

MRC/FIBERIGHT PROCESSING FACILITY LIST OF DELIVERABLES

RESPONSES

Deliverable #3:

3. Details on any other fuel (including startup fuel) that may be fired in the boilers (type, max MMBtu/hr, anticipated annual usage, etc.)

The table below summarizes the anticipated usage of natural gas/bio-methane during startup scenarios. The table presents the total MMBtu of natural gas/bio-methane fired for Cold Starts, Hot Starts, and Temperature control scenarios. The Potential to Emit (PTE) calculations have been revised to include this fuel usage.

EVENT	EVENTS PER YEAR	DURATION	TOTAL FUEL USE PER YEAR (MMBTU)
		BOILER #1	
Cold Start	3	4	300
Hot Start	2	1	61
Temp Control	6	0.5	147
		Boiler #1 Total =	508
		BOILER #2	
Cold Start	3	4	300
Hot Start	2	1	61
Temp Control	6	0.5	147
		Boiler #2 Total =	508
		Facility Total =	1016 MMBtu

Deliverable #4:

4. Revised boiler emissions (if applicable)

The following tables represent the revised Potential to Emit (PTE) calculations for the proposed facility. The emissions estimates have been revised to reflect PHS as the primary fuel source. The addition of natural gas or bio-methane at startup has also been included in the annual estimates.

POTENTIAL TO EMIT SUMMARY				
FIBERIGHT, LLC				
Proposed Hampden, ME Facility				

Criteria Pollutants (Ton/Year)						
	Flare	Boiler#1	Boiler #2	Scrubber #1	Scrubber #2	Total
Carbon Monoxide (CO)	0.09	46.40	46.40	0	0	92.9
Oxides of Nitrogen (Nox)	0.73	21.10	21.10	0	0	42.9
Sulfur Dioxide (SO2)	0.15	5.27	5.27	0	0	10.7
Particulate Matter (PM)	0.44	6.33	6.33			13.1
Particulate Matter < 10 µm (PM10)	0.44	4.64	4.64			9.7
Particulate Matter < 2.5 µm (PM2.5)	0.44	4.22	4.22			8.9
Volatile Organic Compounds	0.14	2.74	2.74	2.89	2.89	11.4
ammonia	0.08	0.00	0.00	0	0	0.1
HAPS	0.05	3.41	3.41	0.15	0.15	7.2

Hazardous Air Pollutants (Ton/Year)							
Flare Boiler#1 Boiler #2 Scrubber #1 Scrubber #2 Tot							
acetaldehyde	0	0.00	0.00	0.00	0.00	0.00	
acrolein	0	0.00	0.00	0.00	0.00	0.01	
arsenic	0	0.00	0.00	0.00	0.00	0.00	
benzene	0	0.00	0.00	0.01	0.01	0.02	
beryllium	0	0.00	0.00	0.00	0.00	0.00	
cadmium	0	0.00	0.00	0.00	0.00	0.00	
chromium	0	0.00	0.00	0.00	0.00	0.00	
cobalt	0	0.00	0.00	0.00	0.00	0.00	
dichlorobenzene	0	0.00	0.00	0.00	0.00	0.01	
formaldehyde	0	0.00	0.00	0.00	0.00	0.01	
hydrochloric acid	0	0.00	0.00	0.02	0.02	0.03	
lead	0	0.00	0.00	0.00	0.00	0.00	
manganese	0	0.00	0.00	0.00	0.00	0.00	
methanol	0	0.00	0.00	0.00	0.00	0.00	
mercury	0	0.00	0.00	0.00	0.00	0.00	
n-hexane	0	0.00	0.00	0.02	0.02	0.05	
napthalene	0	0.00	0.00	0.00	0.00	0.00	
nickel	0	0.00	0.00	0.00	0.00	0.00	
phenanthrene	0	0.00	0.00	0.00	0.00	0.00	
toluene	0	0.00	0.00	0.10	0.10	0.21	

Fiberight, LLC Flare Potential to Emit

Biogas production rate (SCFH)	65585
Gas Recovery rate	90%
Operational days per year	365
Days venting gas (process upset)	0
Gas flared Annual Total (SCF)	51,943,320

Flare Potential to Emit (ton/year)				
Carbon Monoxide (CO)	0.09			
Oxides of Nitrogen (Nox)	0.73			
Sulfur Dioxide (SO2)	0.15			
Particulate Matter (PM)	0.44			
Particulate Matter < 10 µm (PM10)	0.44			
Particulate Matter < 2.5 µm (PM2.5)	0.44			
Volatile Organic Coumpounds	0.14			
ammonia	0.08			
HAPS	0.05			

Emissions Factors						
Emission						
Pollutant	Factor	Units	Source			
Carbon Monoxide (CO)	3.47E-06	lb/cu ft Burned	SCC 50300601, landfill flare, WebFire			
Oxides of Nitrogen (Nox)	2.83E-05	lb/cu ft Burned	SCC 50300601, landfill flare, WebFire			
Sulfur Dioxide (SO2)	5.75E-06	lb/cu ft Burned	SCC 50300601, landfill flare, WebFire			
Particulate Matter (PM)	1.70E-05	lb/cu ft Burned	SCC 50300601, landfill flare, WebFire			
Particulate Matter < 10 µm (PM10)	1.70E-05	lb/cu ft Burned	SCC 50300601, landfill flare, WebFire			
Particulate Matter < 2.5 µm (PM2.5)	1.70E-05	lb/cu ft Burned	SCC 50300601, landfill flare, WebFire			
Volatile Organic Coumpounds	5.5	lb/MM cu ft Burned	SCC 10100602, boiler			
ammonia	3.2	lb/MM cu ft Burned	SCC 10100602, boiler			
HAPS	1.938	lb/MM cu ft Burned	SCC 10100602, boiler			

Fiberight, LLC Boiler #1 Potential to Emit

Heat Input (mmBtu/hr)	48.11
Total Gas fired (MMBtu)	1016
Btu/Scf Natural Gas	1020
Natural Gas (scf)	996078
Annual Hours of operation	8760

Pollutant	Ton/Year
Carbon Monoxide (CO)	46.40
Oxides of Nitrogen (Nox)	21.10
Sulfur Dioxide (SO2)	5.27
Particulate Matter (PM)	6.33
Particulate Matter < 10 µm (PM10)	4.64
Particulate Matter < 2.5 µm (PM2.5)	4.22
Volatile Organic Coumpounds	2.74
ammonia	0.00
HAPS	3.4

Emissions Factors Biomass (PHS)					
Pollutant	Emission Factor (lb/mmBtu)	Emission Factor (lb/hr)	Source		
Carbon Monoxide (CO)	0.22	10.58	Emisison factors provided by manufaturer (AP-42 1.6)		
Oxides of Nitrogen (Nox)	0.1	4.81	Emisison factors provided by manufaturer (AP-42 1.6)		
Sulfur Dioxide (SO2)	0.025	1.20	Emisison factors provided by manufaturer (AP-42 1.6)		
Particulate Matter (PM)	0.03	1.44	Emisison factors provided by manufaturer (AP-42 1.6)		
Particulate Matter < 10 µm (PM10)	0.022	1.06	Emisison factors provided by manufaturer (AP-42 1.6)		
Particulate Matter < 2.5 µm (PM2.5)	0.02	0.96	Emisison factors provided by manufaturer (AP-42 1.6)		
Volatile Organic Coumpounds	0.013	0.63	Emisison factors provided by manufaturer (AP-42 1.6)		

Emissions Factors Natural Gas / Bio-methane					
	Emission Factor				
Pollutant	(lb/10 ⁶ scf)	Total lb/yr	Source		
Carbon Monoxide (CO)	84	83.67	Emisison factors provided by manufaturer (AP-42 1.4)		
Oxides of Nitrogen (Nox)	50	49.80	Emisison factors provided by manufaturer (AP-42 1.4)		
Sulfur Dioxide (SO2)	0.6	0.60	Emisison factors provided by manufaturer (AP-42 1.4)		
Particulate Matter (PM)	7.6	7.57	Emisison factors provided by manufaturer (AP-42 1.4)		
Particulate Matter < 10 µm (PM10)	7.6	7.57	Emisison factors provided by manufaturer (AP-42 1.4)		
Particulate Matter < 2.5 µm (PM2.5)	7.6	7.57	Emisison factors provided by manufaturer (AP-42 1.4)		
Volatile Organic Coumpounds	5.5	5.48	Emisison factors provided by manufaturer (AP-42 1.4)		

Controls

Baghouse for PM SNCR for Nox, Reduced EF from 0.22 lb/mmBtu to 0.10 lb/mmBtu

Fiberight, LLC Boiler #1 Potential to Emit

HAPS EMISSIONS (PHS)					
HAP	lb/mmBtu	Ton/yr			
acetaldehyde	8.300E-04	0.17			
acrolein	4.00E-03	0.84			
arsenic	7.90E-06	0.00			
benzene	4.20E-03	0.89			
beryllium	1.10E-06	0.00			
cadmium	4.10E-06	0.00			
chromium	2.10E-05	0.00			
cobalt	6.50E-06	0.00			
dichlorobenzene		0.00			
formaldehyde	4.40E-03	0.93			
hydrochloric acid		0.00			
lead	4.80E-05	0.01			
manganese	1.60E-03	0.34			
methanol		0.00			
mercury	3.50E-06	0.00			
n-hexane		0.00			
napthalene	9.70E-05	0.02			
nickel	3.30E-05	0.01			
phenanthrene	7.00E-06	0.00			
toluene	9.20E-04	0.19			

Source of EF AP-42 2.4

HAPS EMISSIONS (Natural Gas)				
HAP	lb/10 ⁶ scf	Ton/yr		
arsenic	2.00E-04	0.00		
benzene	2.10E-03	0.00		
beryllium	1.20E-05	0.00		
cadmium	1.10E-03	0.00		
chromium	1.30E-03	0.00		
cobalt	8.40E-05	0.00		
dichlorobenzene	1.20E-03	0.00		
formaldehyde	7.50E-02	0.00		
lead	5.00E-04	0.00		
manganese	3.80E-04	0.00		
mercury	2.60E-04	0.00		
n-hexane	1.80E+00	0.00		
napthalene	6.10E-04	0.00		
nickel	2.10E-03	0.00		
phenanthrene	1.70E-05	0.00		
toluene	3.40E-03	0.00		

Fiberight, LLC **Boiler #2 Potential to Emit**

Heat Input (mmBtu/hr)	48.11
Total Gas fired (MMBtu)	1016
Btu/Scf Natural Gas	1020
Natural Gas (scf)	996078.4314
Annual Hours of operation	8760

Pollutant	Ton/Year
Carbon Monoxide (CO)	46.40
Oxides of Nitrogen (Nox)	21.10
Sulfur Dioxide (SO2)	5.27
Particulate Matter (PM)	6.33
Particulate Matter < 10 µm (PM10)	4.64
Particulate Matter < 2.5 µm (PM2.5)	4.22
Volatile Organic Coumpounds	2.74
ammonia	0.00
HAPS	3.4

Emissions Factors Biomass (PHS)				
Pollutant	Emission Factor (lb/mmBtu)	Emission Factor (lb/hr)	Source	
Carbon Monoxide (CO)	0.22	10.58	Emisison factors provided by manufaturer (AP-42 1.6)	
Oxides of Nitrogen (Nox)	0.1	4.81	Emisison factors provided by manufaturer (AP-42 1.6)	
Sulfur Dioxide (SO2)	0.025	1.20	Emisison factors provided by manufaturer (AP-42 1.6)	
Particulate Matter (PM)	0.03	1.44	Emisison factors provided by manufaturer (AP-42 1.6)	
Particulate Matter < 10 µm (PM10)	0.022	1.06	Emisison factors provided by manufaturer (AP-42 1.6)	
Particulate Matter < 2.5 µm (PM2.5)	0.02	0.96	Emisison factors provided by manufaturer (AP-42 1.6)	
Volatile Organic Coumpounds	0.013	0.63	Emisison factors provided by manufaturer (AP-42 1.6)	

Emissions Factors Natural Gas / Bio-methane					
	Emission Factor				
Pollutant	(lb/10 ⁶ scf)	Total lb/yr	Source		
Carbon Monoxide (CO)	84	83.67	Emisison factors provided by manufaturer (AP-42 1.4)		
Oxides of Nitrogen (Nox)	50	49.80	Emisison factors provided by manufaturer (AP-42 1.4)		
Sulfur Dioxide (SO2)	0.6	0.60	Emisison factors provided by manufaturer (AP-42 1.4)		
Particulate Matter (PM)	7.6	7.57	Emisison factors provided by manufaturer (AP-42 1.4)		
Particulate Matter < 10 µm (PM10)	7.6	7.57	Emisison factors provided by manufaturer (AP-42 1.4)		
Particulate Matter < 2.5 µm (PM2.5)	7.6	7.57	Emisison factors provided by manufaturer (AP-42 1.4)		
Volatile Organic Coumpounds	5.5	5.48	Emisison factors provided by manufaturer (AP-42 1.4)		

Controls

Baghouse for PM SNCR for Nox, Reduced EF from 0.22 lb/mmBtu to 0.10 lb/mmBtu

Fiberight, LLC Boiler #2 Potential to Emit

HAPS EMISSIONS (PHS)			
HAP	lb/mmBtu	Ton/yr	
acetaldehyde	8.300E-04	0.17	
acrolein	4.00E-03	0.84	
arsenic	7.90E-06	0.00	
benzene	4.20E-03	0.89	
beryllium	1.10E-06	0.00	
cadmium	4.10E-06	0.00	
chromium	2.10E-05	0.00	
cobalt	6.50E-06	0.00	
dichlorobenzene		0.00	
formaldehyde	4.40E-03	0.93	
hydrochloric acid		0.00	
lead	4.80E-05	0.01	
manganese	1.60E-03	0.34	
methanol		0.00	
mercury	3.50E-06	0.00	
n-hexane		0.00	
napthalene	9.70E-05	0.02	
nickel	3.30E-05	0.01	
phenanthrene	7.00E-06	0.00	
toluene	9.20E-04	0.19	
Source of EF AP-42 2.4			

HAPS EMISSIONS (Natural Gas) Ton/yr HAP lb/10⁶ scf arsenic 2.00E-04 0.00 2.10E-03 0.00 benzene 1.20E-05 0.00 beryllium cadmium 1.10E-03 0.00 0.00 chromium 1.30E-03 cobalt 8.40E-05 0.00 1.20E-03 0.00 dichlorobenzene formaldehyde 7.50E-02 0.00 5.00E-04 0.00 lead manganese 3.80E-04 0.00 0.00 mercury 2.60E-04 1.80E+00 0.00 n-hexane napthalene 0.00 6.10E-04 2.10E-03 0.00 nickel 1.70E-05 0.00 phenanthrene toluene 3.40E-03 0.00

Fiberight, LLC Scrubber #1 Potential to Emit

Operating Rate (Tons MSW/year)	214000
Operating Hours	8760
Capture Efficiency	90%
Control Efficiency	95%
VOC Emission (lb/hour)	14.64
VOC Emission (Ton/Year)	2.89

Pollutant	ppmv	Ton/year
acetaldehyde	0.08	0.00
acrolein	0.00	0.00
arsenic	0.00	0.00
benzene	2.40	0.01
beryllium	0.00	0.00
cadmium	0.00	0.00
chromium	0.00	0.00
cobalt	0.00	0.00
dichlorobenzene	1.15	0.00
formaldehyde	0.01	0.00
hydrochloric acid	5.00	0.02
lead	0.00	0.00
manganese	0.00	0.00
methanol	0.00	0.00
mercury	0.00	0.00
n-hexane	6.57	0.02
napthalene	0.00	0.00
nickel	0.00	0.00
phenanthrene	0.00	0.00
toluene	29.50	0.10

VOC Emission Factor			
Organic Compounds Rumpke Landfill	157.38	lb/hr	Ohio EPA Permit #P0112360
MSW Received at Rumpke 2011	2300000	ton/yr	Ohio EPA Permit #P0112360; PTE
Annual MSW Fiberight ME	214000	ton/yr	Maximum planned annual receipts
Organics to Scrubber	14.6432	lb/hr	Ratio (185000/2300000)*157.38 = 12.66
Reference VOC Concentration	835	ppm	

Fiberight, LLC Scrubber #1 Potential to Emit

Operating Rate (Tons MSW/year)	214000
Operating Hours	8760
Capture Efficiency	90%
Control Efficiency	95%
VOC Emission (lb/hour)	14.64
VOC Emission (Ton/Year)	2.89

Pollutant	ppmv	Ton/year
acetaldehyde	0.08	0.00
acrolein	0.00	0.00
arsenic	0.00	0.00
benzene	2.40	0.01
beryllium	0.00	0.00
cadmium	0.00	0.00
chromium	0.00	0.00
cobalt	0.00	0.00
dichlorobenzene	1.15	0.00
formaldehyde	0.01	0.00
hydrochloric acid	5.00	0.02
lead	0.00	0.00
manganese	0.00	0.00
methanol	0.00	0.00
mercury	0.00	0.00
n-hexane	6.57	0.02
napthalene	0.00	0.00
nickel	0.00	0.00
phenanthrene	0.00	0.00
toluene	29.50	0.10

VOC Emission Factor			
Organic Compounds Rumpke Landfill	157.38	lb/hr	Ohio EPA Permit #P0112360
MSW Received at Rumpke 2011	2300000	ton/yr	Ohio EPA Permit #P0112360; PTE
Annual MSW Fiberight ME	214000	ton/yr	Maximum planned annual receipts
Organics to Scrubber	14.6432	lb/hr	Ratio (185000/2300000)*157.38 = 12.66
Reference VOC Concentration	835	ppm	

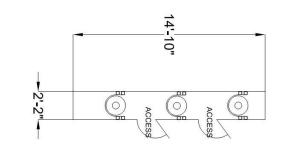
Deliverable Items #5 and #6:

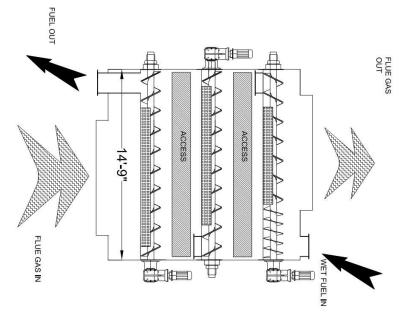
- 5. Heat content (Btu/lb at x% moisture) of the PHS
- 6. Expected moisture content of the PHS both as-fired and prior to the "PHS dryer" which proceeds the boiler

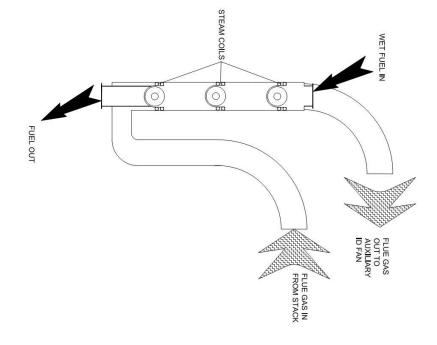
The attached emissions summary provided by the close coupled gasifier/boiler manufacturer includes the heat content and anticipated moisture of the PHS as fired. The PHS leaves the screw press with a moisture content of approximately 50%. The PHS material will be dried to a maximum of 41.5% moisture content. The PHS will have approximately 4,347 British Thermal Units (Btu) per pound (Btu/lb) at 41.5% moisture. This is the minimum btu/lb required to maintain operation of the gasifier/boiler.

OILER PERFORMANCE				Fuel Analys		Page 1	4
iberight Facility - Hampden,		(Min CV)		% by Weigh		11/11/2015	1
oiler Horsepower	1043	{	• 1777 1988 1967 1968	}Ash	2.20	1.88	3.76
team Flow Ib/hr	29,091	= 35970.71	F&A 212 }	S	0.04	0.04	0.07
team Pres. psig	405	{		} H2	3.43	2.94	5.87
team Temp. F	750	{) C	28.06	23.99	47.98
eedwater Temp. F	220	_{		} N2	0.33	0.29	0.57
eedwater Rate GPM	60.63	-		}02	24.41	20.88	41.75
team Enth. btu/lb	1388.7	<u></u>		} H2O	41.53	50.00	0.00
eedwater Enth. btu/lb	189	_				1	
leat Absorb. by stm. btu/lb	1199.7						
x. Air [include tramp air] %	40	{ add air leakag		Total 100	100	100	100
Inburn Carbon Loss %	0.5	{ 0 for gas & oil			At Min CV	As Received	Dry Basis
ir Temp. To Boiler F (ambient)	80	{		e ne 2	btu/lb	btu/lb	btu/lb
as Temp.Leaving Boiler F	350	{		} btu value*=	4,347	3,717	7,434
xcess Air to Burners %	45	{ no air leakage		Mj/kg=	10.11	8.65	17.29
loist. In Air Ib H2O/Ib air	0.013	{.013}		} Fuel Type	Processed	PHS (Test)	PHS (Test)
adiation Loss %	0.5	{.5}			Fuel	18-Dec-14	18-Dec-14
lanufactures Margin %	0.5	{1}		Tons/Hr	5.62	6.57	3.29
loist. from Atm. Stm. #/10kbtu	0	{use.056 when b	urning oil	08	*Mixture btu/lb va		347 btu/lb
uel BTU/LB	4,347	-3 (SS)			Hrs/Yr Oper.	7,920	
/ater from Fuel Ib/10 kbtu	1.66			-			
heoretical Air Ib/10 kbtu	7.74						
uel wt Ash wt. Ib/10 kbtu	2.25						
ctual Dry Air lb/10 kbtu	10.79		2				2
/t. of FuelBurned Wet lb/10 kbtu	2.25	8	CONSTITUENT	s of flue g	AS	0	
loisture in Air Ib/10 kbtu	0.14]	WET BASIS		DRY BASIS	2	1
dded Moist.:Atm.stm.lb/10kbtu	0.00		% BY WT.	% BY VOL.	% BY WT.	%BYVOL	
otal Wet Gas Ib/10 kbtu	13.18	CO2	17.80	11.28	20.61	14.30	1
/ater from Fuel Ib/10 kbtu	1.66	SO2	0.01	0.01	0.02	0.01	1
/ater in Wet Gas Ib/10 kbtu	1.80	H2O	13.60	21.07	0.00	0.00	
ry Gas total Ib/10 kbtu	11.38	N2	63.19				
				02.94	73.14		
Water DV WL In Gas %	13.67			62.94 4.70	73.14 6.24	79.74	
water by wt. in Gas %	13.67	O2	5.39	4.70	6.24	79.74 5.95	
ias out F - Air in F	13.67 270		5.39 100.00			79.74 5.95 100.00	•
ias out F - Air in F FFICIENCY LOSSES	270	O2	5.39 100.00 Flue Gas	4.70 100.00	6.24 100.00	79.74 5.95 100.00 F	
as out F - Air in F FFICIENCY LOSSES Iny Gas Loss %	270 7.37	O2	5.39 100.00 Flue Gas Density Flue Gas	4.70 100.00	6.24 100.00 0.044	79.74 5.95 100.00 F 350	- - - -
as out F - Air in F FFICIENCY LOSSES Iny Gas Loss % 20 from Fuel Loss %	270 7.37 19.51	O2	5.39 100.00 Flue Gas Density Flue Gas Flue Gas Flow A	4.70 100.00 s #/cf CFM	6.24 100.00 0.044 24,329	79.74 5.95 100.00 F 350 350	
as out F - Air in F FFICIENCY LOSSES bry Gas Loss % 120 from Fuel Loss % Toist . In Air Loss %	270 7.37 19.51 0.18	O2	5.39 100.00 Flue Gas Density Flue Gas Flue Gas Flow A Flue Gas Flow S	4.70 100.00 s #/cf CFM CFM	6.24 100.00 0.044 24,329 15,618	79.74 5.95 100.00 F 350 350 70	
as out F - Air in F FFICIENCY LOSSES bry Gas Loss % 120 from Fuel Loss % toist . In Air Loss % Inburn Comb. Loss %	270 7.37 19.51 0.18 0.50	O2	5.39 100.00 Flue Gas Density Flue Gas Flue Gas Flow A Flue Gas Flow S Gas Flow DSCFI	4.70 100.00 s #/cf CFM CFM M	6.24 100.00 0.044 24,329 15,618 12,328	79.74 5.95 100.00 F 350 350 70 70 70	
as out F - Air in F FFICIENCY LOSSES bry Gas Loss % 120 from Fuel Loss % toist . In Air Loss % Inburn Comb. Loss % adation Loss %	270 7.37 19.51 0.18 0.50 0.50	O2	5.39 100.00 Flue Gas Density Flue Gas Flue Gas Flow A Flue Gas Flow S	4.70 100.00 s #/cf CFM CFM M	6.24 100.00 0.044 24,329 15,618	79.74 5.95 100.00 F 350 350 70	
as out F - Air in F FFICIENCY LOSSES Pry Gas Loss % 120 from Fuel Loss % 10ist . In Air Loss % Inburn Comb. Loss % 12dation Loss % 12dation Loss %	270 7.37 19.51 0.18 0.50 0.50 0.50	O2	5.39 100.00 Flue Gas Density Flue Gas Flue Gas Flow A Flue Gas Flow S Gas Flow DSCFI	4.70 100.00 s #/cf CFM CFM M	6.24 100.00 0.044 24,329 15,618 12,328	79.74 5.95 100.00 F 350 350 70 70 70	
as out F - Air in F FFICIENCY LOSSES bry Gas Loss % 120 from Fuel Loss % toist . In Air Loss % Inburn Comb. Loss % adation Loss %	270 7.37 19.51 0.18 0.50 0.50	O2	5.39 100.00 Flue Gas Density Flue Gas Flue Gas Flow A Flue Gas Flow S Gas Flow DSCFI	4.70 100.00 s #/cf CFM CFM M	6.24 100.00 0.044 24,329 15,618 12,328	79.74 5.95 100.00 F 350 350 70 70 70	
as out F - Air in F FFICIENCY LOSSES by Gas Loss % 120 from Fuel Loss % 120 from Fuel Loss % 130 from Fuel Loss % 140 from Comb. Lo	270 7.37 19.51 0.18 0.50 0.50 0.50 28.56 71.44	O2	5.39 100.00 Flue Gas Density Flue Gas Flue Gas Flow A Flue Gas Flow S Gas Flow DSCFI	4.70 100.00 s #/cf CFM CFM M	6.24 100.00 0.044 24,329 15,618 12,328	79.74 5.95 100.00 F 350 350 70 70 70	
as out F - Air in F FFICIENCY LOSSES Try Gas Loss % 120 from Fuel Loss % 10ist . In Air	270 7.37 19.51 0.18 0.50 0.50 0.50 28.56 71.44 48.86	O2 Total	5.39 100.00 Flue Gas Density Flue Gas Flue Gas Flow A Flue Gas Flow S Gas Flow DSCFI Corrected 8% O	4.70 100.00 CFM CFM M 2 dscf	6.24 100.00 0.044 24,329 15,618 12,328	79.74 5.95 100.00 F 350 350 70 70 70	
as out F - Air in F FFICIENCY LOSSES by Gas Loss % 120 from Fuel Loss % 120 from Fuel Loss % 130 from Fuel Loss % 140 from Comb. Lo	270 7.37 19.51 0.18 0.50 0.50 0.50 28.56 71.44	O2	5.39 100.00 Flue Gas Density Flue Gas Flue Gas Flow A Flue Gas Flow S Gas Flow DSCFI Corrected 8% O	4.70 100.00 s #/cf CFM CFM M	6.24 100.00 0.044 24,329 15,618 12,328	79.74 5.95 100.00 F 350 350 70 70 70	

PROJECTED EMISSIONS	RATE (lb/mmBtu)	lbs/hr	US Tons/yr
PM -10 with Multicyclone	0.2	9.77	38.69
PM-2.5 with Multicyclone	0.12	5.86	23.22
Total PM with Multicyclone	0.30	14.66	58.04
PM-10 with Baghouse	0.022	1.07	4.26
PM-2.5 with Baghouse	0.020	0.98	3.87
Total PM with Baghouse	0.030	1.47	5.80
Nox	0.22	10.75	42.56
CO	0.22	10.75	42.56
SO2	0.025	1.22	4.84
TOC	0.039	1.91	7.55
VOC	0.013	0.64	2.52


Deliverable Item #7:


7. Information on the PHS dryer


The PHS dryer uses boiler discharge gas that is routed to pass through the dryer and then return to the inlet side of the Hurst multi-cyclone. The gas is then routed the same way as in the basic Hurst system, i.e. through multi-cyclone, the bag house, the ID fan, and then out the stack. The dryer is essentially a box that contains multiple screws with the wet fuel being introduced at the top being moved sideways by the 1st screw, then reversed to the other side by the next screw, and back and forth by subsequent screws until exiting at the bottom as a dried fuel which would then be routed to the boiler metering bin inlet. The gas discharged from the boiler is introduced to the dryer at the bottom and flows vertically upwards physically passing through the wet fuel causing the fuel to dry. The ID fan will be sized to include the additional gas stream pressure drop (or an auxiliary ID fan will be provided, as required).

The attached generic sketch shows some steam coils in the Dryer. These are optional, and would act as a backup using steam as the drying agent.

Deliverable #8:

8. Information on how Fiberight intends to track the amount of each fuel fired in the boilers on a monthly and annual basis

Flberight will use PHS metering bins/feeders for each gasifier/boiler unit and natural gas or biomethane will be metered into the boiler systems. This will allow Flberight to track monthly and annul fuel usage in the boilers.

Deliverable #9 and #10:

- 9. Information on the biogas cleanup system, including the anticipated amount (ppm) of H2S before and after the cleanup system and what technology is being used to remove H2S from the gas
- 10. Whether the biogas cleanup system will be used on all biogas, including that which is flared, or only the biogas that is conditioned for sale/use elsewhere

The Attached Table presents a summary of the constituents of the biogas before the Molecular GateTM Pressure Swing Adsorption (PSA) gas conditioning unit, the saleable gas and the gas tailings resulting from gas clean up. Gas generated in the Anaerobic Digester (AD) system is anticipated to have a hydrogen sulfide (H₂S) concentration of approximately 500 parts per million (ppm). The saleable gas will have undetectable concentrations of H₂S. The gas tailings will have H₂S concentrations of approximately 1,600 ppm.

All gas generated in the AD system is treated in the PSA. Gas meeting the specifications of Bangor Gas is saleable and will be transferred to the pipeline. The tailings resulting from gas treatment will be directed to the open flare.

Bio-gas Clean-up System

Two each Molecular Gate[™] PSA Units to be provided by Guild Associates, Inc.

Design Material Balance:

	Feed	Sales Gas	Tail Gas*
Design Flow, SCFM	600	407	193
Pressure, PSIG	0/Compressed to 100	90	2
Temperature, °F	100	140	150
Composition, Mol%			
C1	70.00	98.00	10.89
CO ₂	29.95	2.00	88.96
H₂S	0.05	Nil	0.16
VOCS	PPM Levels	<20 PPB	By Difference
H₂O	Saturated	<<7 lbs./MMSCF	By Difference
HHV, BTU/Ft3	707	990	111

* Tail Gas will be routed to flare.