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INTRODUCTION

The Standish 7.5-minute quadrangle encompasses a region
in southern Maine that lies approximately 12.5 mi (20 km) west
of Portland and 1 mi (1.5 km) south of the southern tip of Sebago
Lake, occupying portions of both Cumberland and York Coun-
ties (Figure 1). The area is characterized by gently rolling topog-
raphy and bedrock knobs which extend to over 530 ft (160 m)
above sea-level (asl) in the north-central portion of the quadran-
gle, where the maximum relief is about 200 ft (60 m). Higher
portions of the quadrangle are above the limit of late-glacial ma-
rine submergence, so the area contains well-preserved expo-
sures of both marine and terrestrial late Wisconsinan surficial
deposits. Evidence of pre-Wisconsinan glaciations have not
been found. Cultivation and tree growth have generally dis-
turbed only the uppermost 1 m of the surficial materials, so the
original sedimentary deposits remain generally intact. More
than 54 sand and gravel pits in submarine fans and deltaic depos-
its are distributed over the 10 x 14 km map area, with at least 20
pits active in 1992.

Bedrock in the Standish quadrangle is dominantly folded
and metamorphosed Ordovician and Silurian plagioclase-biotite
granofels of the Vassalboro Formation and northeast-trending
synformal belts (up to 2 km wide) of muscovite-biotite-garnet
schist belonging to the Windham Formation (Hussey, 1985).
The Devonian-age Lyman pluton intrudes the Vassalboro For-
mation and outcrops near the town of Hollis. Rindgemere For-
mation metasedimentary rocks northwest of Tylers Corner are
covered by glaciomarine sediments and therefore have limited
outcrop exposure. Foliation and schistosity within the Standish
quadrangle parallel the northeast fabric imparted by Acadian de-
formation. Ridges controlled by these rock structures trend par-
allel to the general orientation of the retreating margin of the last
ice sheet. The ridges temporarily anchored the ice margin, ena-
bling deposition of ice-contact and leeside glaciomarine deltas
(Thompson and others, 1989).
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Figure 1. Location of the Standish 7.5-minute quadrangle. M.L. indi-
cates the inland marine limit (taken from Thompson et al., 1989). The
marine limit cuts through the northern portion of the Standish map. The
York and Cumberland County line is shown on the inset.



J. C. Gosse

The regional bedrock includes no unique lithologies which
could be used individually as indicator rocks to assist in prove-
nance determination or ice flow direction. The sources of the
majority of clast lithologies are areally too extensive to allow ex-
act source localities to be pinpointed. The entire area north of the
quadrangle is occupied by the Sebago pluton granite (more than
80 km radius), while non-distinct Rindgemere Formation inter-
bedded marble and metamorphosed argillite and pelite occur to
the northwest. Itis notable that cobble counts and field estimates
of lithology indicate that the widespread and easily comminuted
metapelites and schists were important sources for the large vol-
umes of sediment which comprise the moraines and other glacial
deposits, but not for glaciofluvial sediments. Clasts of the
Rindgemere Formation in tills appear to be found mainly near
their bedrock source (within 1-2 km), presumably because they
are relatively easier to comminute. However, Sebago pluton
granite was found in deltaic and esker cobble gravels as far south
as Groveville (at least 11 km from the inferred bedrock source).
These are minimum travel distance estimates.

The abundance of previous surficial geology studies con-
ducted in the Standish region reflects the diversity and impor-
tance of the Quaternary geology there. Reconnaissance surficial
geologic maps (1:62,500) of the region were published by Smith
and Thompson (1977). Aquifer studies in the region were con-
ducted by Tolman and others (1983) and Tolman and Lanctot
(1985). Soil survey reports for Cumberland and York Counties
(Flewelling and Lisante, 1982; Hedstrom, 1974) were used in
the initial aerial photograph interpretation for the present study.
Other data, including well logs from local soil exploration com-
panies (e.g. Avalanche), have helped constrain depth to bedrock
and surficial sediment thickness (Caswell and Lanctot, 1975;
Caswell and Lanctot, 1978; King, 1984; Maine State Highway
Commission, 1950).

The present study involves detailed (1:24,000) mapping of
surficial deposits and interpreting the local glacial history of the
Standish 7.5—-minute quadrangle. Two maps depicting the sur-
ficial geology (Gosse, 1999) and surficial materials (Gosse,
1998) for the Standish area are associated with this report. All
data collection sites (ST-90-#) referred to in the following text
and Appendix A are plotted on the surficial materials map. Ap-
pendices summarize important surficial and glacial geologic
data collected from the Standish quadrangle.

GLACIAL AND POSTGLACIAL DEPOSITS
Overview

Our understanding of the deglacial history of southern
Maine has greatly improved over the last three decades (Bloom,
1960; Stuiver and Borns, 1975; Thompson, 1982; Borns, 1985;
Smith, 1985; Belknap and others, 1989) although many impor-
tant details remain unresolved, particularly the late-glacial chro-
nology of ice recession. The late Wisconsinan Laurentide ice
sheet advanced south and southeastward over the present Maine

coast and onto the continental shelf where it reached its
maximum extent by about 18000 years ago (18 ka). Crustal sub-
sidence on the order of 100 m resulted from the weight of this late
Wisconsinan ice. The majority of surficial deposits exposed at
the land surface in the Standish quadrangle were formed during
the recession of this ice sheet.

For convenience of presentation, the late-glacial and post-
glacial surficial deposits mapped in the Standish quadrangle
have been classified into three facies, in accordance with Read-
ing (1986): aglacial facies, a glacial-retreat eustatic facies, and
a postglacial isostatic facies. Terrestrial and marine deposition
of these facies is well recorded here. In the Standish region the
glacial facies is characterized by an extensive but sporadic till
veneer and associated glaciofluvial deposits. Rapid stagnation-
zone retreat (Koteff, 1974; Koteff and Pessl, 1981) of the Late
Wisconsin Laurentide ice sheet northwestward from the Gulf of
Maine occurred between 15 ka and 13 ka (Tucholke and Hollis-
ter, 1973; Smith, 1985; Thompson and Borns, 1985). The retreat
slowed when the glacier margin reached the Bar Mills area to the
south of Standish (Hunter, 1999a,b) by about 13.2 ka (Smith,
1985). The retreat was accompanied by a marine transgression
over ice-free regions where isostatic uplift had not yet reached
equilibrium with eustatic sea-level rise (Bloom, 1960; Stuiver
and Borns, 1975; Smith, 1985). The marine limit in the Standish
region was approximately 300 ft (91 m) above the present sea-
level (Figure 1). Consequently, the entire southern half of the
Standish quadrangle (plus lowlands in the northern half) experi-
enced submergence by the sea in late glacial time. During this
transgression, glacial-retreat eustatic facies marine and gla-
ciomarine sedimentation occurred. Relatively coarse sediments
near the glacier margin formed glaciomarine deltas and fans
(ice-proximal deposits) while further away from the margin ma-
rine clays and fine silts settled on the sea bottom (distal deposits).

By about 11 ka (Thompson and Borns, 1985) accelerated
isostatic rebound of the depressed crust began to force the sea to
recede. The falling relative sea-level during marine regression
caused many of the glaciomarine deposits (especially those
which were paleobathymetric highs) to be eroded and redepos-
ited as beaches and overwash or nearshore deposits. The depos-
its formed during this period of time, when isostatic rebound was
rapid enough to cause marine regression, are referred to as the
postglacial isostatic facies . The resulting regional surficial ge-
ology was mapped using the units summarized in Table 1 and is
described in detail below. The surficial deposits are categorized
according to depositional environment.

Terrestrial Deposits

Terrestrial glacial deposits are composed of sediments
which were deposited on land. The majority of terrestrial depos-
its therefore lay above the marine limit. If terrestrial sediments
lay below the marine limit, they were deposited before marine
transgression. In the Standish region, extensive deposits of #ill
(map unit Pt; Table 1) are located above and below the marine
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TABLE 1: UNITS SHOWN ON THE SURFICIAL

GEOLOGY MAP

Description

Generally well-sorted and stratified silt, sand, and gravel deposited by modern rivers and streams.

Former flood plain with flat depositional surface on fluvial sediments. The terrace surface is higher than the modern

Poorly drained wetland area with variable tree cover, commonly associated with Pp and standing water; includes

Well-sorted massive to finely laminated silt to coarse sand. May be formed with Pp, as distal facies of Pmd or Pmf,
or during regression of the sea as a result of wave reworking of Pmd or Pmf.

Greenish-gray to bluish-gray marine silt and clay, usually occurring as random laminite but often massive. Occurs

Laterally extensive and thick packages of sorted and commonly interbedded sand and gravel, with well developed
foreset beds. Topset beds are present or inferred. Grades seaward to Pmrs or Pp, which commonly overlies distal fa-
cies. If present, subscript refers to marine delta morphosequence (Table 2, Figs. 4 and 5). Delta surfaces often show
evidence of wave reworking. Deposited by glacial meltwater discharge into late-glacial sea. Commonly kettled.

Thick packages of sorted and commonly interbedded sand and gravels. Foreset beds commonly well-developed.
No topset beds. Grades seaward to Pmrs or Pp. Closely associated with Pemc. Formed by meltwater discharge into

Sinuous, generally discontinuous, ridges of massive and stratified, commonly interbedded, glaciofluvial sand and
gravel deposited in subglacial and englacial conduits during glacial retreat. Cobble to boulder-size clasts are com-

Highly deformed, interbedded, well-sorted, internally massive and bedded, very fine to coarse sands and gravels.
Commonly shows evidence of deformation, including reverse and thrust faults and folding resulting from ice con-

Cluster of closely- (and often evenly-) spaced ridges comprised of till or poorly sorted stratified sediment, deposited
at the ice margin. Usually with variably-thick veneers of Pp or Pmrs. Can also contain subaqueous fans.

Symbol Unit
Ha Alluvium
Qst Stream terrace
flood plain of the associated river or stream.
Hws Swamp
marshes and heaths.
Pmrs Marine regressive sand
deposits
Pp Presumpscot Formation
as variably thick veneer below the marine limit, overlying older units.
Pmd Marine delta
Pmf Marine fan
late-glacial sea.
Pge Esker
monly highly rounded and spherical. Associated with Pmd.
Pgi Ice-contact stratified drift
tact, or evidence of collapse in the form of normal faults.
Pemc End moraine complex
Pt Till

Homogeneous, locally compact, poorly sorted mixture of a wide range of particle sizes ranging from silt to boul-
ders. Unit is widespread but of very variable thickness (typically 0 to 5 m). Associated with bedrock highs. Both
lodgement and melt-out tills identified. The lodgement till is the oldest surficial unit and can therefore be overlain

by all others.

limit (Figures 2a, b). Terrestrial till is a glacial facies which out-
crops in the northern portion of the map sheet, generally above
the marine limit. Most terrestrial till is a massive, poorly sorted,
homogeneous, and moderately compact silty diamicton. The till
has a wide range of clast sizes (pebbles to boulders) and clast li-
thologies which reflect the regional and local bedrock geology.
Most terrestrial till occurs as a thin veneer on highlands above
300 ft (91 m) asl. Examples of terrestrial till occur on Oak Hill
(ST-90-059) and Breakheart Hill, where till thickness rarely ex-
ceeds 2 m and is commonly associated with protruding striated
bedrock. In topographic lows, such as west of Oak Hill (ST-90-
117), the till is generally thicker and often overlain by Holocene
(postglacial) fluvial or lacustrine sediments. Based on their
compaction and association with underlying bedrock, most ter-
restrial tills here are interpreted to be lodgement tills, although
rare lenses of sorted sediment may indicate the presence of
melt-out till. A till fabric at site ST-92-083, west of Bonny Eagle,
indicates that the unit is characterized by a strong clustering of
pebble long-axis orientations (S;=0.64 for 30 pebbles, Figure 3),
which supports the interpretation that the terrestrial till was de-
posited through a lodgement process (‘deformed lodgement till';

Dowdeswell and Sharp, 1986). It is conceivable that a discon-
tinuous but extensive lodgement till was deposited subglacially
over the entire region during glacial advance, but below the ma-
rine limit this unit has been concealed by marine deposits which
were subsequently emplaced during glacial retreat and marine
transgression. This stratigraphic relationship was found at site
ST-92-083 (Figure 2b) where the lodgement till is overlain by
glaciomarine silts (Pp, described below) and gravels (Pmd, de-
scribed below).

Rare deposits of ice-contact stratified drift (map unit Pgi;
Table 1) occur only along the flanks of hills (e.g. ST-90-218,
800 m west of Standish), probably due to the ponding of meltwa-
ter between the ice and hill. The stratified drift is comprised of
interbedded, well-sorted, internally massive and bedded sands
and gravels that are highly deformed, with fold axes perpendicu-
lar to the general direction of ice flow (Table 3).

In the Standish region, eskers (map unit Pge; Table 1) are
sinuous, discontinuous ridges up to 7 m high, comprised of mod-
erately to very well sorted sands and gravels characterized by
well-rounded and spherical clasts up to about 1 m in diameter.
Below the marine limit, the eskers have been reworked to vari-



TABLE 2. SUMMARY OF OBSERVATIONS ON MAJOR GLACIOMARINE DELTAS IN THE STANDISH REGION
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Delta # Pmd; Pmd» Pmds Pmds Pmds Pmds Pmd; Pmds
Name Grovevillet | Finn Parker Rocky Plains Rdf Chicopeet Dingley Bonny Eagle Saco
Rdt Dundee Rd Spring Rdf
Delta ID. no.t 21 20 N/A 16 19 18 N/A 17
Delta Type* Esker-fed, Distal Distal
Ice-contact} | Ice-contact} | Leeside, [ce- | Ice-contactt | Ice-contactf Leesidet outwash, outwasht
contact Ice- contact?; | Ice-contact?
Esker-fed
Maximum Known Thickness 85 ft [347] 69 ft [311] 35 ft [330] 98 ft [332] 32 ft[322] 39 ft [219] 86 ft [343] 79 ft [346]
[site#]
Morphology steep ice- steep ice- moderately | very steep ice-| moderately | very steep ice-| partial ice- | no ice-contact
contact slope; | contact slope steep ice- contact slope steep ice- contact slope | contact slope slope
wave-cut contact slope | (100 ft drop) | contactslope | (50 ft drop)
terrace
Grading yes: B-S yes: B-S yes: C-S yes: B-S yes: C-S yes: C-S yes: C-St yes: C-S
Striated Clasts Found at Ice not observed | not observed no till stones and |  till stones not observed | not observed no
Marginal Sites diamicton
clumps
Kettles yes yes yes yes yes yes yes yes
Foundered at Marginal Site normal not observed normal normal faults | normal faults | not observed | silt-clay filled | normal faults
faulting faulting and depression,
interrupted normal faults
bedding
Recessional Facies or Topset / ? Recessional | Recessional | Recessional | Recessional 300 ft ** Recessional | Recessional
Foreset Contact Elevation (beach)
Comments Beach at Blocked to Dissected by { Spit formed limited limited
185 ft south by Saco River | at distal edge exposure exposure
stagnant ice

+ from Thompson et al., 1989
* Refer to Figure 6 for location of deltas
** W.B. Thompson, pers. commun., 1993

able degrees and are often characterized by shallower slopes and
flatter, broader tops (Bonny Eagle Pond esker, ST-90-062). Due
to poor exposure, an interpretation of subaerially—deposited
channel filling cannot be ruled out for the glaciofluvial gravel
ridge situated north of Watchic Pond (C. Koteff, 1992, pers.
commun.). Although esker deposits are here considered terres-
trial facies, Boulton (1990) points out that eskers can also form
beneath marine-based ice.

A discontinuous sheet of loess (silt layer generally less than
50 cm thick) blankets much of the quadrangle. No eolian sand
dunes were observed from air photos or identified while map-
ping, but dense forest canopies may easily conceal any small
dune patches that are present.

Marine and Glaciomarine Deposits

Below the marine limit, the till (map unit Pt) commonly oc-
curs as end moraine deposits which are interfingered with or
covered by various marine and glaciomarine sediments. This
submarine till is a glacial retreat eustatic facies which resembles

the glacial facies terrestrial till (described above), but often has a
higher clast content and a more clay-rich matrix. The end mo-
raine tills are also characterized by a lower degree of compaction
and a weaker pebble fabric (S;=0.47 for 30 pebbles, Figure 3)
relative to the lodgement tills. Such a low fabric strength is typi-
cal of debris flows (Dowdeswell and Sharp, 1986) and therefore
supports a subaquatic debris-flow origin for the end moraines as
suggested by Smith (1982).

Striking exposures of end moraines occur extensively over
the southern half of the Standish quadrangle. Most of the end
moraines are curvilinear till ridges that are laterally continuous
for over 500 m (about 0.3 mi). Where the end moraines occur as
sets of closely- and generally regularly-spaced ridges with only a
thin clay cover, they have been mapped as end moraine com-
plexes (map unit Pemc, following Hunter, 1999a,b; Table 1).
The typical height of the moraine ridges in these complexes av-
erages about 6 ft (~2 m), but may reach as high as 12 ft (3.5 m).
This relief is partly a function of the thickness of the marine clay
veneer and extent of ridge truncation during marine regression.
The average ridge-to-ridge spacing of the end moraines is about
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Figure 2. Schematic representations of measured stratigraphic pit sections that represent the main glacial and glaciomarine facies in
the Standish region. The base of each section was not exposed. Index to abbreviations is provided in Appendix A. ST-90-006, south-
west of Groveville; ST-90-083, west of Bonny Eagle; St-90-033 and 036, 1 mi northeast of Groveville. A. Typical marine fan sedi-
ments. These sections are 70 ft apart. Section ST-90-006-2 exposed the very coarse proximal fan facies with an underlying gravelly
diamicton, interpreted to represent the seaward flank of an end moraine. These very poorly sorted upper gravels of ST-90-006-2 rap-
idly grade seaward to the fine sand and silts shown in the upper 4 ft of ST-90-006-1. B. At ST-90-083, glaciomarine sediment over a
compact diamicton interpreted to be lodgement till. The lodgement till differs significantly from the end moraine till at ST-90-006-2
as discussed inthe text. C. Typical proximal (ST-90-036) and mid-distal (ST-90-033) glaciomarine delta stratigraphy. Both sections
are from Pmd,, but not along a single paleoflow direction. The gravels in the uppermost 5 ft are interpreted to be recessional facies
sediments but, may be delta topset beds. Delta foreset beds are well preserved at ST-90-033. (The * indicates the approximate depth

of the till fabric shown in Figure 3).

230 ft (70 m). If these end moraines were deposited annually
they can be considered deGeer moraines (Smith, 1982). Where
postglacial trellis and dendritic drainage has incised the marine
and glaciomarine sediments of the emerged sea floor, the result-
ing trough-ridge morphology often closely mimics the morphol-
ogy of end moraine complexes. Only areas with unambiguous
moraines with thin clay cover have been mapped as Pemc. Else-
where, in areas with thick marine sediment cover or where the
paleo sea-floor relief is of uncertain origin, the surficial materi-
als are mapped as Presumpscot Formation or regressive sandy
marine deposits (Pp or Pmrs; described below).

Closely associated with, and generally occurring seaward
of the end moraines, are submarine fan deposits (map unit Pmf;
Table 1). The fans are a glacial retreat eustatic facies consisting
of interfingering units of fine sand to boulder gravel of variable
thickness (Figure 4). Grain size decreases and sorting increases
seaward and away from associated end moraines and ultimately
the fan deposits grade into the Presumpscot Formation (Pp, de-
scribed below). Southwest of Groveville (ST-90-006) proximal
boulder and cobble gravel of a marine fan grades seaward into
fine sand and the Presumpscot silty unit over a distance of only
70 ft (21 m) (Figures 2a, 4). Fans are characterized by foreset
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n=230
S1 =047

ST-90-083 ST-90-013
deformed lodgement till end moraine

Figure 3. Combined rose and contoured diagrams of pebble fabric data from two till localities. A till fabric is a means of describing
(1) the strength of the alignment of the longest axis of pebbles and (2) the direction of the strongest pebble alignment. For this study,
the orientations of 30 pebbles with long axis between 5-30 cm were measured with a compass. The selection of the fabric site and the
pebbles was according to the method of Lawson (1979) and Drake (1974). We used the eigenvalue method to evaluate the strength of
the three-dimensional alignment of these pebbles (i.e. the tendency of all the pebble long axes to cluster about a single direction in
space). Eigenvalue S; measures the strength of clustering in the direction of maximum clustering of pebble long axes (S; of 1.0 would
indicate that all clasts are exactly aligned). The contours plotted on the Schmidt equal-area projections, with contour interval of two
standard deviations (Kamb plot), show graphically the strength and orientation of the pebble fabric. So, two pieces of information can
be obtained from the pebble (till) fabric. We can say something about the origin of the deposit by comparing the calculated S, values
for the deposit with S, values for deposits of known genesis (lodgement till should have strong fabric, a debris flow should have a
weak fabric, Dowdeswell and Sharp, 1986). Ifthe deposit is a till, and if the fabric is strong, the direction of ice flow may be implied
from the orientation of the stongest clustering (maximum eigenvector). The rose diagram (shaded slices of pie in each projection)
reveals the direction (not strength) of the pebble orientations.

Figure 4. Examples of active sand and gravel pits in the Standish region. (a) Site ST-90-006, southwest of Groveville. Grading and
paleoflow toward the left. Electrical tower (scale) stands on proximal part of the subaqueous fan, near the end moraine. Dark unit in-
dicated with an arrow consists of distal silt and fine sand, mapped as Presumpscot Formation, which interfingers with the subaqueous
fan sediments. (b) Delta foreset beds exposed in active sand and gravel pit at site ST-90-008, north of Groveville. Section approxi-
mately 40 feet high. Overlying topset gravels have been removed at this site, but were present in situ elsewhere in the pit.
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Figure 5. Vertically exaggerated diagram showing the components of an ice-contact delta environment. Small arrow under the ice in-
dicating the flow direction of the sediment-laden meltwater could also represent an esker channel which feeds the delta. Normal
faults and large-scale folding are evidence of deformation at the ice-contact portion (back slope) of the delta. Topset beds shown are
predominantly comprised of cobble gravels; Foreset beds: sand; and Bottomset beds: silt.

TABLE 3. ICE FLOW DIRECTION DATA FOR THE
STANDISH QUADRANGLE.

ST-90-ID refers to sample sites on Materials map. Indicators of ice flow direc-
tion include striae, S; grooves, G; stoss-and-lee forms on bedrock, SL; till fabric,
TF (see Fig. 3); and fold axes of folded stratified drift, FA (the fold axes trend per-
pendicular to the implied glacier-induced principal stress direction). Azimuth of
ice flow given in degrees. Uncertain or poor data have been excluded. findicates
older of two ice flow directions recorded at a single site.

ST-90-ID Indicator Azimuth
051 S 168
S 100
S 115
056S S 152-160
G 180"
083 TF 167
086 S 180
096 S 189
100 S 168-178
G 192
120 G 156
131 G 152
S 140
132 S 180
133 GS 149-154
S 180"
177 S 169
211 S,SL 157
218 FA 210

beds without the overlying topset beds that occur in deltas (Fig-
ure 5). By definition then, no portion of the fan was subaerial
during deposition. The fans can be cone-shaped where they radi-
ate from a point source on an end moraine, but more commonly
form wedges that extend along moraine ridges for several hun-
dred meters (ST-90-006). The fans are interpreted to have been
deposited contemporaneously with the end moraines from
which they prograde and therefore mark ice marginal positions.
Unless mappable as an individual deposit, the fans have been
mapped as part of the encompassing end moraine complex unit
(Pemc) or as sandy marine deposits (Pmrs).

About one third of the map sheet is occupied by glacioma-
rine deltaic sediments (map unit Pmd; Table 1). All of the deltas
within the quadrangle are Gilbert-type deltas with thick foreset
units (Figures 4b, 5) that are composed of variably interbedded
and usually well-sorted fine sand to cobble gravel with dips lo-
cally as steep as 33° or more. Like the fans, deltaic sediments
grade into marine clay (Figure 5). Also, some of the fine sand
mapped as Pmrs along delta fringes may actually be deltaic bot-
tomset beds or distal foreset beds (Figure 5).

Deltas have topset beds which overlie the foreset beds. The
topset units are generally poorly sorted sand to gravel beds, usu-
ally with fluvial cross-bedding which indicates a seaward paleo-
flow direction. While the delta is forming, the topset beds are
deposited at least partially above water level (Figure 5), so the
contact between topset and foreset beds is commonly used to es-
timate what the sea-level elevation was during the formation of
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the delta (e.g. Thompson and others, 1989). The interpretation
of thick (up to 3 m) packages of gravels which in places uncon-
formably overlie foreset beds (Figure 2¢) throughout the Stan-
dish quadrangle requires more detailed investigation. Itappears
that true topset beds are preserved on only two deltas (Pmd,; and
Pmdg; Table 2) although this interpretation is tentative. The
topset gravels that were originally deposited on other deltas were
eroded and redeposited as postglacial isostatic facies overwash
and beaches. Recessional overwash sediments identified at
Pmd; (ST-90-097) are subhorizontally bedded, moderately
sorted gravels. In other areas the gravel deposits which overlay
the foreset beds have characteristics of fluvial topset beds (e.g.
trough cross-bedding, ST-90-045, 270 ft (82 m) asl and ST-90-
220,305 ft (93 m) asl), yet the paleoflows indicated by the gravel
cross-beds are often landward, counter to the seaward flow an-
ticipated for fluvial topset deposition. The recessional facies has
been mapped as a part of the underlying marine delta until fur-
ther detailed study resolves this ambiguity. Powell (1990) ar-
gues that many ice-contact marine deltas have developed from
grounding-line fans when the fans aggrade to the contemporane-
ous sea-level. The distinction between aggrading fans and in-
cipient deltas is a difficult one and discernible only if well
developed topset beds or prodelta rhythmites are present (which
have rarely been identified with certainty in the Standish region).
The absence of marine clay over the deltas in the Standish region
is not surprising, considering they were deposited near maxi-
mum transgressive sea-level.

Depositional environments of all four delta categories de-
scribed by Thompson and others (1989) are represented in the
Standish quadrangle (Table 2) due to the optimum position along
the marine limit. The Groveville (Pmd;), Finn Parker Road
(Pmd,), Plains Road (Pmd,), and Chicopee (Pmds) deltas all
have characteristics of ice-contact deltas (Table 2). All have
steep ice-contact slopes, none are definitely esker-fed, and all
have characteristics in their proximal parts which indicate that
the deltas were deposited from an ice margin: coarse bouldery
and cobbly gravel (all), striated or angular clasts (Pmd, and
Pmds), structures indicating foundering due to melting of ice
supports (all except Pmd,), and kettles. According to Thompson
and others (1989), leeside deltas occur on the seaward sides of
hills that protruded above the contemporaneous onlapping sea.
The deltas were fed through gaps in the hills by debris-laden
meltwater streams discharging from ice that was pinned on the
landward sides of the hills. Two deltas in the Standish region
(Rocky Dundee Road (Pmd;) and Dingley Spring Road (Pmds))
have this association with the regional topography; however no
definite meltwater channels were identified. The presence of
kettles in the central parts of these deltas may have resulted from
ice blocks stranded in the lee of the ridges (Thompson and oth-
ers, 1989), reinforcing the role of topography in the depositional
environment. The presence of well-rounded and well-sorted
cobble gravels in esker-shaped deposits (ST-90-98) suggests
that Pmd; may also have been an esker fed delta. Unfortunately
much of this exposure has been removed so definitive interpreta-

tions are difficult. The depositional environments of the Bonny
Eagle (Pmd;) and Saco (Pmdg) deltas remain problematic.
Thompson and others (1989) interpreted Pmdg as a distal out-
wash delta on the basis of the distance from the contemporane-
ous ice margin, however they admit that the presence of kettles
(especially evident in the adjacent Limington quadrangle) may
indicate an ice-contact origin. Likewise, Pmd; appears to range
from esker-fed to outwash (the latter transported through a con-
fined meltwater channel between Elmwood and Dow Corner).
The presence of major ice-foundering structures in the distal fa-
cies of this delta (ST-90-129) forces attention to possible ice-
contact conditions. These two deltas have not been considered
useful morphosequence deposits because of the uncertainty of
their origin relative to the ice margin.

Figure 6 shows the longitudinal profile of glaciomarine
deltas Pmd, through Pmds. These deltas are components of gla-
ciomarine morphosequences (Koteff, 1974, and Koteff and
Pessl, 1981) which are useful for delineating the contemporane-
ous ice-margin positions. Glaciomarine morphosequences as-
sist in interpreting the nature of deglaciation in the Standish
region. The orientation of the longitudinal profiles is approxi-
mately parallel to the paleoflow direction indicated by foreset
bedding (see the index map of Figure 6). The profiles are drawn
in order of deposition from right to left. As the ice margin re-
treated north-northwestward, Pmd; was deposited first, fol-
lowed by Pmd,, Pmds, and Pmdg (refer to the index map). On the
surficial geology map, tracing the ice margin position from delta
ice-contact slopes along adjacent end moraine ridges indicates
that the deposition of Pmd; would have been approximately coe-
val with Pmd,. Accordingly, the proximal (near-ice) end of the
Pmdj; profile in Figure 6 is drawn directly below the proximal
end of the Pmd, profile. A similar extrapolation of end moraines
and delta ice—contact slopes for Pmd, and Pmds suggests that
Pmd, was completely deposited before or during the deposition
of Pmd5

Distinct benches and terraces are evident at elevations be-
tween 280 ft (85 m) and 250 ft (76 m) asl on most delta profiles in
the Standish quadrangle. This suggests that local relative sea-
level was stabilized for a period of time during marine offlap.
This 30 ft (or greater) zone with evidence of wave erosion may
mark one or several significant stillstands in the relative sea-
level drop. More complete erosion and redeposition of delta
topset sediments would have resulted during periods of signifi-
cant sea-level stillstands, relative to topset beds situated at
higher or lower elevations. The only two beach remnants identi-
fied with confidence in the Standish region—northeast of Kim-
bles Corner (ST-90-167) and east of Groveville
(ST-90-030)—TIie at the top of the zone at an elevation of 285 ft
(85 m) asl. Aburied nearshore deposit (elevation ~260 ft (79 m)
asl) was found north of Groveville (ST-90-052; sand pit section
revealed a cross-sectional view of a thick and laterally extensive
lensoid deposit of sand and gravel with alternating cross-
bedding dip attitudes—interpreted to be a spit, underlain by silty
and clayey Pp and overlain by sandy beds).
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Profiles of Major Glaciomarine
Deltas in the Standish region

Figure 6. Longitudinal profiles for six deltas in the Standish quadrangle. The inset map shows the outlines of major glaciofluvial and
glaciomarine deposits. Elevations were taken from the 7.5-minute (1:24,000) topographical map. The orientation of the profile lines
(indicated by the arrows in the inset map) is approximately parallel to the mean paleoflow directions indicated by delta foreset beds
(Table 4), and approximately perpendicular to topographic contour lines. The maximum elevation along 600 ft segments which cut
perpendicular to the profile line was used to plot the profile in order to average out the minor variations in relief due to ice disintegra-
tion features. The numbers 1 - 6 correspond to the marine deltas described in the text and Table 2, as shown in the inset. The dotted
lines are contours at 250 ft and 280 ft asl which are drawn to emphasize the elevations of increased delta erosion and redeposition dur-
ing prolonged sea-level standstills. Ice margin retreat (and order of deposition) was from right to left, as discussed in the text. The two
profiled sequences (1-2-5-6 and 3-4) are arranged horizontally to indicate relative age of deposition (oldest to the right). Deposition
of deltas 3 and 2, and deltas 4 and 5 is considered approximately contemporaneous. Positions of the beaches are based only on their
approximate elevations taken from the topographic map. The delta altitudes (at the ice-contact end) increase with their depositional

order (Pmd, is the lowest). This is expected for a series of marine delta morphosequences that have been tilted by isostatic uplift.

The Presumpscot Formation (map unit Pp; Table 1) is the
glaciomarine silt and clay found extensively below the marine
limit (Bloom, 1960). The Presumpscot Formation consists of
rock flour that flocculated and settled to the sea floor during ma-
rine submergence. Thickness of the clay-silt glacial retreat
eustatic facies varies considerably, being thickest (at least 15 ft
near Tylers Corner) in paleo sea-floor depressions. In the Stan-
dish quadrangle, the noticeable lack of laminite (laminated ma-
rine sediment) comprised only of clay is attributed to the shallow
marine environment where coarser components (sand and silt)
accompany the clay. Voluminous, uninterrupted accumulation
of clay would only have been possible in paleobathymetric lows

when maximum sea level was reached and where the water depth
was sufficiently below the effective wave base. To the author's
knowledge, no shells have been found in the Presumpscot For-
mation anywhere within the Standish quadrangle. Due to their
impermeability, Pp deposits can form significant aquitards and
are responsible for the majority of the wetlands in the quadran-
gle.

The coarser facies of the marine sediments (Pmrs) is char-
acterized by well-sorted silt and fine to medium-grained sand.
Most of the Pmrs unit was deposited during marine regression
and is an important postglacial isostatic facies. Sediment eroded
from deltas and other submarine highs was redeposited as over-
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TABLE 4. MELTWATER PALEOFLOW DIRECTIONS FOR GLA-
CIOMARINE DEPOSITS IN THE STANDISH QUADRANGLE.

ST-90-ID refers to sample sites on Materials map. Surficial deposits include gla-
ciomarine deltas (Pmd) and fans (Pmf). The mean direction of paleoflow (in de-
grees) is inferred from the dip direction (trend) of foresets (f) and cross-beds in
topsets (t). Ambiguous measurements are indicated where bedding may be dis-
turbed or collapsed (d) or genesis of bedding is uncertain (?).

ST-90-ID Deposit Trend Dir. Mean
002 ?7Pmd 205 205
006 fPmf 160 160
007 fPmf 220 220
008/039/040  fPmd 228,222,249 233
025/026 fPmf 172 172
033/034/035  fPmd 110 110
036 dPmd 026 026
045/046 fPmd 270,336 303
052 fPmd 106 106

?Pmd 070 070
061 fPmd 300 300
085 fPmd 250 250
088/220 fPmd 150,160 155

fPmd 270 270
097 dPmd/f 200,210 205
129 fPmf/d 138 138
146 ?tPmd 230 230
219 fPmd 295,310 303

wash deposits or more commonly as wedges of fine sand which
extend seaward from the deltas, fans, or moraines from which
they were derived. Some materials mapped as Pmrs, especially
in the Saco Valley, may have been deposited fluvially by early
postglacial stream action. The thickness of the Pmrs sediments
is variable but generally less than 14 ft (4 m). Unit Pp and unit
Pmrs are closely associated with fans and deltas (Figure 5) so de-
lineation of certain unit boundaries was often arbitrary but usu-
ally accurate to 330 ft (100 m).

During offlap of the sea, sediments on paleobathymetric
highs (bedrock hills or deltas for example) were eroded and re-
deposited as shoreline deposits or Pmrs. Shoreline deposits
found in the Standish quadrangle include beach berms (here,
characterized by openwork and highly imbricated pebble grav-
els and interbedded sand to granule beds which dip both land-
ward and seaward; ST-90-030; ST-90-167) and a spit deposit
(ST-90-052). It should be pointed out that imbricated gravels
can also be deposited at the proximal end of grounding-line fans
(Powell, 1990), however those deposits would not be expected
to be as openworked as the sediments interpreted here as beach
gravels.

HOLOCENE GEOLOGY

During the Holocene, the Standish region witnessed
swamp formation and sparse alluvium deposition over the entire
area. Swamps (map unit Hws; Table 1) formed in depressions
that are commonly underlain by Presumpscot Formation clays
and silts or other impermeable sediments such as clay-rich till.
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The most extensive Holocene alluvial deposits (map unit Ha; Ta-
ble 1) occur as flood plain sediments and gravel bars along the
Saco River. No evidence of major rapid mass wasting was
found, despite the numerous localities of high angle and unstable
slopes in the region (especially along the Saco River). The stra-
tegic position of impermeable clay beds (commonly exposed in
the river cut sections (ST-90-010)) that could increase lubrica-
tion and instability of overlying sediment packages makes
mass-wasting events highly probable in these areas. Although
no colluvium has been mapped, slope processes probably have
lowered hillside gradients and partially filled valleys (for exam-
ple, the valley between Dow Corner and Elmwood.)

MARINE LIMIT DELINEATION

The marine limit elevation in the Standish area was esti-
mated using a number of field and geological principles. Quater-
nary marine features were identified to elevations of at least 310
ft (94 m) asl in the northern portion of the quadrangle. This is the
highest elevation of marine sediments (they may be delta topset
beds) and so are taken as an upper limit of the maximum late-
glacial sea-level elevation in this quadrangle. The highest eleva-
tion of the Presumpscot Formation clays and silts, 300 ft (91.4
m) asl in the northeastern portion of the quadrangle, provides an-
other approximate estimate of the maximum late-glacial relative
sea-level elevation. Glaciomarine clay and silt deposition oc-
curred below the contemporary marine wave base, so this esti-
mate is lower than the actual marine limit elevation. The
presence of till-stone fences is considered another useful (albeit
much less accurate) method of approximating the marine limit.
In Maine, the construction of rock walls from till stones com-
monly accompanied land clearing for cultivation (although re-
cently they have been used as a garden ornament). Few
till-stones would be exposed in fields with a marine sediment ve-
neer, so till-stone fences should not be found significantly below
the marine limit. In the Standish region the lowest mapped ecle-
vation of till-stone fences is approximately 290 ft (88 m) asl,
which is lower than (but close to) the two previous estimates of
the marine limit elevation. Delta foreset-topset contacts record
the sea-level elevation at the time of their formation. Thompson
et al. (1989) have used this technique in a study of glaciomarine
deltas in Maine. Their data also indicates that the marine limit
was about 300 ft (91 m) asl (Table 2; see their Figure 2). Beach
elevations and wave-cut terraces do not indicate maximum sea-
level elevation (the marine limit), but rather are indicators of re-
cessional phase sea-level strand lines.

GLACIAL AND POSTGLACIAL HISTORY
Ice Flow Direction

Ice flow direction (Table 3) was determined locally from
glacial erosional features (nail head striations and crescentic and
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lunate gouges - 11 sites), till fabric analysis (near Bonny Eagle,
ST-90-083; Figure 3), orientation of streamlined landforms and
end moraine ridges, and fold axes in glaciotectonized ice-contact
stratified drift (just west of Standish, ST-90-218). Two distinct
ice flow directions dominate the area. Although it is almost cer-
tain that pre-Wisconsin Laurentide ice covered the Standish re-
gion, both flows are interpreted to be of late Wisconsinan age
(most recent glaciation) due to the lack of evidence to the con-
trary. At two sites, cross-cutting striations and grooves clearly
constrain the relative ages of the last two flow directions in the
Standish region. Indicators of an initial southward (180°-192°)
glacial advance are cross-cut by evidence of south to southeast
(140°-178°) flow which was influenced by the local topography
during glacial retreat. Notably, this ice flow relationship does
not agree with the regional ice flow pattern, which is character-
ized by a southeastward initial flow. In the Standish quadrangle,
it appears that the earliest flow direction was the southward ad-
vance of the late Wisconsin ice. This initial flow direction is re-
corded solely by erosional marks. However, it is possible that
the later southeast flow may have also occurred during peak late
Wisconsin glaciation, since this is the dominant regional direc-
tion (Thompson and Borns, 1985). The later flow direction may
also be the deglacial-phase flow which trends from southward in
the western portion of the map sheet to southeastward in the east-
ern half of the map sheet. The larger range of directions (com-
pared to the earlier southward flow) for this later flow, expressed
by erosional marks, the till fabric, and particularly the orienta-
tions of end moraine ridges throughout the area, probably re-
flects the greater control of topography on the flow of the waning
ice sheet. The orientation of the streamlined bedrock-cored hill
situated south of Bonny Eagle Pond trends parallel to this later
(SE) ice flow direction. The pebble fabric in deformed lodge-
ment till at ST-90-083 also records the influence of a later south-
eastward flow which is interpreted to have altered an original
southward-trending lodgement till fabic. This relationship at
ST-90-083 is confirmed by nearby cross-cutting striac and
grooves.

Deglacial Model for the Standish Region

The qualitative lithofacies model for the deglaciation of
Maine proposed by Thompson and Borns (1985) is appropriate
to understanding the surficial geology in the Standish area. For
other works which describe the glaciation and deglaciation of
southern and eastern Maine the reader is referred to Ashley et al.
(1991), Borns (1973), Smith (1985), Stuiver and Borns (1975),
Thompson (1982), and Weddle et al. (1993).

Morphosequence mapping as described by Koteff (1974)
and Koteff and Pessl (1981) was used to help delineate the type
and progress of ice marginal retreat through the Standish area.
Morphosequences are simply groups of associated deposits (e.g.
eskers and deltas) which were deposited in a sequence that was
controlled by the retreating ice. Useful morphosequences in the

Standish region are: (1) the pervasive end moraine and associ-
ated submarine fan sequences, and (2) the glaciomarine deltas
and feeding esker systems. The lateral continuity of individual
moraine ridges across the map area suggests that where the topo-
graphic relief was lowest (at least on the scale of this map sheet)
the ice margin retreated in a regular and organized manner. The
absence of these well-developed end moraines in the northern
portion is mostly attributed to the increase in influence of glacial
hydraulics and a greater subglacial and sea-floor relief on ice
margin geometry. As described earlier, the glaciomarine (delta)
morphosequences record the systematic retreat of the ice across
the Standish quadrangle. Ice-contact, leeside, and esker-fed del-
tas were particularly useful for delineating the positions of the
retreating ice margin. The ice—marginal positions during delta
deposition (indicated by the steep delta ice-contact slopes,
esker-delta contacts, and intense ice disintegration features and
delta sediment deformation in the proximal parts of the deltas
(Figure 5)) can be correlated to end moraines so the ice margin
position across the entire map area can be approximated in sev-
eral places.

Figure 7 is a schematic diagram illustrating a possible rela-
tionship between the retreating ice margin and associated glacial
sediments during the deposition of Pmds. This position is
marked by an anomalous abundance of kettle features across the
map area (refer to the geologic map). The abundance of kettle
holes along this ice marginal position may reflect a significant
pause in the ice marginal retreat. Lodgement till (Pt) is shown to
be the lowest stratigraphic unit. Deltas Pmd;, Pmd,, Pmd;, and
Pmd, have already been deposited and are surrounded by the sea.
The morphosequences suggest an irregular but continuous gla-
cier margin which trends west-southwestward across the quad-
rangle. The possibilities of a floating vs. grounded margin were
considered in the Standish region. Both end moraines and sub-
marine fans can be deposited at the grounding line of either a
floating or grounded margin. If Alaskan tidewater glaciers are
an appropriate analogy, then the results of Brown et al. (1982)
seem to suggest that a floating margin in water depth on the order
of 130 ft (40 m) is possible for ice marginal thicknesses of less
than 100 m (the maximum depths of deltas in the Standish region
is about 98 ft; Table 2). However, as Thompson et al. (1989)
point out, the formation of delta topset beds (T, Figure 7) re-
quires that no ice shelf extend beyond the grounding line (Figure
5). Accordingly, only small portions (if any) of the margin could
have been floating when the margin was in the Standish region.
A thin, grounded, calving margin is portrayed in Figure 7 where
the contemporaneous sea level was against the ice. As the mar-
gin continued to retreat it would have uncovered the highlands to
the north. The greater topographic relief would produce a more
irregular ice margin geometry. Locally, smaller portions of the
ice would have remained in contact with the onlapping sea as the
margin approached and passed above the marine limit elevation.
The Saco River Valley to the northwest of the quadrangle would
most likely have been drowned by this marine transgression.
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Figure 7. Schematic block diagram illustrating an ice margin position and glacial sedimentation during the retreat of the Wisconsi-
nan ice sheet below the marine limit. Shadowed arrow indicates retreat direction. Location and geometry of the deposits are inferred
and are meant to represent the transgressive relationships, i.e. before major reworking during sea regression. Ice margin is mostly
grounded but calving in places. Paleo sea-level is estimated as described in the text. Units Pemc, Pmf, and Pmd are described in Table
1. Pmd numbers refer to specific glaciomarine deltas (Table 2). T = delta topset beds, K =kettle. Presumpscot Formation not shaded,
but would cover most of the sea bottom. Location of the ice margin in this figure approximately coincides with retreat positions
marked by a belt of ice disintegration features that extends across the map sheet (see the surficial geology map).

SIGNIFICANCE OF SURFICIAL DEPOSITS IN
THE STANDISH QUADRANGLE

The extensive and highly accessible deltaic and fan depos-
its are a significant high-grade aggregate resource for southern
Maine. Although there are several large sand-and-gravel pits
operating in the more exposed deposits (eskers and deltas),
well-log data indicates that a large amount of gravel and sand (on
the order of 1 km®) may still be available from this quadrangle.
However, much of this reserve is probably of lower quality and
less accessible than the material already mined, especially where
it lies below the water table in mapped sand and gravel aquifers
(Tolman et al., 1983).

The Standish quadrangle has a classic assemblage of Qua-
ternary glaciomarine sediments. Beautiful examples of gla-
ciomarine fans, deltas, and end moraines are preserved
throughout the quadrangle. The spectacular end moraine com-
plexes are among the best examples in North America. These
moraines are easily accessed by the roller-coaster—style roads
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which cross them. The usefulness of the glaciomarine deltas for
further constraining the history of sea-level change in southern
Maine is uncertain. Some deltas in the region appear to lack un-
ambiguous, well-preserved topset beds (the topset beds are re-
placed by recessional-facies overwash sand and gravel deposits)
so a closer inspection of these gravels is necessary before using
the gravel-foreset contact as a transgressive paleo sea-level indi-
cator. However, the beach deposits and wave-cut benches record
strand lines which will provide important information for ongo-
ing regional crustal uplift and sea-level studies.
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