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Third Annual Report on Project SHARE’s Acid Mitigation and 
Fisheries Restoration Project on Dead Stream and Bowles Brook

Executive Summary 
 
Project SHARE is using clam shells as a calcium carbonate supplement to mitigate 
stream acidity and to help restore Atlantic salmon.  In 2010, 2 metric tons of shells 
were placed in Dead Stream.  In 2011, the treatment was expanded into the southern 
part of the watershed (Bowles Brook) and increased to 10 tons of shells.  In 2012, the 
project was expanded to other tributaries of the Machias River, namely: Honeymoon 
Brook, Canaan Brook, and First Lake Stream. In Dead Stream, water chemistry has 
improved by approximately one pH unit, and total fish abundance has increased 8-
fold within the study reach.  Leaf packs were used to assess the condition of the 
detritivore community.  In May of 2012, leaf packs were placed into clam shell 
Treated (Dead Stream site 1) and Untreated (Dead Stream site 2 and Honeymoon 
Brook) sites and sampled from June – October.  Acid-sensitive mayflies and 
amphipods were abundant at the Treated site while stoneflies, caddisflies and 
chironomids were abundant at all sites.   Leaf processing rates were significantly 
different (p = 0.02) between Untreated sites (weight loss ranged 0.6 - 1.2% per day) 
and the Treated site (1.7 – 2.0% per day).   In Eastern deciduous forests, detritus from 
the riparian zone represents 99% of the food-carbon that supports aquatic ecosystems 
in first and second order streams (Fisher & Likens 1972).  By adding buffering 
capacity, a more favorable environment for microbes and macroinvertebrate leaf 
processers has been created.  This boost to the bottom of the food chain has 
apparently contributed to the greater fish abundance. 
 
 
I.  Project Background:   
 
Project SHARE is a partnership between private landowners, local land trusts and 
conservation groups, with state and federal environmental and wildlife agencies 
involved in the restoration of Atlantic salmon in eastern Maine (see Project SHARE 
website http://salmonhabitat.org/home/).  In November of 2009, Project SHARE 
was granted a Maine Pollutant Discharge Elimination System (MEPDES) permit 
#ME0002704, Maine Waste Discharge License (MDL) Application #W-009049-5Z-
A-N Project SHARE Final Experiment Permit, T37, T31, T30 MD.  This permit 
allowed clam shells to be placed in the Dead Stream- Bowles Lake Stream watershed 
as a 5-year experiment to mitigate for chronic and episodic acidification of these 
salmon streams.  The permit requires water quality monitoring and an annual report 
to Maine Department of Environmental Protection (DEP).  The first field season was 
2010 and began with a single application of 2 metric tons of shell at Dead Stream at 
the 55-00-0 logging road.  The second field season was 2011, included an 
intensification of the treatment of Dead Stream at three application sites with a total 
of 10 metric tons of shells applied within the watershed.  This report is the third 



 
Maine Department of Environmental Protection                                                                                        
 
 

2  DEPLW1248 
 

Third Annual Report on Project SHARE’s Acid Mitigation and 
Fisheries Restoration Project on Dead Stream and Bowles Brook

annual report and includes the continuation of the Dead Stream treatment and an 
expansion of the project to nearby Honeymoon Brook, Canaan Brook and First Lake 
Stream.   
 
Project Scope:   
 
Wild sea-run Atlantic salmon in Maine are in decline.  Both freshwater and marine 
survival is poor.  Maine sea-run Atlantic salmon populations are currently maintained 
only with a vigorous hatchery stocking program.  In order to make salmon 
populations self-sustaining, both freshwater and marine survival must be improved.  
In freshwater, there are water quality problems from a combination of related factors, 
including acid rain and more than two centuries of intensive logging.  The effect on 
soils has been to deplete base cations (calcium, sodium, potassium, and magnesium) 
from the most susceptible watersheds, resulting in chronic or episodic acidification of 
streams, low buffering capacity, low calcium concentrations, and high aluminum 
concentrations.  The effects on fish are poor fish condition and low survival.  Adding 
calcium carbonate to chronically or episodically acidified nursery steams is believed to 
be a short-term remedy.  The project plan is to use clam shells as a source of calcium 
carbonate to improve water quality.  The shells are dispersed thinly on the stream 
bottom, covering about 40% of the bottom, and they dissolved slowly.  The stream 
dose is calculated using the baseflow summer pH and watershed size, and is based on 
experience with limestone treatments in West Virginia streams (Clayton et al 1998).  
The dose for a particular stream reach is achieved by adjusting the number of linear 
meters of stream that is treated.   In other words, if the calculated dose is 2 tons, that 
amount of shell is spread on the stream bottom at a 40% coverage rate over enough 
linear meters of stream so that all the shells are used.  Better water quality should lead 
to better fish health, growth and survival.  The idea is to produce enough young 
salmon that the river-specific genetic stock can be perpetuated in the wild by natural 
reproduction.  Because salmon restoration is tied to ecosystem health, the project 
evaluated other fish species, algae, macroinvertebrates, and leaf detritus processing. 
 
To date the shells of, Mya arenaria, the common softshell or steamer clam, Arctica 
islandica, the mahogany clam or black quahog,  and Mytilus edulis, the blue mussel have 
been used.  These shells are a waste product from Maine’s seafood industry and have 
been composted to minimize associated organic material that could cause reductions 
of oxygen in streams due to decomposition.  These shells have the additional benefit 
of having a large complex shape that does not cause embeddedness of fish and 
macroinvertebrate habitat (i.e., the filling of interstitial spaces in stream gravel with 
fine sediments).  Stream embeddedness due to limestone sand leads to decreased 
invertebrate densities (Keener & Sharpe  2005).  In contrast, the voids between the 
shells provide habitat for invertebrates, fish eggs, and fish fry. 
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Honeymoon Brook and Canaan Brook do not show on USGS topographic 
sheets.  Water quality sampling sites were in upstream and downstream 
positions with respect to the shell applications. 
 
 
Table 1.  Present and proposed study sites, with road access points, watershed 
characteristics (including average summer baseflow pH), shell application 
rates, and UTM locations.  Actual application rates in 2012 for some of the new 
sites were less than desired due to extreme summer low flows.   All UTM 
coordinate data is Zone 19N NAD83.  Beaverdam Stream is a proposed site for 
2013. 
 

 
 
 
The project acidity goal was to increase pH to around 7.0 during summer low flow 
and to maintain for as long as possible a pH of at least 6.4 during spring high flow (in 
this case “high flow” was defined as at least two-thirds bank-full).  Perennial streams 
with good habitat and a summer time baseflow pH of 7.0, have abundant fish and no 
obvious acidity issues (e.g. Lanpher Brook and Harmon Brook).  These streams will 
typically maintain pH values in the 6’s even during spring high flows.  For instance, 
Lanpher Brook will have no more than 5 days below pH 6.4 even after large storm 
events (Whiting 2009).  For the Norwegian salmon restoration program (Staurnes et al 
1995), rivers are limed in order to maintain a pH of at least 6.4 during the spring, 

Clam Shells Required
Study Site Metric Tons 1 UTM E UTM N

Dead Stream 592,761 4,982,518

Trib to Bowles Br 594,727 4,978,322

Bowles Brook 174 Ha 6.2 2.0 tons

1282 Ha 12 tons

Dead Stream² 594,942 4,980,684

Fish Kills
Honeymoon Brook Trib 9-95-0 Old Stream 218 Ha 5.5 5.5 tons Yes 2 598,359 4,976,870

Canaan Brook 59-00-0 Old Stream 18 5.2 1.1 tons³ Yes 2 596,868 4,979,788

First Lake Stream 59-00-0 Old Stream 246 Ha 4.7 11 tons Yes 2 596,494 4,982,425

Beaverdam Stream T 26 Road E Machias 3329 Ha 6.2 33.3 tons Yes 2 605,074 4,983,506

1. from Clayton et  al 1998

2. a non-treatment site, monitoring only
3. a double dose is planned for this stream

Data 
Sondes

55-00-0 Old Stream 236.1 Ha 5.8 3.5 tons Yes 2

Study Site (Road) Watershed Watershed Size pH
Fish 

Present

55-38-0 Old Stream Yes

55-50-0 Old Stream 207.3 Ha 5.1 5.97 tons No
594,214 4,979,321

58-00-0 Old Stream Yes 1Downstream water quality site
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before and during the salmon smolt run (February 1 through July 1).   The Norwegian 
liming program uses computerized mechanical dosers, which provide much better 
pH-control than with limestone sand or clam shells.  However, high-tech dosers are 
also very expensive and require electric power. 
 
Composted shells were purchased from Maine’s seafood industry.  In 2012, SHARE 
purchased softshell calm shells from Albert Carver Inc., of Beals Island, Maine.  The 
shells were delivered by dump trucks to stream-side storage areas on logging roads.  
The shells were then carried by hand in 5 gallon buckets to application sites and were 
distributed on the stream bed so as to cover approximately 40% of the stream 
bottom.  Shells were also applied in the flood plain whenever there were clearly 
defined high flow channels.  Terrestrial applications rates were about 80-100% cover, 
except that mosses and other small living plants were avoided.  Because the shells had 
some remnant organic matter, shell applications with the new shells (purchased in 
2012) were restricted to high flows and cold weather in the spring or fall.  Shells 
purchased in previous years have been stored outdoors long enough that they have 
very little remaining organic matter.  These cleaner shells were used for applications at 
Dead Stream during summer low flows.  The summer of 2012 was hot and dry and 
Canaan Brook, the upper site on the Honeymoon tributary, and the lower site at First 
Lake Stream went dry in August.  Due to low flows, Honeymoon and First Lake 
Stream did not receive full doses in 2012.  Actual applications for 2012 and the 
estimated achieved doses (new shells plus shells remaining from last year) are 
provided in Table 2. 
 
Table 2.  Study sites with calculated doses, shells added in 2012, and estimated 
final dose for 2012.  All of the shells still in the stream from last year were 
mahogany clam shells added last fall. 
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The shells dissolve slowly, releasing calcium carbonate and thereby driving pH higher 
(less acidic).  Softshell clams and blue mussels dissolve relatively quickly, and were 
gone in approximately 6 months.  Mahogany clams have much heavier shells and take 
a year or more to dissolve (Scott Craig & Mark Whiting, unpublished data).  Adequate 
calcium nutrition helps fish cope with acidic conditions and the toxic effects of 
aluminum (Brown, 1983; Danner 2004).  Even in hatcheries, where fish are fed 
nutritionally-balanced foods, fish must have adequate amounts of calcium in their 
environment to maintain their body calcium (Danner 2004).  In addition to the pH 
goals (a pH of at least 6.4 during high flows), the project tried to maintain dissolved 
calcium concentrations above 4 mg/L, a critical threshold for brook trout, Atlantic 
salmon and many other fish (Brockson & Olem 1992). 
 
 
II.  Methods: 
 
In order to determine what dissolving shells add to freshwater, fresh shells were 
collected from Maine Shellfish, a seafood packing facility in Ellsworth, for laboratory 
analysis at the Soil Lab at the University of Maine, Department of Plant, Soils and 
Environmental Science.  Approximately a dozen shells were sorted into a relatively 
clean fraction and a fraction that still had a lot of associated organic matter (especially 
the remains of mantle and adductor muscle) to provide a range of results.  The shells 
were analyzed for total solids, total volatile solids, calcium carbonate equivalence, 

Study Site Clam Shells 
Required Metric 

Tons 1

Estimated Total 
Exsting and New 

Shells

Dead Stream
3.5 tons

Trib to Bowles Br
6 tons

Bowles Brook
174 Ha 6.2 2.0 tons 2 tons
1282 Ha 12 tons

Dead Stream

Honeymoon Brook Trib
9-95-0 218 Ha 5.5 5.5 tons 1.8 tons 1.8 tons 400 m

Canaan Brook
59-00-0 18 5.22 1.1 tons 1.4 tons 1.4 ³ tons 230 m

First Lake Stream
59-00-0 246 Ha 4.7 11 tons 5.47 tons 5.47 tons 515 m

Beaverdam Stream T 26 Road 3329 Ha 6.2 33.3 tons NA NA

1. from Clayton et al 1998

2. a non-treatment site, this is a watershed total
3. a little more than a double dose

58-00-0 NA 10 ² tons
Downstream water quality site

55-38-0 0.5 tons 113 m

384 m

55-50-0 207.3 Ha 5.1 5.97 tons 0.5 tons 45 m

55-00-0 236.1 Ha 5.8 3.5 tons 2.63 tons

Study Site 
(Road)

Watershed 
Size

Ave 
Summer 

pH

Clam Shells 
Actually Applied 

in 2012

Linear Meters of 
Stream Bed 

Treated
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nutrients (calcium, total nitrogen, phosphorus), and metals (arsenic, cadmium, 
chromium, copper, mercury, magnesium, molybdenum, nickel, lead, selenium and 
zinc). 
 
The effectiveness of the clam shell-based liming program was monitored in several 
different ways by different agencies (Table 3).  For instance, field water quality 
measurements (water temperature, depth, pH, and conductivity) were monitored by 
Maine Department of Environmental Protection (DEP) using YSI model 600 XLM 
data sondes.  These automated environmental recorders were programmed to take 
hourly measurements of water temperature, pH, depth, and conductivity in upstream 
and downstream locations relative to the shell sites.  Sonde performance was checked 
in the field with an YSI EcoSense 100 pH meter and Oakton dual range EC 
conductivity pen.  Lab chemistry parameters (major cations (calcium, sodium, 
potassium, magnesium), alkalinity (measured as Acid Neutralizing Capacity or ANC), 
dissolved organic carbon (DOC), total aluminum, organic aluminum, and 
exchangeable aluminum (Alx) were analyzed at the University of Maine Sawyer 
Environmental Chemistry Research Laboratory (SECRL)  from water samples 
collected by DEP.   
 
Table 3.  Water quality and biological monitoring plan for 2012, with parties 
responsible.  SHARE partners included the US Fish & Wildlife Service, Maine 
Department of Environmental Protection, and Maine Department of Marine 
Resources.  The Downeast Salmon Federation and University of Maine at 
Machias provided labor for spreading shells. 
 

 
 
Biological monitoring included algae, leafpack studies, macroinvertebrates, and fish.  
Algal blooms are one of the expected consequences of stream acidification, and are 
mitigated by liming programs (Hendrey 1982, Lampman et al 2008).  Visible 

Measurements Method Where Analysis When Who
Water chem (pH) Sonde 9 Sites before/after  up/down stream hourly, May-Nov USFWS/DEP
Water chem (pH Ca Al) Grab All Sites before/after  up/down stream quarterly DEP
Water chem (field pH, cond) Field meter All Sites before/after  up/down stream monthly, DEP

May-Nov
Algae Grab All Sites before/after yearly DEP
Leaf packs Stroud Center¹ 3 Sites before/after  up/down stream yearly DEP
Macroinvertebrates DEP² 4 Sites up/down stream 2012 DEP
Fish abundance E-fishing Dead Str before/after  up/down stream yearly USFWS/DMR
Fish abundance E-fishing First Lake Str before/after  up/down stream yearly USFWS
Fish abundance E-fishing Canaan Br before/after  up/down stream yearly USFWS
Fish abundance E-fishing Honeymoon before/after  up/down stream yearly USFWS

1. Stroud Water Research Center, Leaf Pack Netw ork Manual

2. DEP Biomonitoring protocol
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accumulations of algae, including algal blooms when present, were examined 
microscopically by DEP.  Algal cover was estimated visually.  Algal taxa were 
identified to the genus level for soft-bodied algae in fresh microscope slide mounts.  
Diatoms were examined at 1250X magnification in permanent mounts, and at least 
500 individual frustules (silica shells) were identified to species level.   
 
Leafpacks were used to assess the health of the detrital processing community.  Thirty 
leafpacks were prepared using 20 g dry weight of American beech (Fagus grandifolia) 
leaves and were enclosed in a plastic mesh onion bag.  Each leafpack was anchored on 
the stream bottom by tying it with nylon string to a lobster bait bag filled with 
approximately 5 kilograms of stone.  Ten leafpacks were placed at each of 3 study 
sites (Dead Stream above the shells, Dead Stream below the shells, and Honeymoon 
Brook above shells).  Two leafpacks were collected from each site at approximately 
one-month intervals from June through October for processing.  Leaves were 
removed from their bags and placed in trays of tap water.  Each leaf was washed free 
of sediment, macroinvertebrates were picked out, and the leaves were dried for 2 days 
at 35° C.  Prior to weighing, the leaves were brought to room temperature for at least 
24 hrs.  Dried leaves were weighed to the nearest gram.  The macroinvertebrates were 
sorted and identified into broad categories (such as mayflies, stoneflies, caddisflies, 
riffle beetle adults, etc.) and enumerated.  The weight loss of the leaves was used to 
assess detritus processing rates (Petersen & Cummins 1974).  A negative exponential 
decay model was used to calculate the slope (k ) of the curve (k = decay rate, Petersen 
& Cummins 1974).    
 
Macroinvertebrate monitoring was used to determine if Dead Stream and Bowles 
Brook meet their water quality classifications (both streams are Class AA, Maine’s 
highest water quality classification (MRSA Title 38)).  The methods followed 
established DEP protocols (Davies & Tsomides 2002).  Rock bags were deployed for 
one month, from mid-August to mid-September.  Rock bags were disassembled and 
washed in screen buckets in the field.  Macroinvertebrates were recovered from the 
screen bucket and were preserved for additional processing.  Species were identified 
to the species level whenever possible. 
 
Fish populations were assessed by electrofishing standardized study reaches (in the 
case of Dead Stream a 200 m reach) using a single pass.  Fishing was done by the US 
Fish and Wildlife Service (USFWS). 
 
 
III.  Results & Discussion: 
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Lab analysis shows that clam shells are primarily calcium carbonate with some 
phosphorus and trace metals (Table 4).  The analysis is also affected by the organic 
remains from the meat.  The first composite (called Clam 1, actually approximately a 
dozen shells) were the dirty ones while the other composite (Clam 2) were the 
relatively clean ones.  By comparing the two samples, it was possible to make 
inferences about the contribution the organic fraction makes to the total.  For 
instance, most metals, total nitrogen, and phosphorus were richest in the organic-rich 
Clam 1 composite.  Fresh shells from the packing plant were about 15% water and 4-
7% flesh.  The shells are around 91.2% calcium carbonate by dry weight, with some 
phosphorus and magnesium. 
 
Table 4.  Summary of an analysis of fresh softshell clams from the Maine 
Shellfish meat packing plant in Ellsworth.  The analysis from the U of Maine, 
Soils Lab shows total solids (T Solids) as percent wet weight (“as is” from the 
packing plant but sorted into a “clean” and “dirty” pile).  All reported weights 
are based on dry weights.  The organic fraction is what is lost on incineration 
(TVS= total volatile solids).  The carbonate content shows as carbonate 
equivalence (CaCO3 Eq).  TN is total nitrogen. 
 

 
 

In order to be certain that diseases were not introduced into salmon streams with the 
shells, all shells used in stream treatments were composted for at least two months 
and were stored outdoors.  Rain washed away the compost on the outer exposed 
shells, but shells deep in the pile retained organic matter and some associated odor for 
several months after the initial composting.  Presumably, some of the metals 

Parameter Units Clam 1 Clam 2

T Solids % 72.5 85.5
TVS % 6.88 4.43

CaCO3 Eq % 87.6 91.2
TN % 0.74 0.23
Ca % 39.5 41.3
As mg/kg 9.73 2.84
Cd mg/kg < 0.70 < 0.70
Cr mg/kg 1.06 0.157
Cu mg/kg 50.6 16.6
Hg mg/kg < 0.08 < 0.08
Mg mg/kg 743 413
Mo mg/kg 1.00 1.08
Ni mg/kg 2.10 < 0.80
P mg/kg 1254 318
Pb mg/kg 3.31 3.90
Se mg/kg < 0.07 < 0.07
Zn mg/kg 39.4 11.7
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associated with the organic fraction remained with the shells even when they were 
used months or years later.   
 
Arsenic was found in high concentration in clams that were contaminated with clam 
tissue (9.73 mg/kg in Clam 1) and was much lower in the relatively clean fraction 
(2.84 mg/kg in Clam 2).  Arsenic is a common trace element in the earth’s crust 
(average 2.0 mg/kg), and is found in trace amounts in ocean water (1-2 ug/L), and in 
unpolluted freshwater (1-10 ug/L) (WHO 2002).  Granite and many other volcanic 
rocks tend to have average concentrations of arsenic (around 2 mg/kg), while some 
sedimentary and high-sulfur rocks may have very high arsenic (to 900 mg/kg).  In an 
8-year study of 20 lakes along the Maine – New Brunswick border, arsenic within the 
Saint Croix watershed ranged from < 1 μg/L to 2.6 μg/L. The non-detects were the 
most common result, with 170 of 176 arsenic values below 1 μg/L (St Croix IJC 
2012).  Relatively high arsenic content is typical of seafood and marine shells (range 
1< to 100 mg/kg) (WHO 2002).  Fortunately, the organic forms of arsenic which are 
found in seafood are considered safe for human consumption (Wisconsin DHS).  
Arsenic in shells is incorporated in mineral forms which are potentially harmful.  
Arsenic salts have a wide range of solubilities in freshwater, depending on the pH and 
ionic environment, and have variable affinities for adsorbing to clays, iron oxides, 
aluminum hydroxides, and organic matter (WHO 2002).   In well-oxygenated 
freshwater environments, arsenic-containing minerals generally weather to form the 
less toxic arsenate (As (V)).  The more toxic arsenite (As (III)) dominates in oxygen-
poor environments such as lake, river, and marine sediments and in some organic 
forms.  Arsenate and arsenite are inter-convertible by various chemical and biological 
processes.  The Maine drinking water standard for arsenic is 0.01 mg/L (10 μg/L) 
(Maine Center for Disease Control & Prevention). 
 
When freshwater pH is moderate to alkaline (pH 6-8), arsenate forms harmless co-
precipitates with iron, manganese, and aluminum compounds (WHO 2002).  Arsenic 
also forms complexes with dissolved organic matter, such as humic and fulvic acids, 
found in naturally colored freshwaters (Dutton & Fisher 2012).  Even in relatively 
clean shells from Maine’s seafood industry (Clam 2), the 2.84 mg/kg concentration 
includes both mineral and organic arsenic.  The mineral fraction is of most concern 
(an unknown number less than 2.84 mg/kg), which presumably would still be slightly 
higher than the average concentration for the earth’s crust (2.0 mg/kg) and for 
average granites.  Arsenic is more soluble in acidic or alkaline water than in surface 
water with pH 6-8.  So the shells have a double effect, they add arsenic, but they also 
produce an environment where arsenic and other heavy metals form harmless 
precipitates.  Biomagnification in freshwater food chains have not been observed, but 
occurs in some seaweeds and some terrestrial plants (WHO 2002).  Since arsenic was 
not monitored in these streams, the baseline and post-treatment concentrations are 
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unknown.  Some follow-up monitoring of arsenic in treated streams is planned for 
2013. 
 
a. Water Quality – The Sonde Records 
 
While the spring and fall of 2012 were very wet, the summer was hot and dry.   By 
October 2012, after 16 consecutive months of record high temperatures, the year was 
on track to become the hottest on record for the lower 48 states (the record began in 
1895, NOAA, NCDC).  July 2012 was the hottest month on record.   In spite of dry 
weather in July-August, Maine had an overall normal water year (NOAA, NCDC).  
The smaller streams, such as the upstream site on the tributary to Honeymoon Brook, 
both upstream and downstream sites on Canaan Brook, and the upstream site on First 
Lake Stream went dry in August.   Since the pH probe can be damaged if it 
dehydrates, the sondes were retrieved (Canaan and First Lake Stream) or moved to 
isolated pools (Honeymoon).  The un-named tributary to Bowles Brook also went 
dry, but this was not a sonde site in 2012.   
 
For Dead Stream, this was the second year after the initial clam shell additions in 
2010, and the first full year after the intensified watershed-wide treatment in 2011.  
The 2012 treatment for Dead Stream was essentially identical to last year.  The sonde 
records (Figure 2) showed that the two downstream sites had improved pH that 
carried over from last year.  The increases ranged from around 0.5 pH unit in wet 
weather to 1.0 pH unit in dry weather.  These sites barely reacted to new treatments 
this year.  Some shells were added at the end of July in warm and dry weather.  
Because these shells were stored outside for two years they had very little odor or 
organic residue, and were suitable for summer in-stream applications.  No loss of 
dissolved oxygen was observed.  As noted last year, the baseflow treatment level 
achieved the desired pH around 7.0, but the pH continues to fluctuate over 1.5 pH 
units during some high flows.  Unfortunately, these pH extremes often coincide with 
sensitive life stages for salmon such as spring smolting, annual fry stocking, 
emergence of fry from natural redds and fall spawning. 
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site.  Only Dead Stream, Bowles Brook and Canaan Brook have received the full 
single doses this year.  First Lake Stream and the tributary to Honeymoon Brook 
needed 2-3 times as much shell, respectively.  Calcium levels were higher at all 
treatment sites, but even at Dead Stream and Canaan Brook which received the 
highest doses, the levels are often critically low.   
 
Table 5.  Lab analysis of water samples from above and below shell application 
sites for 2012.  Samples from the same date are alternately shaded or not, to 
help the reader locate upstream – downstream comparisons.  Restoration goals 
were a baseflow pH of 7, high flow pH ≥ 6.4, calcium ≥  4mg/L, and Alx ≤ 24 
μg/L.  Lab analysis was provided by the University of Maine, Sawyer 
Environmental Chemistry and Research Lab (SECRL). 
 

 
 
Toxic exchangeable aluminum (Alx) was generally lower, except at First Lake Stream 
where Alx increased.  This might be due to the poor levels of treatment achieved this 

Date Flow Relative ANC pH Ca Al x DOC Total P
Type Depth ueq/L mg/L ug/L mg/L ug/L

Dead Stream Upstream 6/19/12 Baseflow Low 119 5.99 1.99 20 16 28
Dead Stream Downstream 6/19/12 Baseflow Low 277 7.02 3.06 9 9 21
Dead Stream Farther Downstream 6/19/12 Baseflow Low 162 6.71 2.13 21 10 16
Dead Stream Upstream 8/27/12 Baseflow Low 161 6.03 3.14 36 28 --
Dead Stream Downstream 8/27/12 Baseflow Low 306 7.07 5.46 12 18 --
Dead Stream Farther Downstream 8/27/12 Baseflow Low 299 6.99 3.81 9 15 --
Dead Stream Upstream 10/11/12 Storm flow High 84 5.55 2.67 31 27 17
Dead Stream Downstream 10/11/12 Storm flow High 120 6.02 3.26 39 26 18
Dead Stream Farther Downstream 10/11/12 Storm flow High 72 5.55 2.47 26 26 --

Honeymoon Upstream 6/19/12 Baseflow Low 42 5.84 1.02 29 8 --
Honeymoon Downstream 6/19/12 Baseflow Low 100 6.56 2.09 18 5 --
Honeymoon Upstream 8/27/12 Baseflow Very Low 66 5.67 1.37 67 10 9
Honeymoon Downstream 8/27/12 Baseflow Very Low 470 6.8 8.51 7 3 16
Honeymoon Upstream 10/11/12 Storm flow High 24 5.07 1.9 83 24 --
Honeymoon Downstream 10/11/12 Storm flow High 31 5.26 2.67 76 21 --

Canaan Brook Upstream 6/19/12 Baseflow Low 33 5.56 0.82 25 7 --
Canaan Brook Downstream 6/19/12 Baseflow Low 107 6.28 2.43 13 9 --
Canaan Brook Upstream 8/27/12 Dry
Canaan Brook Downstream 8/27/12 Dry
Canaan Brook Upstream 10/11/12 Storm flow High 32 5.14 1.99 35 21 --
Canaan Brook Downstream 10/11/12 Storm flow High -2 4.62 2.57 34 34 --

First Lake Stream Upstream 6/19/12 Baseflow Low 50 5.59 1.08 28 17 --
First Lake Stream Downstream 6/19/12 Baseflow Low 142 6.34 2.92 41 16 --
First Lake Stream Upstream 8/27/12 Baseflow Very Low 77 5.61 1.91 43 29 --
First Lake Stream Downstream 8/27/12 Baseflow Very Low 158 6.13 2.85 56 20 --
First Lake Stream Upstream 10/11/12 Storm flow High 22 4.85 2.33 62 33 --
First Lake Stream Downstream 10/11/12 Storm flow High 40 5.1 2.56 49 32 --
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year at this site.  Increases in Alx can occur in “mixing zones.”  A mixing zone occurs 
when an alkaline material is added to acidified streams or lakes.  As the pH changes, 
the equilibrium between the different forms of aluminum also changes (the forms of 
aluminum are organic-bound dissolved Al, particulate Al, and the free ionic form Alx).  
As a new equilibrium is being formed, the actively changing aluminum is available to 
interact with fish gills causing gill damage (Rosseland & Hindar 1991).  Mixing zones 
can result in higher levels of Alx (Kroglund et al  2001; Poleo et al  1993).  These 
changes take place quickly and so are limited in time and space, but this is one of the 
few negative but unavoidable effects of liming.  Fish avoid these mixing zones.  The 
final result of this change is that calcium carbonate reduces aluminum and heavy 
metals by precipitating them in harmless mineral forms (Flick et al 1982).  SHARE 
made a decision to initiate treatment in the upper part of watersheds in order to 
isolate the mixing zones above the best salmon habitat.  
 
Whenever the pH is below 6.0, depending on how long the exposure is, any 
concentration of exchangeable aluminum above 20 μg/L will damage fish gills and 
can be fatal for Atlantic salmon smolts (McCormick & Monettte 2007).  Last year the 
maximum Alx in treated parts of Dead Stream was 88 μg/L (at the Dead Stream 
crossing on the 58-00-0 Road during high flow, Whiting 2011).  This year the Alx 
levels in Dead Stream were lower, with a maximum observed value of 39 μg/L.  This 
coincided with a pH of 6.02, which is also a mitigating factor.  Honeymoon and First 
Lake Stream had maximum values of 76 and 56 μg/L, respectively.  But these streams 
are yet to receive the full dose of shells.  Canaan Brook had fairly low Alx in spite of 
having high DOC and low pH. 
 
Dissolved organic carbon (DOC) has also declined below treatment areas (except at 
Canaan Brook where low initial downstream pH may have been due to extended 
contact with the soil organic horizon).  Stream chemistry and soil solution chemistry 
are closely linked (McDowell & Likens 1988).  DOC enters streams with rain water 
falling through the forest canopy, and then picks up additional DOC when 
percolating through forest soils (McDowell & Likens 1988).  High concentrations of 
DOC give many Maine streams their typical tea color.  This is not harmful.   DOC 
actually helps to bind metals such as arsenic and aluminum in complexes that are not 
taken up by fish.  Conversely, with episodic swings to lower pH, the metals can 
desorb from the DOC and revert to toxic forms.  Since a large fraction of DOC are 
organic acids (such as humic and fulvic acids) an increase in pH will tend to neutralize 
them.  When not in ionic form, the organic acids are less soluble in water and may 
polymerize, aggregate and precipitate.   
 
Total phosphorus was not one of the regular analytes.  Because phosphorus is one of 
the components of clam shells, some spot checks were done in 2012.  Post-treatment, 
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Honeymoon Brook might have increased total phosphorus while Dead Stream 
probably did not; but no conclusions can be made given the limited data set.  
Phosphorus is often considered to be the limiting nutrient in freshwater lakes and 
streams where it can govern primary productivity (i.e., productivity due to 
photosynthesis).  The observed levels are considered normal - high for Class AA 
salmon streams.  However, for small forested streams, primary productivity is typically 
more limited by shade due to forest cover than by nutrients (Fisher & Likens 1972). 
 
c.  Algae 
 
Before Dead Stream was limed, algal blooms were observed in sunny exposures above 
and below Dead Stream at the 55-00-0 Rd culvert and at the un-named tributary to 
Bowles Brook on the 55-50-0 Road.  The reason why weedy algae species can bloom 
in acidic environments is not known, but probably has to do with release from 
competition with acid-sensitive species.  Blooms have not occurred after liming 
(Whiting 2011).    
 
The only noticeable algal concentrations found in the streams new to the 2012 field 
season, were found in the sunny marshes above First Lake Stream (Figure 6) and 
Canaan Brook.  The algae observed at First Lake Stream were a mix of Green algae 
Tetraspora, Spirogyra, and Mougeotia and diatoms.  These species are also common in 
roadside ditches in Maine.  These blooms occurred above the 2012 shell application 
sites and so are not expected to change.  The treatment areas were all deeply shaded, 
except for sunny exposures at road crossings.  Plant life in treated areas included some 
moss, at times forming dense cushions on rocks, and only a few aquatic vascular 
plants (such as burr reed, Sparganium spp and water crowfoot, Ranunculus aquaticus).  
Diatom films were observed on rocks, but rarely formed visible accumulations in 
2012.   
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Figure 6.  Photo of algae at First Lake Stream in the beaver dam meadow 
above the 59-10-0 logging road.  This algal bloom covered over 80% of the 
stream bottom at this non-treatment site.  High algal cover was restricted to 
sunny marsh areas and was not observed in the forested parts of the watershed. 
 
There are no TP data from First Lake Stream at this time.  However, pH was 
chronically around pH 5.5.  Summer pH can reach pH 6.0 or more during extreme 
low flow conditions.  There was a good brook trout population, but no Atlantic 
salmon are stocked here and none have been observed here.   
 
d.  Leafpacks 
 
Detritus from the terrestrial environment is extremely important to the carbon budget 
of small forested streams.  For instance, in Bear Brook, New Hampshire (Hubbard 
Brook Experimental Forest) organic carbon primarily from the stream-side riparian 
zone, constituted 99% of the carbon budget (Fisher & Likens 1972).   Photosynthesis 
within the stream (mostly from mosses) constituted about 1%.  Thus, leafpack studies 
are thought to accurately reflect the overall energetics and food web health of small 
streams in forested temperate watersheds (Petersen & Cummins 1974).   
 
The leafpack  study occurred at three sites, upstream and downstream of the shell 
application site on Dead Stream, and an upstream site on the Honeymoon tributary.  
The Honeymoon site will become a treatment site in 2013 as the clam shell 
applications within the tributary stream are expanded upstream to improve pH results.  
The decomposition patterns for six pairs of leafpacks are given in Figure 7. 
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Most leafpack studies begin in the fall and end in the winter or spring.  In these 
studies, processing rates of 2% per day are considered “fast” (such as for soft leaves 
like maple or poplar) and 1% to 0.5 % per day are considered “medium.”   Rates 
below 0.05% for winter decomposition are considered “slow” (and are expected for 
tough leaves such as oak and beech, Webster & Benfield 1986).  But leafpacks are 
year-around features of streams.  Spring freshets often pick up a new load of leaves as 
streams overflow their banks into the floodplain.  Also some trees like oak and beech 
hold on to some of their leaves through the winter and release them in the spring with 
the sprouting of new leaves.  Unfortunately, summer studies of leafpack 
decomposition are uncommon, so a good comparison with other Eastern US 
deciduous forests was not available.  One year-around leafpack study found that box 
elder (Acer negundo, a type of maple) in Utah alpine streams had summer leaf 
processing rates of 2-4% per day (McArthur et al 1988) with a maximum in July.  But 
Maine streams are warmer than alpine streams (Utah summer averages ranged 7-9 ° C 
for different elevations, the Dead Stream July average was 23°C in 2012 ), and beech 
leaves are tougher than maple.   
 
With respect to the macroinvertebrates, only the mayflies, stoneflies, caddisflies, 
chironomids (midges) and amphipods were abundant enough in most samples to be 
graphed with respect to their abundance and distribution. The results for mayflies are 
given in Figure 8.  Mayflies were found in all samples.  However, most mayflies were 
found at the treatment site (59% of all mayfly occurrences, even though there were 
two upstream sites).  In September, even though only some entangled twigs, moss and 
fine peat-like detritus were found in the downstream leafpacks, macroinvertebrates 
were present and were enumerated.  In October, the empty leafpacks had been 
removed, so there were no downstream samples.   The downstream leafpacks had 
most of the mayflies but represented only 4 of 15 potential samples, or 27%. 
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river crayfish) are found in the Union and Pleasant Rivers (see Gulf of Maine 
Knowledgebase database) and has been observed in the Narraguagus River (author’s 
experience).  However, this state-wide database does not have crayfish records from 
the Machias, East Machias or Dennys Rivers.  No crayfish have ever been observed 
by the author in the project streams.  While some crayfish are very sensitive to acidic 
waters (Procambarus species are generally found in water with pH 6.5-8.5 and more 
than 50 ppm CaCO3 total alkalinity, McClain & Romaire 2007), other species can be 
very acid tolerant (Cambarus bartonii, the stream crayfish, Seiler & Turner 2004, a 
species that occurs in northern Maine, Reid 1971).  Other sentinel species that are 
missing or underrepresented in project streams are snails, fingernail clams and 
Unionoid mussels.  Two fingernail clams and two “snails” were observed in 2011 in 
rock bag collections from Dead Stream treatment areas.  The snails were small, and 
since there are caddisflies with coiled cases that look like snails, positive identification 
in the field was not possible.  Unionoid mussels occur in eastern Maine in the river 
mainstems and major tributaries, but have not been observed in the project streams.  
Snails and fingernail clams should be common in natural or restored streams, and 
maybe Unionoid mussels should be there too. 
 
In order to investigate how the density of macroinvertebrates changed over time, the 
data was normalized for the remaining weight of the leafpack (Figure 13).  For the 
first two months, the average number of macroinvertebrates per gram of leaves 
ranged from 3 to 8.8 per gram of dry weight of leaves.  The peaks for the different 
sites occurred at different times.  Honeymoon Brook peaked early at 8.8 individuals 
per gram, due to stoneflies, caddisflies and chironomids.  The Dead Stream non-
treatment site peaked late in mid-September at 16.5 individuals per gram, due to 
mayflies and caddisflies.  The treatment site at Dead Stream peaked at 22.4 per gram 
in August, just as the leaves were getting soft and ragged.  August was the same time 
that mayflies and caddisflies peaked at this site.  For Dead Stream above and below 
the clam shells, the macroinvertebrate density peaked at about the same time that leaf 
material was being depleted.  There is probably a cause and effect relationship 
between high invertebrate numbers and low leaf biomass on these dates.  
Honeymoon, the most acidic site, maintained the lowest macroinvertebrate densities 
late in the season.   
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fine particulate organic matter (FPOM).  This increases the surface area of leaf 
fragments and allows re-colonization with more microbes.  The fine particles are 
eaten by other invertebrate functional groups such as the collectors (worms and 
midges) and filter feeders (blackflies and fingernail clams).  Reduced detritus 
decomposition rates are reported in other acid rain studies and can result in abnormal 
accumulations of leaf litter (see reviews by Webster & Benfield 1986, and Hendry 
1982).  When the bottom of the food chain is impaired, the whole food chain fails to 
function properly.  For as long as we have data for eastern Maine salmon rivers, they 
have always appeared to be ultra-oligotrophic.  However, they are not short of 
nutrients in the classic sense.  They have total nitrogen, total phosphorus can even be 
excessive, and they have leaves and other terrestrial detritus.  Instead of lacking 
nutrients, these streams appear to have an impaired ability to assimilate carbon and 
food energy from detritus. 
 
Last year’s report (Whiting 2011) provided a literature review of acid rain issues and 
streams.  It predicted that acid rain would not only prove to be a problem for fishes 
and mayflies, but that there would be ecosystem level problems.  The 2012 leafpack 
study strongly suggests that ecosystem level problems are occurring. 
 
d.  Macroinvertebrates 
 
The macroinvertebrates from rock bag samples have been shipped off to a private 
contractor for analysis.  The results for this analysis are not yet available. 
 
e.  Fish 
 
Dead Stream was electrofished by USFWS staff on August 30, 2012.  While mid-
August was hot and dry, Old Stream had returned to normal flows by the end of the 
month (USGS gauge) and remained average or higher for the rest of the year.  Figure 
13 presents the number of fish by species in the Dead Stream study reach (100 m 
above and 100 m below the 55-00-0 Rd, all within the shell application site, not 
exactly a “below” site).  The true below - treatment site was never electrofished, 
because the 2009 study was done for the culvert replacement.  Thus, 2007, 2009 and 
2010 are baseline studies (the shells were first applied in 2010 after the e-fishing was 
completed).  Over the next two years, the total number of fish within the reach has 
improved from 36 and 20 in 2007 and 2009 respectively, to 100 in 2010 after the 
culvert replacement, to 142 and 294 in 2011 and 2012 one year and two years after the 
first shell applications.  Similar to last year, this summer there were a lot of second 
year (age 1+) and older fish.  This year, two more species were observed (white sucker 
and blacknose dace) that were not seen last year.   
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though the presence of more older and larger fish also means there is some predation 
on salmon fry. 
 
Brook trout recruitment was also good in 2012.  Looking at the number of brook 
trout YOY in Dead Stream, there were 93 YOY brook trout present, thereby 
representing 54% of the population.  In a survey of eastern Maine streams from the 
Union River to the Saint Croix, the USFWS found that YOY were 42% of all brook 
trout observed, and brook trout were 30% of all fish sampled (Craig & McKerley 
2012).  In Dead Stream brook trout were 59-95% of all fish caught from 2007 to 
2012.  Brook trout are especially acid tolerant, and are often the only fish species 
present in acidic lakes and streams (Jenkins et al 2005). 
 
Larger fish are also doing well.  There were a large number of older brook trout (80 
fish, mostly 1+ age class, representing 46% of all trout), so there was also good 
recruitment into older age classes.  The Atlantic salmon numbers are affected by 
stocking as well as local conditions.  Only three 1+ year salmon might seem 
disappointing, but older salmon and brook trout are more mobile and they may have 
moved to more suitable habitat.  Salmon move into deeper riffles as they get older 
while older brook trout move widely within the watershed. 
 
Water quality restoration has both similarities and some differences with other types 
of habitat restoration projects.  For instance, logs are sometimes dropped into streams 
to form weirs and increase habitat diversity.  These weirs or “log-vanes” are used to 
concentrate flows in over-widened streams.  They accumulate fine sediments in 
dammed pools upstream, create small cascades, and scour plunge pools downstream.  
These log weir structures are also generally successful in increasing fish densities.  For 
instance, in a 21-year study of 53 log weirs in five Colorado Rocky Mountain streams, 
increases in trout densities were almost immediate (White et al 2011).  Most of the 
increase was due to immigration into the treatment areas rather than recruitment of 
young fish.  The species concerned were mixes of brook trout, brown trout, and/or 
rainbow trout depending on the stream.  Pool abundance in the treatment areas 
increased by 520%, and pool volume increased by 229%, while wetted area remained 
the same.   Adult trout (age 1+ and older) increased 53% in the treatment areas and 
was sustained throughout the study period.  However, no difference was found in 
YOY density.  After 21 years, only one weir was no longer functioning as designed.  
In contrast, by liming an acidified stream total fish abundance was increased by 6.7 to 
8.7 times in treatment areas, but the water quality improvements are expected to last a 
year or less without new shell applications (i.e., annually for mahogany shells or twice 
a year for softshell clams). 
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Project SHARE replaced the culverts at the 58-00-0 and 55-00-0 logging roads in 
2009.  Within two weeks, one Atlantic salmon was observed at the 55-00-0 road 
during electrofishing.  The similarity in fish numbers in 2007 and 2009, and then a 
large increase in fish in 2010, suggest that culvert replacement was important in 
restoring fish passage within the Dead Stream drainage.  This connected 33 Atlantic 
salmon habitat units with the lower part of the watershed.  The first shells were added 
in the summer of 2010.  Increases in fish densities in 2011 and 2012 suggest that both 
fish passage and better water quality were responsible.  Comparing 2007 and 2012, 
there has been an 8-fold improvement in fish abundance within the study reach.  
There is probably a cause-and-effect chain reaction between improved water 
chemistry and increased efficiency of detrital food processing by almost 2-3 times, 
increased macroinvertebrate densities and diversity, especially for mayflies and 
amphipods, and increased fish density.  There is also a possibility that there is 
improved fish diversity (six total species and improved representation of rarer 
species).  An ecosystem level boost in productivity and species diversity is expected 
when there is a release from a toxic limiting factor (e.g., Flick et al 1982, and Hendry 
1982, acid rain; McCall & Pennings 2012, oil spill; Argent & Kimmel 2012, acid mine 
drainage).    
 
Returning to the concept of sentinel species, the appearance of ten blacknose dace for 
the first time in Dead Stream may be important.  In a review of 23 years of acid rain 
studies in the Adirondack Mountains of New York, Jenkins et al (2005)  concluded 
that slimy sculpin and blacknose dace are among the most sensitive of fish species to 
acidification.  While blacknose dace are sometimes thought of as being “ubiquitous” 
in clear running waters (Trial et al 1983) and are found in some urban streams (e.g., 
Birch and Penjajawoc Streams in Bangor), they are not commonly seen in eastern 
coastal Maine (see DIFW lake surveys in Gulf of Maine KnowledgeBase website).  
But blacknose dace do appear in DIFW surveys in Black Brook in the Machias 
watershed.  The author has seen schools of blacknose dace in Lanpher Brook (a 
tributary to Old Stream), which has limestone bedrock in its watershed and has a 
circumneutral baseflow pH.   
 
The known distribution of Slimy sculpin (Cottus cognatus) may also be significant.  
Slimy sculpin is found in many northern and western Maine locations in both streams 
and lakes.  However, in eastern Maine this species is found in just a few widely 
scattered locations (Gulf of Maine KnowledgeBase).  It is found in Mopang Lake, in 
the Machias River watershed, in West Grand Lake and Musquash Lake in the Saint 
Criox watershed, and in Phillips Lake in the Union River watershed, but nowhere else 
within these watersheds or in watersheds in between.  These sightings could be recent 
introductions, but are more likely isolated relict populations.  Presumably, slimy 
sculpin was once more widely distributed in Eastern Maine but its range is now more 
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restricted.  If these watersheds were once more circumneutral, then sculpins could 
have been found in streams and in many lakes.  In eastern Maine today, slimy sculpin 
may find refuge in the stable water chemistry on the bottom of large deep lakes.  
Unlike streams, lakes have long water residence times that integrate the impact of 
many months or even years of inputs.  The extreme pH characteristic of small streams 
is reduced in rivers, and is greatly reduced in lakes.  Perhaps slimy sculpin will be the 
next species to show up at Dead Stream.   
 
 
IV.  Discussion & Summary: 
 
SHARE believes that the clam shell liming project has improved water quality, and 
that it is a useful model for helping to manage Atlantic salmon recovery in eastern 
Maine.  Other recovery tools such as fish stocking strategies, the replacement of failed 
culverts with fish-friendly stream crossings, drop log weirs, and potentially marine-
derived nutrient additions also could play a role the short-range recovery plan.  Of 
course, in the long-run, salmon are expected to be self-sustaining in fully functioning 
natural or restored stream ecosystems. 
 
 
V.  Plans for Next Year: 
 
Clam shells from marine sources introduce some arsenic into freshwater streams.  
Fresh clams right out of a meat packing plant have a lot more arsenic.  For biosecurity 
reasons (clam tissue can be a source of neoplasia infections in shellfish (DMR 2012 
fact sheet)), fresh clam shells are not used for acidity treatments.  Some arsenic is lost 
as the shells are composted and as rains wash away remaining organic material in 
outdoor shell storage areas.  Even so, future water quality evaluations will include 
some upstream/downstream comparisons of arsenic.   
 
In 2012, Project SHARE’s clam shell additions have improved pH, calcium 
concentrations, and reduced Alx at all project sites.  The dose for Dead Stream is 
good for the upper watershed, but Dead Stream at the 58-00-0 Road still has large 
swings in pH with every storm.  Calcium levels are still often critically low.  An 
additional treatment in the lower watershed would improve Atlantic salmon health 
and survival.  A single dose calculation allows 2 metric tons of shells below the 58-00-
0 Road.  SHARE initially avoided treating reaches of stream where salmon are 
stocked to avoid altering habitat in a detrimental way.  However, with the observed 
swings in pH it might be worth the risk to put shells directly in this lower salmon 
stocking area.  The habitat alterations might be positive.  For instance, the fish may be 
able to nestle down among the shells during high flows and benefit from 
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microhabitats with higher pH and calcium compared to the ambient stream flow.   
With the initial shell applications in the upper watershed, there should not be mixing 
zone problems in the lower watershed 
 
Another lesson from this year is that treating salmon habitat alone, without treating 
upstream reaches, is not a good idea.  Based on the high Alx found at the poorly 
treated First Lake Stream site, mixing zone problems must be considered.  There 
should be at least one shell application site upstream from the best salmon nursery 
sites.   
 
The treatments on the Honeymoon tributary and First Lake Stream have just begun.  
SHARE did not meet treatment goals this year at these sites.  In 2013, treatments will 
have to be increased to reach single dose goals.  An expansion of treatments within 
Honeymoon Brook is scheduled for 2013, with new treatments to the mainstem 
planned on the Bear Brook Road, old Route 9 and the 9-95-0 logging road.  The 
treatment at Canaan will be doubled to see if a much larger dose can reduce the pH 
swings.  SHARE’s current permit allows the dose to be adjusted as needed to meet 
pH or calcium goals. 
 
Beaverdam Stream is a tributary to the East Machias River.  The East Machias 
hatchery at EMARC stocks fall parr in this stream.  The Downeast Salmon Federation 
(DSF), owner of the EMARC hatchery, is currently stocking fall parr into Beaverdam.  
DSF wants to have a shell treatment site to evaluate the benefits to parr survival.  
With that in mind, treatments are planned for Beaverdam Stream in 2013.  As usual, 
the treatments would be incremental and will be accompanied with water quality 
assessments. 
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