuming approach slab to be added.

Proposed conditions - 3 ft raise in grade.

Assuming full footing toe and footing width as shown on the 1930 plans - this needs to be confirmed with a test pit.

$$psf := \frac{lbf}{ft^2} pcf := \frac{lbf}{ft^3} Mg := 1000 \cdot kg \quad kN := 1000 \cdot newton \quad kPa := \frac{kN}{m^2} \quad tsf := \frac{ton}{ft^2} \quad kip := 1000 \cdot lbf \quad ksf := \frac{kip}{ft^2}$$

0	
Width of footing	$B := 13 \cdot ft$
Length of toe	$T := 3 \cdot ft$
Footing thickness	$D := 3.0 \cdot ft$
Depth of toe	$t := 4 \cdot ft$
Depth of seat	$d_s := 1.9 \cdot ft$
Height of stem 1	$H_{st_1} := 23 \cdot ft$
Unit width	$b := 1 \cdot ft$
centerline distance	$cl := 6 \cdot in$
	j := 1.4∙ft

 $H := 28.9 \cdot ft$

Height of wall,

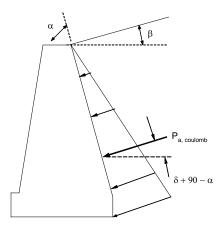
Assumed backfill and abutment proporties

concrete unit weight	$\gamma_c := 150$ ·	pcf $\gamma_c = 23.563$	$\frac{kN}{m^3}$	
backfill #1	$\gamma_1 := 125 \cdot \text{pcf}$	$\phi_1 := 32 \cdot deg$	$c_1 := 0 \cdot psf$	granular fill
Backfill #2	$\gamma_{1b} := 120 \cdot \text{pcf}$	$\phi_{1b} := 20 \cdot \text{deg}$	$c_{1b} := 700 \cdot psf$	

Portland Veranda St. Bridge PIN 10158.00		Abutment Stability ete Abut Coulomb 2.xmcd	1/27/2009 2 of 10 KM 12/04
Rankine wall friction	$\delta := 0 \cdot deg$		
Coulomb wall friction	$\delta := 21 \cdot \text{deg}$	2/3 phi	
Angle of backslope	$\beta := 0 \cdot \deg$		
$\alpha\text{-}$ Angle of abutment backwall (for true angle of gravity abutment back	-	e $\alpha := 80 \cdot \deg$	
α - Angle of abutment backface (fo use α = 90 as Rankine acts on a ve from the back of the heel up to the	eritcal plane drawn		
α - For Coulomb Analysis on a Car angle of line drawn from back of he stem at the top of the wall.			
Foundation material : sand	$\gamma_2 := 125$	$\phi_2 := 32 \cdot \deg c_2 := 0 \cdot psf$	
concrete - sand friction angle	$\delta_2 := 24 \cdot c$	deg $\tan(\delta_2) = 0.445$	

DL and LL forces per linear foot of wall:

Tim Merritt, TYLin, calculate 700 kip per abutment of dead load. Tim calculated 215 kip per abutment of LL. Bridge seat is roughly 18 meters or 60 ft.


 $P_{dl} := 700 \cdot \frac{kip}{60 \cdot ft} \qquad \qquad P_{dl} = 11.667 \frac{kip}{ft}$

$$P_{ll} := 215 \cdot \frac{kip}{60 \cdot ft} \qquad \qquad P_{ll} = 3.583 \frac{kip}{ft}$$

 $V_{ss} := (P_{dl} + P_{ll}) \cdot b$ $V_{ss} = 1.525 \times 10^{4} lbf$ $V_{ss} = 15.25 kip$

 $\mathbf{H}_{ss} := \left[\left(.1 \cdot \mathbf{P}_{dl} \right) + \left(0.05 \cdot \mathbf{P}_{ll} \right) \right] \cdot \mathbf{b} \qquad \qquad \mathbf{H}_{ss} = 1.346 \times 10^{3} \, \text{lbf} \ \mathbf{H}_{ss} = 1.346 \, \text{kip}$

Lateral Earth Pressure - use Coulomb - in failure, wedge of backfill soil slides upward along a plane matching the backwall of the gravity abutment

$$K_{a_rank} := \frac{\cos(\beta) - \left[\left(\cos(\beta)\right)^2 - \left(\cos(\varphi_1)\right)^2\right]^{0.5}}{\cos(\beta) + \left[\left(\cos(\beta)\right)^2 - \left(\cos(\varphi_1)\right)^2\right]^{0.5}} \cdot \cos(\beta) \qquad K_{a_rank} = 0.307$$

Coulomb Ka for granular backfill is very similar to the Rankine Value

$$K_{a_coulomb} := \frac{\sin(\phi_1 + \alpha)^2}{\left[\left(\sin(\alpha)^2 \cdot \sin(\alpha - \delta)\right) \cdot \left[1 + \sqrt{\frac{\sin(\phi_1 + \delta) \cdot \sin(\phi_1 - \beta)}{(\sin(\alpha - \delta) \cdot \sin(\alpha + \beta))}}\right]^2\right]} K_{a_coulomb} = 0.354$$

Resultant Earth Pressure from backfill

$$P_{a1} \coloneqq \frac{1}{2} \cdot \gamma_1 {\cdot} H^2 {\cdot} K_{a_coulomb} {\cdot} b$$

 $P_{a1} = 18.503 \text{ kip}$

Portland

per linear foot of abutment

Portland Veranda St. Bridge PIN 10158.00	North Concrete Abutment Stability Portland North Concrete Abut Coulomb 2.xmcd		1/27/2009 4 of 10 KM 12/04
Vertical Earth Pressure:			
$E_{avert} \coloneqq \sin(\delta + 90 \cdot deg - \alpha) \cdot P_{a1}$	$E_{avert} = 9.53 \times 10^3 lbf$	$E_{avert} = 9.53 \text{ kip}$	per linear foot of wall
Horizontal Earth Pressure:			
$E_{ahoriz} := \cos(\delta + 90 \cdot deg - \alpha) \cdot P_{a1}$	$E_{ahoriz} = 15859.803 \text{ lbf}$	$E_{ahoriz} = 15.86 \text{ kip}$	per lin ft of wall

Assume approach slab; Neglect force due traffic - model w/ surcharge of 2' of soil (using Coulomb earth pressure theory)

 $s := 0 \cdot ft \cdot \gamma_1 \qquad s = 0 \, psf$

 $E_s := K_{a_coulomb} \cdot s \cdot H \cdot b$ $E_s = 0 kip$

Vertical Surcharge Earth Pressure:

$E_{surch_vert} \coloneqq sin(\delta + 90 \cdot deg - \alpha) \cdot E_s$	$E_{surch_vert} = 0 kip$	per Inr foot of wall
Horizontal Surcharge Earth Pressure:	:	
$E_{surch_horiz} := \cos(\delta + 90 \cdot deg - \alpha) \cdot E_s$	$E_{surch_horiz} = 0 kip$	per lin ft of wall

Factor of safety against overturning and sliding

Resisting moments - abutment composed of granite stone masonry

- $A_1 \coloneqq 7.17 \cdot 3 \cdot ft^2 \qquad F_1 \coloneqq A_1 \cdot \gamma_c \cdot b \qquad \qquad x_1 \coloneqq \frac{7.17 \cdot ft}{2} + T \qquad M_{r1} \coloneqq F_1 \cdot x_1 \qquad \qquad M_{r1} = 21.247 \, \text{kip} \cdot ft$
- $A_2 := 5.3 \cdot 1 \cdot ft^2 \qquad F_2 := A_2 \cdot \gamma_c \cdot b \qquad x_2 := \frac{5.3 \cdot ft}{2} + T + j \qquad M_{r2} := F_2 \cdot x_2 \qquad M_{r2} = 5.605 \text{ ft} \cdot \text{kip}$
- $A_3 \coloneqq 5.2 \cdot ft \cdot 2 \cdot ft \qquad F_3 \coloneqq A_3 \cdot \gamma_c \cdot b \qquad \qquad x_3 \coloneqq \frac{5.2}{2} \cdot ft + T + j \qquad M_{r3} \coloneqq F_3 \cdot x_3 \qquad \qquad M_{r3} = 10.92 \; ft \cdot kip$
- $A_4 := (5.0 \cdot 2) \cdot ft^2 \qquad F_4 := A_4 : \gamma_c \cdot b \qquad x_4 := \frac{5.0}{2} \cdot ft + T + j \qquad M_{r4} := F_4 \cdot x_4 \qquad M_{r4} = 10.35 \ ft \cdot kip$

Portland Veranda St. Bridge PIN 10158.00		North Concrete Abutment Stat Portland North Concrete Abut Coulor	1/27/2009 5 of 10 KM 12/04	
$A_5 := 5.0 \cdot 2 \cdot ft^2$	$F_5 \coloneqq A_5 \cdot \gamma_c \cdot b$	$\mathbf{x}_5 \coloneqq \frac{5.0}{2} \cdot \mathbf{ft} + \mathbf{T} + \mathbf{j}$	$\mathbf{M}_{r5} \coloneqq \mathbf{F}_5 \cdot \mathbf{x}_5$	$M_{r5} = 10.35 \text{ ft} \cdot \text{kip}$
$A_6 := 5.0 \cdot 2 \cdot ft^2$	$F_6 := A_6 \cdot \gamma_c \cdot b$	$\mathbf{x}_6 \coloneqq \frac{5.0}{2} \cdot \mathbf{ft} + \mathbf{T} + \mathbf{j}$	$\mathbf{M}_{\mathrm{r6}} \coloneqq \mathbf{F}_{6} \cdot \mathbf{x}_{6}$	$M_{r6} = 10.35 \text{ ft} \cdot \text{kip}$
$A_7 := 5.0 \cdot 2 \cdot ft^2$	$F_7 := A_7 \cdot \gamma_c \cdot b$	$\mathbf{x}_7 \coloneqq \frac{5}{2} \cdot \mathbf{ft} + \mathbf{T} + \mathbf{j}$	$M_{r7} \coloneqq F_7 \cdot x_7$	$M_{r7} = 10.35 \text{ ft} \cdot \text{kip}$
$A_8 := 3.92 \cdot 2 \cdot ft^2$	$F_8 := A_8 \cdot \gamma_c \cdot b$	$\mathbf{x}_8 \coloneqq \frac{3.92}{2} \cdot \mathbf{ft} + \mathbf{T} + \mathbf{j}$	$M_{r8} := F_8 \cdot x_8$	$M_{r8} = 7.479 \text{ ft} \cdot \text{kip}$
$A_9 := 2 \cdot 4 \cdot ft^2$	$F_9 := A_9 \cdot \gamma_c \cdot b$	$\mathbf{x}_9 \coloneqq \frac{2}{2} \cdot \mathbf{ft} + \mathbf{T} + \mathbf{j}$	$\mathbf{M}_{\mathbf{r}9} \coloneqq \mathbf{F}_9 \cdot \mathbf{x}_9$	$M_{r9} = 6.48 \text{ ft} \cdot \text{kip}$
$A_{10} := 1.4 \cdot ft \cdot \frac{17}{2} \cdot ft$	$F_{10} := A_{10} \cdot \gamma_c \cdot b$	$\mathbf{x}_{10} \coloneqq \frac{2 \cdot 1.4}{3} \cdot \mathbf{ft} + \mathbf{T}$	$M_{r10} := F_{10} \cdot x_{10}$	M _{r10} = 7.021 ft·kip
$A_{11} := 3 \cdot 13 \cdot ft^2$	$F_{11} \coloneqq A_{11} \cdot \gamma_c \cdot b$	$\mathbf{x}_{11} \coloneqq 8 \cdot \mathbf{ft}$	$M_{r11} \coloneqq F_{11} \cdot x_{11}$	$M_{r11} = 46.8 \text{ft} \cdot \text{kip}$

Resisting Moments - Soil over backwall and footing - neglect for Coulomb Analysis

2				
$A_{12} := 0 \cdot ft^2$	$F_{12} := A_{12} \cdot \gamma_1 \cdot b$	$x_{12} := 4.5 \cdot ft$	$M_{r12} := F_{12} \cdot x_{12}$	$M_{r12} = 0 \text{ ft} \cdot \text{kip}$

Resisting moment due to (1) dead load on bridge seat, (2) vertical component of the Traffic Surcharge acting on the backface, and, (3) vertical component of Coulomb earth pressure acting on the backface.

1.	$M_{rDL} \coloneqq P_{dl} \cdot (T + j + cl) \cdot b$	$M_{rDL} = 57.167 \text{ ft} \cdot \text{kip}$		
2.	$M_{rSCH} := E_{surch_vert} \cdot (5.7 \cdot ft)$	$M_{rSCH} = 0 \text{ ft} \cdot \text{kip}$	acts downward on backface at H/2 above BOF	$\frac{H}{2} = 14.45 \text{ ft}$
3.	$\mathbf{M}_{\mathbf{r}_\mathbf{Pa}} \coloneqq \mathbf{E}_{\mathrm{avert}} \cdot (6.17 \cdot \mathrm{ft})$	$M_{r_Pa} = 58.797 \text{ ft} \cdot \text{kip}$	acts downward on backface at H/3 above BOF	$\frac{\mathrm{H}}{\mathrm{3}} = 9.633 \mathrm{ft}$

Portland
Veranda St. Bridge
PIN 10158.00

Driving moments

$$\begin{split} M_{d_surch} &:= E_{surch_bord}, \frac{1}{2}, H & M_{d_surch} = 0 \text{ fr kip} \\ \hline \\ \hline M_{d_p_{a}} &:= E_{abordy}, \frac{1}{3}, H & M_{d_p_{a}} = 1.528 \times 10^{5} \text{ fr lbf} & M_{d_p_{a}} = 152.783 \text{ kip fr} & M_{d_p_{a}} = 152.783 \text{ kip fr} \\ \hline \\ M_{dS} &:= H_{ss}, 21 \cdot \text{fr} & M_{dS} = 28.262 \text{ fr kip} & \text{do not include horizontal component of LL and} \\ DL in the load group. Override lateral load and moments & \dots & M_{dS} := 0 \cdot \text{fr kip} & H_{ss} := 0 \cdot \text{kip} \\ \hline \\ Summation of forces and moments & & \\ \SigmaV &:= F_{1} + F_{2} + F_{3} + F_{4} + F_{5} + F_{6} + F_{7} + F_{8} + F_{9} + F_{10} + F_{11} + F_{12} + E_{wert} + E_{surch_vert} + P_{dT} \cdot b \\ \SigmaV &= 42.79 \times 10^{4} \text{ lbf} & & \\ \SigmaV &= 42.789 \text{ kip} & & \\ \SigmaH &:= E_{aboriz} + E_{wurch_burdz} + H_{ss} & & \text{do not include horizontal component of LL and} \\ DL & in the load group (Hss) & & \\ \SigmaH &:= 5.86 \text{ kip} & & \\ \SigmaM_{t} &:= M_{t1} + M_{t2} + M_{t3} + M_{t4} + M_{t5} + M_{t6} + M_{t7} + M_{t8} + M_{t9} + M_{t10} + M_{t11} + M_{t12} + M_{t5CH} + M_{t0L} + M_{t_{2}Pa} \\ \SigmaM_{d} &:= M_{d_ph} + M_{d_surch} + M_{d3} & \\ \SigmaM_{d} &:= M_{d_ph} + M_{d_surch} + M_{d3} & \\ \SigmaM_{d} &:= 152.783 \text{ fr kip} & & \\ \\ \SigmaM_{d} &:= 152.783 \text{ fr kip} & & \\ \end{array}$$

 $\Sigma M_d = 152.783 \text{ kip} \cdot \text{ft}$

Factor of safety against overturning

$$FS_{ot} \coloneqq \frac{\Sigma M_r}{\Sigma M_d}$$

 $FS_{ot} = 1.721$

AASHTO required factor of safety is 2.0

Factor of safety against sliding

friction at base + adhesion

 $\tan(\delta_2) = 0.445$

$$FS_{sl} \coloneqq \frac{\left[(\Sigma V) \cdot tan(\delta_2)\right] + \left[(B \cdot b) \cdot c_2\right]}{\Sigma H}$$

 $FS_{sl} = 1.201$

AASHTO required factor of safety is 1.5

Bearing Capacity Factor of Safety

determine net moment

$$M_{net} := \Sigma M_r - \Sigma M_d$$
 $M_{net} = 1.101 \times 10^3 lbf \cdot ft$

location of resultant

$$AE := \frac{M_{net}}{\Sigma V} \qquad AE = 2.574 \text{ ft} \qquad X := AE$$

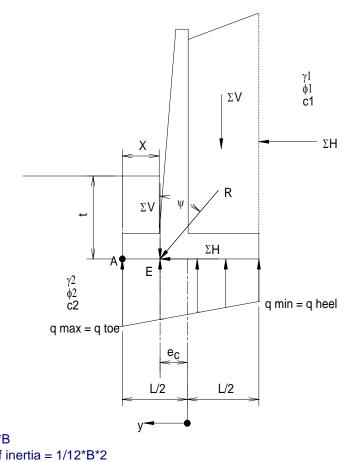
determine eccentricity, if e > B/6, reproportion

$$e_c := \frac{B}{2} - AE$$
 $e_c = 3.926 \text{ ft}$

 $\frac{B}{6} = 2.167 \text{ ft}$ Not good

Determine pressure distribution under footing

$$q = \frac{\sum V}{A} + \frac{M_{net} \cdot y}{I}$$
 where: A = area = b*
I = moment of
$$q = \frac{\sum V}{A} - \frac{M_{net} \cdot y}{I}$$


solving for \mathbf{q}_{\max} and \mathbf{q}_{\min}

$$q_{max} := \left[\frac{\Sigma V}{B} \cdot \left(1 + \frac{6 \cdot e_c}{B}\right)\right] \cdot \frac{1}{b} \qquad q_{max} = 9256 \text{ psf} \qquad q_{max} = 9.256 \text{ ksf} \qquad q_{toe} := q_{max}$$

$$q_{min} := \left[\frac{\Sigma V}{B} \cdot \left(1 - \frac{6 \cdot e_c}{B}\right)\right] \cdot \frac{1}{b} \qquad q_{min} = -2673 \text{ psf} \qquad q_{min} = -2.673 \text{ ksf} \qquad q_{heel} := q_{min}$$

$$B_e := B - 2 \cdot e_c$$
Allowable Bearing Pressure: $q_u := 24 \cdot \text{ksf} \qquad q_{allow} := \frac{q_u}{3} \qquad q_{allow} = 8 \text{ ksf}$

Factor of Safety against BC failure: $FS_{bc} := \frac{q_u}{q_{max}}$ $FS_{bc} = 2.593$

