Chris Fullarton
First Wind Energy, LLC
via e-mail: cfullarton@firstwind.com

April 10, 2013

Subject: Blue Sky West, LLC and Blue Sky West II, LLC (Bingham Wind Project) Decommissioning Budget

Dear Chris:

Sewall was requested to develop this Decommissioning Budget for the 62 wind turbine generator (WTG) Bingham Wind Project located in the towns of Bingham, Moscow, Parkman, Abbot, Mayfield TWP, and Kingsbury PLT in Somerset and Piscataquis Counties, Maine. The budget represents an opinion of probable cost (OPC), in today's dollars, for decommissioning based on the assumption that the wind turbines, and other project components will be disassembled and disposed following completion of use. The budget is also built on the assumption that the cost of decommissioning will be fully or partially offset by the scrap value of the towers and turbine components.

Based on information provided from First Wind, we are assuming the O\&M Building will be turned over to the land owner. This component has therefore not been included in the discussion or calculations herein. It is assumed that all project roads will remain.

## Information Sources for this Review

This review is based on the civil and electrical site plans and quantity information provided by First Wind, discussions with contractors familiar with this type of construction and our own experience with wind projects. Wage rates used in these estimates are based on the State of Maine Department of Labor, Bureau of Labor Standards; 2013 Fair Minimum Wage Rates, Heavy and Bridge; Somerset County.

## Decommissioning Scope

The decommissioning process reflected in this OPC is based on Decommissioning Plans prepared for similar wind projects.

In summary, the decommissioning and restoration process in the Plan consists of the following steps:

- Disassembly and removal of above-ground structures
- Removal of below-ground structures to a depth of 24 inches
- Re-grading and seeding

Above-ground structures include the turbines, transformers, substation, Dynamic Reactive Device, overhead collection and generator-lead lines, and meteorological towers. Below-ground structures include turbine and collection system foundations; and drainage control structures (e.g., culverts) as necessary to restore turbine sites. Following removal of all above- and below-ground structures to 24 inches below grade, the individual disturbed areas will be re-graded to be consistent with surrounding areas and reseeded to promote re-vegetation. The cost for disposal for any materials that are not scrapped is considered incidental, unless otherwise noted.

## Decommissioning Budget

The decommissioning process has been divided into eight (8) general work items. Quantities and unit prices for these individual work items are presented and discussed in detail in the following paragraphs.

1. Project Management (contractor costs, equipment, etc.)
2. Site Work/Civil (site reclamation)
3. Wind Turbine Foundations
4. Wind Turbine Generators and MET Towers
5. Electrical Collection System
6. Electrical Substation
7. Electrical GenLead
8. Dynamic Reactive Device Facility

## 1. Project Management

1.1 Mobilization
A. Mobilization and demobilization to setup and breakdown the crane and assist crane estimated to cost a flat fee of $\$ 95,000$ per one-way trip, for a total of:
\$ 190,000.00
B. In addition, it is estimated that the cranes will be re-mobilized an additional three (3) times at an estimated cost of $\$ 60,000$ per move to reach all of the turbine sites for a total of:
\$ 180,000.00
C. Mobilization and demobilization of ancillary equipment (i.e. bull dozers, backhoes, etc.) is estimated to be:
\$ $50,000.00$
Total estimate for mobilization is:
$\$ \quad 420,000.00$
1.2 Project Oversight. Oversight of the decommissioning is estimated at: \$ 403,000.00
1.3 Incidentals / Erosion and Sedimentation Control Measures. A budget of approximately 5\% of \$ 294,900.00
the decommissioning scope is recommended for project incidentals, including erosion and sedimentation control measures:
1.4 Contingency. A contingency of approximately $10 \%$ of the decommissioning scope is
\$ 589,700.00 recommended to cover unknowns:

Total opinion of probable costs for Project Management:
\$ 1,707,600.00

## 2. Site Work/Civil (Site Reclamation)

2.1 Re-grading of turbine sites.
A. The decommissioning plan includes restoring each of the turbine sites. We are assuming that all excavated areas will be brought up to grade and sloped to drain with suitable fill material generated from the re-grading of the turbine site or from off-site sources. The estimated cost includes additional fill, topsoil or other organic matter to support growth, seed, and mulch.

| Approximate disturbed area: | 12,350 SF/turbine site |  |  |
| :--- | :---: | :---: | :---: | :---: |
| Estimated cost per $1000 \mathrm{SF}(1 \mathrm{MSF}):$ | $\$$ | 330.00 | $/ \mathrm{MSF}$ |
| Total estimated re-grading material cost for all 62 turbine sites: | $\$$ | $252,700.00$ |  |

B. This re-grading and restoration work is estimated to take a dozer and operator approximately eight (8) hours to complete at each turbine site.

| Labor \& equipment rate: | $\$$ | 200.00 | /hour |  |
| :--- | :---: | :---: | :---: | :---: |
| Total re-grading and restoration work for all 62 turbine sites: | $\$$ | $99,200.00$ |  |  |

Total estimate for re-grading turbine sites is:
2.2 Road Maintenance. Dust control, road maintenance, and post construction road repairs is difficult to estimate. A budget of approximately $1 \%$ of the $\$ 10$ million estimated for road construction is recommended to address these items.
\$ 351,900.00
\$ 100,000.00
\$ 451,900.00

## 3. Wind Turbine Foundations

3.1 Removal of WTG foundation to 2 FT below grade. Removal of the turbine foundations is assumed to require a hydraulic excavator equipped with hydraulic ram (hoe-ram), an additional excavator with bucket for loading, and various dozers and loaders.
Total estimated labor \& equipment cost: \$ 5,500.00 /site
Total estimate for WTG foundation removal labor for all 62 turbine sites:
\$ 341,000.00
3.2 Transportation of rubble and disposal. Concrete demolition rubble generated at each turbine site is estimated to be approximately 55 cubic yards (based on a removal depth of 2 feet below grade). As it is assumed the steel rebar will be separated from the concrete debris, the rubble essentially becomes an inert material. Therefore, we have assumed that the concrete rubble generated will not be transported offsite but be used onsite as fill at toes of slopes, for road base or topping material, or at other locations in need of fill as desired by the property owner. Costs to transport the foundation rubble within the project boundaries, in comparison to other decommissioning costs, are assumed to be negligible. In the unlikely event the material cannot be used on-site, the material will be transported for offsite use. Costs to transport the foundation rubble to disposal are based on an estimated requirement of six (6) dump truck trips for each turbine site and transported to a location within 2 hours (one-way) at an equipment and labor rate of $\$ 100 / \mathrm{hr}$.

| Total estimated labor \& equipment cost: | $\$$ | 400.00 /dump truck trip |  |  |
| :--- | :---: | :---: | :---: | :---: |
| Total estimate for WTG foundation transportation costs for all 62 turbine sites: | $\$$ | $148,800.00$ |  |  |

The total opinion of probable costs for removal of WTG Foundations:
\$
489,800.00

## 4. Wind Turbine Generators and MET Towers

4.1 Disassembly of turbine generators:
A. Disassembly costs for the WTGs are based on the assumption that it will take a 10 -man crew 20 hours to disassemble each tower and turbine, which is roughly equivalent to the labor effort required for tower and turbine assembly.

| Estimated labor rate: | $\$$ | 25.00 | $/$ man-hour |
| :--- | :---: | :---: | :---: |
| Total estimate for WTG disassembly for all 62 turbines: | $\$$ | $310,000.00$ |  |

B. Based on an assumption that the two cranes (erector and assist cranes) can disassembly two (2) turbines a week, the crane rental is estimated to be 31 weeks. Two (2) weeks are added for wind day delays.
Estimated rental costs for two cranes: \$ 40,000.00 /week
Total estimate for WTG disassembly equipment for all 62 turbines:

$$
\$ \quad 1,320,000.00
$$

C. Additionally, once the towers and turbines are on the ground, they will need to be cut up into manageable sized pieces in preparation for transportation to scrap, recycle, or disposal facilities. We are assuming it will take a 5man crew 20 hours to do this work per turbine.

Estimated labor rate: $\$ \quad 15.00 /$ man-hour

| Total estimate for WTG dismantling for all 62 turbines: | $\$$ | $93,000.00$ |  |
| :--- | :--- | :--- | :--- | :--- |
| The total estimate for WTG disassembly is: | $\$$ | $1,723,000.00$ |  |

4.2 Transportation of turbine components to disposal/reclamation site. Cost to transport the tower and turbine components to facilities for scrap, recycling or disposal are based on a estimated requirement of ten (10) transport vehicles per turbine site (note: transport of new turbine and tower components to a site requires 12 to 14 transport vehicles).

Total estimated labor \& equipment cost: \$ 1,400.00 /transport trip

| Total estimate for turbine component transport for all 62 turbine sites: | $\$ 868,000.00$ |
| :--- | :--- | :--- | :--- |

4.3 Nacelle housing, blade, and other component disposal. Disposal of the nacelle housing, blades, and other nonscrappable components are based on an estimated $90,000 \mathrm{lbs} /$ turbine. Disposal fees are generally based on weight (in tons).
Total estimated weight of blades and nacelle: 45 tons
Disposal fee (based on Bangor area landfill rates):
\$ 133.00 /ton
Total estimate for nacelle housing and blade disposal for all 62 turbine sites:
\$ 371,100.00

### 4.4 MET Tower disassembly/removal:

A. Disassembly costs for the MET towers are based on the assumption that it will take a 5-man crew 16 hours to disassemble each MET tower.
Estimated labor rate: $\quad \$ \quad 25.00 / \mathrm{man}$-hour

Total estimate for MET disassembly labor cost for five (5) towers:

$$
\$ \quad 10,000.00
$$

B. Additionally, equipment rental is estimated at approximately 16 hours for each MET tower to assist with the disassembly, partially remove foundations, and reclaim the site.
Total estimated labor \& equip. rate: \$ 200.00 /hour

Total estimate for MET disassembly equipment cost for five (5) | towers: | $\$$ | $16,000.00$ |  |
| :--- | :--- | :--- | :--- | :--- |
| Tal estimate for MET tower disassembly/removal for five (5) towers is: | $\$$ | $26,000.00$ |  |

### 4.5 Transportation of MET tower components to disposal/reclamation site.

A. Cost to transport the MET tower components to facilities for scrap, recycling or disposal are based on an estimated requirement of one (1) truck trip for each MET tower.
Total estimated labor \& equip. cost: $\quad \$ \quad 920.00$ /trip
Total estimate for MET component trucking cost for five (5) towers:
\$ $\quad 4,600.00$
B. We have assumed that the concrete rubble generated from the foundations (while separating rebar as necessary) will not be transported offsite but be used onsite as fill at toes of slopes, for road base or topping material, or at other locations in need of fill as desired by the property owner. In the unlikely event the material cannot be used on-site, the material will be transported for offsite use. Costs to transport the foundation rubble to disposal are based on six (6) cubic yards of rubble for an estimated one (1) dump truck trip per MET tower site and transported to a location within 2 hours (one-way) at an equipment and labor rate of $\$ 100 / \mathrm{hr}$.

| Total estimated labor \& equip. cost: $\$$ 400.00 <br> Total estimate for MET foundation transportation cost for five (5)   <br>    <br> towers: $\$$ $2,000.00$ |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Total estimate for MET tower disposal for five (5) towers is: |  | $\$$ | $6,600.00$ |

The total opinion of probable costs for WTGs and MET Tower removal:
$\$ \quad 2,994,700.00$

## 5. Electrical Collection System

Note that as the direct-buried underground collector is buried deeper that 2 ft , it will not be removed but be abandoned in place.

### 5.1 Disassembly of overhead collector lines and associated components:

A. Disassembly and spooling costs for the overhead collector lines and associated components are based on the assumption that the labor effort required will be a 3-man crew working for four (4) hours per 1,000 feet of overhead wire.

| Estimated total length of overhead lines: | 93,900 |  |  |
| :--- | :--- | :---: | :---: |
| feet |  |  |  |
| Estimated labor rate: | $\$$ | 35.00 | $/$ man-hour |
| Total estimate for overhead collector lines disassembly: | $\$$ | $39,500.00$ |  |

B. Equipment rates are estimated at the following rate for approximately 47 days.

| Estimated equipment rates: | $\$$ | $1,700.00$ | $/$ day |  |
| :--- | :---: | :---: | :---: | :---: |
| Total estimate for overhead collector disassembly equipment: | $\$$ | $79,900.00$ |  |  |

C. Pole removal and filling of remaining hole, based on the following approximate quantities:

| Amount of poles: | 246 each |  |  |
| :--- | :---: | :---: | :---: |
| Removal labor and equipment costs: | $\$$ | 160.00 | $/$ pole |
| Total estimate for overhead collector pole removal: | $\$$ | $39,400.00$ |  |

Total for disassembly of overhead collector lines:

### 5.2 Transportation of collector lines and associated components

A. The cost to transport the collector line and associated components to facilities for scrap, recycling or disposal is based on the number of spools required per collector line sizes and lengths for the project, and a capacity of eight (8) spools per truck.

| Estimated spools of collector line: | 150 each |  |  |
| :--- | :---: | :---: | :---: |
| Estimated labor \& equipment cost: | $\$$ | $1,400.00$ | /truck trip |
| Total estimate for collector lines disassembly: | $\$ \$$ | $26,600.00$ |  |

B. Pole removal will be transported at a rate of 30 poles per logging truck. It is assumed that poles will be sold or given away.

| Amount of poles: | 246 each |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Estimated labor \& equipment costs: | $\$$ | $1,100.00$ | $/$ truck trip |  |  |
| Total estimate for overhead collector pole removal: | $\$$ | $9,900.00$ |  |  |  |
| Total for transportation of collector line and associated components: |  | $\$$ | $36,500.00$ |  |  |

5.3 Removal of pad-mount transformers. Removal of the pad-mount transformers is estimated to require a total labor and equipment cost of $\$ 500$ per each.
Total for removal of pad-mount transformers for all 62 turbine sites: $\$ 31,000.00$
5.4 Transportation of pad-mound transformers. The cost to transport the pad-mount transformers to facilities for scrap, recycling or disposal is estimated to be a location within 2 hours (one-way) at an equipment and labor rate of $\$ 225 / \mathrm{hr}$. Assumming three (3) units can fit on one truck:

| Estimated transportation costs: | $\$ 00.00 /$ truck trip |
| :--- | :---: | :---: | :---: | :---: |
| Total for transportation of pad-mount transformers for all 62 turbine sites: |  |

5.5 Removal of pad-mount transformer foundations. Removal of the pad-mount transformer foundations and cutting
of cables and conduits to a depth of two feet below grade will require various types of hydraulic equipment.

| Estimated labor \& equipment cost: | $\$ 1,000.00 /$ site |  |
| :--- | :---: | :---: |
| Total for removal of pad-mount transformer foundations for all 62 turbine sites: | $62,000.00$ |  |

5.6 Transportation of pad-mount transformer foundation rubble and disposal. The rubble from the pad-mount transformer foundations is approximately ten (10) cubic yards per turbine site. As it is assumed the steel rebar will be separated from the concrete debris, the rubble essentially becomes an inert material. Therefore, we have assumed that the concrete rubble generated will not be transported offsite but be used onsite as fill at toes of slopes, for road base or topping material, or at other locations in need of fill as desired by the property owner. Costs to transport the foundation rubble within the project boundaries, in comparison to other decommissioning costs, are assumed to be negligible. In the unlikely event the material cannot be used on-site, the material will be transported for offsite use. Costs to transport the foundation rubble to disposal are based on an estimated requirement of one (1) dump truck trip for each turbine site.

| Total estimated labor \& equipment cost: | $\$$ | 400.00 | $/$ dump truck trip |  |
| :--- | :--- | :--- | :--- | :--- |
|  |  |  |  |  |
| Total estimate for foundation transportation costs for all 62 turbine sites: | $\$$ | $24,800.00$ |  |  |

The total opinion of probable costs for Electrical Collection System removal:
\$ 332,000.00

## 6. Electrical Substation

The costs for removing the substation is difficult to assess. This section gives a general description of the assumptions made for the demolition costs of this item.

### 6.1 Disassembly of substation and associated components.

A. Disassembly costs for the substation is based on the assumption that the labor effort required will be a 5 -man crew working for approximately four (4) weeks.

| Estimated labor rate: | $\$$ | 35.00 | $/$ man-hour |
| :--- | :---: | :---: | :---: |
| Total estimate for substation disassembly: | $\$$ | $28,000.00$ |  |

B. The disassembly will require a variety of construction equipment; it is difficult to estimate specific equipment requirements. In lieu of specific equipment rates, our opinion of probable cost includes a weekly rental equipment allowance for the assumed four (4) weeks.

6.2 Transport substation components to disposal/reclamation site. Costs to transport the substation components to facilities for scrap, recycling or disposal are based on an estimated one (1) truck trip per day for four (4) weeks totaling 20 truck trips from the substation site.
Estimated labor \& equipment costs: \$ 1,100.00 /truck trip

| Total for transport of substation components to disposal/reclamation site: | $\$ 22,000.00$ |
| :--- | :--- | :--- |

### 6.3 Removal and transportation/disposal of substation foundations.

A. Removal of the substation foundations to a depth of two (2) feet below grade will require various forms of hydraulic equipment and various dozers and loaders. Estimated foundation rubble volume is based on the foundation dimensions of these facilities.

| Estimated foundation rubble volume: | 255 cubic yards |  |
| :--- | ---: | :---: | ---: |
| Estimated labor \& equipment costs: | $\$$ | $100.00 /$ cubic yard |
| Total estimate for substation foundation removal: | $\$$ | $25,500.00$ |

B. We have assumed that the concrete rubble generated from the foundations (while separating rebar as necessary)
will not be transported offsite but be used onsite as fill at toes of slopes, for road base or topping material, or at other locations in need of fill as desired by the property owner. In the unlikely event the material cannot be used on-site, the material will be transported for offsite use. Costs to transport the foundation rubble to disposal are based on 255 cubic yards of rubble, and 10 cubic yards per dump truck trip.


### 6.4 Re-grading of substation site:

A. For the restoration of the substation site, we are assuming that all excavated areas will be brought up to grade and sloped to drain with suitable fill material generated from the re-grading of the site or from off-site sources. The estimated cost includes additional fill, topsoil or other organic matter to support growth, seed, and mulch.

| $\begin{array}{l}\text { Approximate disturbed area: }\end{array}$ | 120,000 |  | $\mathrm{SF} /$ Substation Site |
| :--- | :---: | :---: | :---: |
| Estimated cost per 1000 SF (1 MSF): | $\$$ | 330.00 | $/ \mathrm{MSF}$ |$]$

B. This re-grading and restoration work is estimated to take a dozer and operator approximately seven (7) days to complete.


## 7. Electrical GenLead System

7.1 Disassembly of overhead GenLead lines and associated components:
A. Disassembly and spooling costs for the overhead GenLead lines and associated components are based on the assumption that the labor effort required will be a 3-man crew working for four (4) hours per 1,000 feet of overhead wire.

| Estimated total length of overhead lines: | 90,820 |  | feet |
| :--- | :---: | :---: | :---: |
| Estimated labor rate: | $\$$ | 35.00 | $/$ man-hour |
| Total estimate for overhead GenLead disassembly: | $\$$ | $38,700.00$ |  |

B. Equipment rates are estimated at the following rate for approximately 46 days.

| Estimated equipment rates: | $\$$ | $1,700.00$ | $/$ day |  |
| :--- | :---: | :---: | :---: | :---: |
| Total estimate for overhead GenLead disassembly equipment: | $\$$ | $78,200.00$ |  |  |



### 7.2 Transportation of GenLead lines and associated components

A. The cost to transport the GenLead lines and associated components to facilities for scrap, recycling or disposal is based on the number of spools required per GenLead line sizes and lengths for the project, and a capacity of eight (8) spools per truck.

Estimated spools of GenLead line: 153 each

| Estimated labor \& equipment cost: | $\$$ | $1,400.00$ | /truck trip |
| :--- | :---: | :---: | :---: |
| Total estimate for GenLead lines disassembly: | $\$$ | $28,000.00$ |  |

B. Pole removal will be transported at a rate of 30 poles per logging truck. It is assumed that poles will be sold or given away.

| Amount of poles: | 285 each |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Estimated labor \& equipment costs: | \$ | 1,100.00 / truck trip |  |  |  |  |
| Total estimate for overhead GenLead pole removal: |  |  | \$ | 11,000.00 |  |  |
| Total for transportation of GenLead line and associated components: |  |  |  |  | \$ | 39,000.00 |
| Total opinion of probable costs for Electrical GenLead System removal: |  |  |  |  | \$ | 201,500.00 |

## 8. Dynamic Reactive Device Facility

### 8.1 Building removal

Demolition of the 12,000 square foot building, including labor, equipment, and transportation to facilities for scrap, recycling, or disposal is based on a removal rate of 20,100 cubic feet per day over 18 days at a daily cost of $\$ 7,600$ :
\$136,800.00

### 8.2 Disassembly of exterior associated components.

A. Disassembly costs for the exterior associated components is based on the assumption that the labor effort required will be a 5 -man crew working for seven (7) days.

| Estimated labor rate: | $\$$ | 35.00 | $/$ man-hour |
| :--- | :---: | :---: | :---: |
| Total estimate for exterior component disassembly: | $\$$ | $9,800.00$ |  |

B. The disassembly will require a variety of construction equipment; it is difficult to estimate specific equipment requirements. In lieu of specific equipment rates, our opinion of probable cost includes a weekly rental equipment allowance for the assumed seven (7) days.

| Estimated equipment rental rate: | $\$$ | $33,000.00$ | $/$ week |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Total estimate for equipment rental: | $\$$ | $46,200.00$ |  |  |  |
| Total for disassembly of exterior associated components: |  | $\$$ | $56,000.00$ |  |  |

### 8.3 Removal and transportation/disposal of Facility foundations.

A. Removal of the Facility building and associated components foundations to a depth of two (2) feet below grade will require various forms of hydraulic equipment and various dozers and loaders. Estimated foundation rubble volume is based on the approximated foundation dimensions of these facilities.

| Estimated foundation rubble volume: | 860 cubic yards |  |  |
| :--- | :---: | :---: | :---: |
| Estimated labor \& equipment costs: | $\$$ | 100.00 | /cubic yard |
| Total estimate for Facility foundation removal: | $\$$ | $86,000.00$ |  |

B. We have assumed that the concrete rubble generated from the foundations (while separating rebar as necessary) will not be transported offsite but be used onsite as fill at toes of slopes, for road base or topping material, or at other locations in need of fill as desired by the property owner. In the unlikely event the material cannot be used on-site, the material will be transported for offsite use. Costs to transport the foundation rubble to disposal are based on 10 cubic yards per dump truck trip.

| Estimated foundation rubble volume: | 860 cubic yards |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Estimated labor \& equipment costs: | $\$$ | 400.00 | $/$ dump truck trip |  |  |  |
| Total estimate for Facility foundation transportation: | $\$$ | $34,400.00$ |  |  |  |  |
| Total for removal and transportation/disposal of Facility foundation: |  | $\$$ | $120,400.00$ |  |  |  |

### 8.4 Re-grading of Facility site:

A. For the restoration of the Facility site, we are assuming that all excavated areas will be brought up to grade and sloped to drain with suitable fill material. The estimated cost includes additional fill, topsoil or other organic matter to support growth, seed, and mulch.

| Approximate disturbed area: | $50,000 \mathrm{SF}$ |  |  |  |
| :--- | :---: | :---: | :---: | :---: |
| Estimated cost per 1000 SF (1 MSF): | $\$$ | 330.00 | $/ \mathrm{MSF}$ |  |
| Total estimated re-grading cost for Facility Building: | $\$$ | $16,500.00$ |  |  |

B. This re-grading and restoration work is estimated to take a dozer and operator approximately three (3) days to complete.

| Labor \& equipment rate: | $\$$ | 200.00 | /hour |  |
| :--- | :---: | :---: | :---: | :---: |
| Total re-grading and restoration work for Facility building: | $\$$ | $4,800.00$ |  |  |


| Total estimate for re-grading Facility site is: | $\$$ | $21,300.00$ |
| :--- | :--- | :--- |

Total opinion of probable costs for Dynamic Reactive Device Facility removal:
\$334,500.00

## Disassembly \& Removal Summary

The total opinion of probable disassembly and removal costs from summing the items above: $\$ \mathbf{6 , 7 8 0 , 7 0 0 . 0 0}$

## Scrap Value

For the purposes of this decommissioning plan we assumed that all metal materials to be decommissioned would be sold as scrap to a recycling yard in the Bangor, Maine area. The presumed scrap value is based on the following conservative estimates:

1. Presumed scrap value of WTGs. In estimating the scrap value of the WTGs, the following component weight estimates were used (all weights are in pounds). No scrap value was assumed for the blades or nacelle shell.

| Base: | 179,980 | Nacelle | 144,900 |
| :--- | ---: | ---: | ---: |
| Mid: | 179,330 | Rotor | 73,500 |
| Top: | 146,513 |  |  |
|  |  |  |  |
| Total estimated weight for each WTG: |  |  |  |

Current prices for \#1 steel scrap at a Bangor, Maine
area metal recycling center: \#1 steel $230.00 /$ ton

Total opinion of presumed scrap value for all 62 WTGs:
\$ 5,163,800.00
2. Presumed scrap value of the external transformers. Scrap value of the external transformer is estimated at $10 \%$ of the original transformer cost.

Estimated original cost for external transfomers: \$ 70,000.00 each
Estimated scrap value ( $10 \%$ ):
\$ 7,000.00 each
3. Presumed scrap value of the MET towers. In estimating the scrap value of the MET towers, the following component weight and steel scrap values were used:
MET tower component weight: 6,000 lbs
Average steel scrap value:
\$
230.00 /ton

Total opinion of presumed scrap value of all five (5) MET towers:
\$
3,500.00
4. Overhead Collector wiring scrap value. Quantities of overhead wire and wire sizes and lengths are based on electrical drawings prepared by SGC and used as a basis for estimated scrappable metal amounts. Overhead wiring consists of aluminum (steel reinforced) conductors.

Estimated linear feet of wiring:
281,685 ft
Estimated weight of scrappable aluminum:
246,155 lbs

Current price for aluminum scrap at a Bangor area metal recycling center: \$ 500.00 /ton

Total opinion of presumed scrap value of the overhead collector wiring:
\$
61,600.00
5. Presumed scrap value of Substation. Based on our research, typical substation components have a life expectancy of 50 years. Therefore, at 20 years the substation could have a value of approximately $50 \%$ of its original cost. However, to be very conservative, we have estimated the substation scrap value at $2 \%$ of the total original cost:

Original substation construction estimate, less the transformer:
\$ 8,500,000.00
Estimated substation scrap value (2\%): \$ 170,000.00

Total opinion of presumed scrap value of the substation:
\$ 170,000.00
6. Presumed scrap value of Substation Transformer(s). The cost of the substation transformer(s) is estimated to be approximately $\$ 2,500,000$. Scrap value is estimated at $10 \%$ of the original transformer cost.

| Original substation transformer construction cost: | $\$$ | $2,500,000.00$ |
| :--- | :--- | ---: |
| Estimated scrap value $(10 \%)$ : | $\$$ | $250,000.00$ |

Total opinion of presumed scrap value of the substation transformer(s):
\$ $250,000.00$
7. Overhead GenLead wiring scrap value. Quantities of overhead wire and wire sizes and lengths are based on electrical drawings prepared by SGC and used as a basis for estimated scrappable metal amounts. Overhead wiring consists of aluminum (steel reinforced) conductors.

| Estimated linear feet of wiring: | $272,460 \mathrm{ft}$ <br> $297,799 \mathrm{lbs}$ |  |
| :--- | :--- | :--- |
| Estimated weight of scrappable aluminum: |  |  |
| Current price for aluminum scrap at a Bangor area |  |  |
| metal recycling center: | $\$$ | 500.00 /ton |

## Scrap Value Summary

The total opinion of probable scrap value from summing the items above:
\$ 6,157,400.00

## Decommissioning Summary

| The total opinion of probable disassembly and removal costs is: | $\$$ | $6,780,700.00$ |
| :--- | :---: | :---: |
| The total opinion of probable scrap value for the project is: | $\$$ | $6,157,400.00$ |

The net estimated opinion of probable cost for decommissioning is:
\$ 623,300.00

Please do not hesitate to contact us with any questions regarding the information contained in this review. We appreciate the opportunity to work with you on this project.

Sincerely,
James W. Sewall Company


Janine S. Murchison, PE
Project Manager
imurchison@jws.com
phone: (207)492-1014

83411E

