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ABSTRACT

This report summarizes the Year One research in Maine of the Minerals
Management Service Continental Margins Program. More than 1000 kilometers
of high resolution seismic reflection profiles and 400 bhottom samples were
collected and investigated to elucidate the sedimentary framework of the
southwestern Maine inner shelf. On the basis of this, plus side-scan sonar
and submersible observations, the shelf may be divided into four
physiographic zones: Nearshore Ramps, Shelf Valleys, Rocky Zones, and
Outer Basins. These are distinguished on the basis of surficial sediment
texture and composition, geometry of sedimentary deposits, and late
Quaternary geological history. The driving force behind shelf gediment
deposition, and the process which unifies the shelf stratigraphic framework
is sea level change. Following deglaciation, the shelf experienced two
marine transgressions and a regression which led to sediment deposition and
erosion at various places across the shelf in the past 14,000 years.

INTRODUCTION

This report describes the submarine geomorphology, surficial
sediments, and Quaternary stratigraphic framework of the western Gulf of
Maine along the inner continental shelf of southwestern Maine (Figure 1).
Although reference iz made %0 pertinent terrestrial observations, the
research focuses on the nearshore region to a depth of 100 meters. Within
this area, bedrock of complex origin ranges in age from Precambrian to
Cretaceous; although Paleozoic intrusive and metamorphic rocks are the most
common coastal outcrops (Osberg and others, 1985). Bedrock is widely
exposed in the coastal zone and exercises a primary control on the
morphology of the shoreline (Kelley, in press). The region from Cape
Elizabeth south into New Hampshire and beyond has been termed the Arcuate
Embayments coastal compartment because numerous bedrock capes punctuate a
shoreline otherwise dominated by curved embayments composed of sandy
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beaches (Kelley, in press).

Like other shelf areas of New England and the Canadian Maritimes,
southwestern Maine has probably experienced numerous Quaternary
glaciations, and relatively thin glaciogenic sediment only partly mantles
submerged bedrock exposures (Needell and others, 1983; McMaster, 1984;
Piper and others, 1983). Unlike the outer regions of the Gulf of Maine and
beyond, however, local, relative sea level has fluctuated profoundly in
southwestern Maine due to isostatic crustal movements as well as eustatic
sea level changes related to growth and disintegration of the Laurentide
Ice Sheet (Stuiver and Borns, 1975; Schnitker, 1974; Belknap and others, in
press, b). Within the past 14,000 years the study area has experienced a
deglaciation, two marine transgressions, and a regression of the sea. It
is these changes in sea level, which have permitted a variety of
terrestrial and marine processes to repeatedly operate over the inner
shelf, that have established the regional stratigraphic framework, and most
significantly affected the nature of surficial sediments. The purpose of
this paper is to describe the surficial sediments of the area in the
context of a stratigraphic framework dictated by Holocene sea level
fluctuations.

PREVIOUS WORK

The terrestrial, surficial geology of southwestern Maine was first
summarized by Stone (1898) and mapped by Leavitt and Perkins (1935). These
workers recognized the glaciated nature of the landscape although confusion
existed regarding the formation of some partially stratified coastal
moraines. Katz and Keith (1917) mapped the Newington Moraine of New
Hampshire and southwestern Maine and interpreted interbedded till and
glaciomarine sediment as evidence for a climatic-scale readvance (Table 1).
Bloom (1960) mapped the region in more detail and established the late
post-glacial nature of the glaciomarine sediment. He called this material
the Presumpscot Formation and recognized that the land emerged below
present sea level following its deposition (Bloom, 1963). By dating fossil
shells in glaciomarine sediment interbedded with till in coastal moraines,
Stuiver and Borns (1975) established that retreating ice reached the
present shoreline of Maine around 13,200 years ago. They also bracketed
the time of deposition of the Presumpscot Formation between 13,200 and
12,000 years before present. Smith (1981) has demonstrated more recently
that the stratified morainal deposits of southwestern Maine formed as a
result of minor fluctuations in a generally retreating ice sheet and not
because of a climatic readvance. He has also mapped the southwestern Maine
area in great detail (Smith, 1982) and this mapping has recently been
compiled into a State surficial map (Thompson and Borns, 1985). A
generalized stratigraphic c¢cross section of Maine's surficial geology,
seaward of the limit of marine submergence, has been widely accepted
(Smith, 1985). Although complex in detail, the stratigraphic column
generally contains a coarse grained diamicton at the base (till, subaqueous
outwash, ice contact drift), a fine grained unit in the middle (Presumpscot
Formation), and a sandy deposit, locally thick near large rivers, at the
top. A ravinement (erosional) unconformity separates the upper sand from
the Presumpscot Formation and in the Kennebec River valley, northwest of
the study area, the upper sand has been mapped as the Embden Formation



Table 1

Quaternary Geology of Southwestern Maine and
Adjacent Inner Continental Shelf Region:

Study

Katz and Keith, 1917

Bloom, 1960
Bloom, 1963

Farrell, 1972

Oldale et al,, 1973
Folger et al., 1975
Stuiver and Berns,
1975

Hulmes, 1981

Smith, 1981

Smith, 1982
Thompson and Borns,
1985

Smith, 1985

Kelley et al., 1986

Luepke and Grosz,
1986

Previous Werk

Location
Southwestern Maine,
New Hampshire,
Massachusetts

Southwestern Maine

Southwestern Maine

Saco Bay

Southwestern Maine
shelf

Southwestern Maine
shelf

Coastal Maine
Biddeford Pool -
intertidal
Kennebunk

Coastal Maine
Maine

Southwestern Maine

Saco Bay

Saco Bay - subtidal

Data

Local, terrestrial
mapping of moraines

Regional terrestrial
mapping

Study of sea level
changes

Bottom sampling
Seismic profiling
Bottom sampling,
seigmic profiling

Study of sea level
changes

Vibracores
Terrestrial mapping
of moraines

Terrestrial mapping
of moraines

State surficial map
Regional terrestrial
mapping

Seismic profiling

Vibracoring and
heavy minerals



(Borns and Hagar, 1965). It is of note that in this glaciated landscape,
the present drainage system is poorly integrated, and numerous swamps and
lakes act as settling basins along stream courses. Derangement of large
streams is indicated by buried valleys on land, and numerous waterfalls
along the coast (Tolman and others, 1986).

Relatively little work has been published from within the study area
(Table 1). Farrell (1972) evaluated the texture of 75 grab samples from
inner Saco Bay and concluded that fine sand (3.4 phi mean) dominated the
bay bottom to the depth of wave base, or about 20 meters, At greater
depths muddier sand was present, but near Prouts Neck (Figure 2) distinctly
coarser sand (1.0 phi mean) was common. He inferred that this cocarser sand
represented a lag deposit of Pleistocene sediment or drowned beach or tidal
delta sediments from a lower sea level. He mapped widespread areas of
bedrock exposure on the basis of fathometer records and recovered cobbles
encrusted with algae near the bedrock.

Oldale and others (1973) collected reconnaissance seismic reflection
profiles in the study area and surrounding region and recognized
reflections from bedrock, till, and glaciomarine sediment. Folger and
others (1975) collected more seismic data and mapped the distribution of
bottom sediments on a scale of 1:125,000 on the basis of this and about 60
grab samples. Their map shows sand and gravel nearshore changing to
organic-rich clayey silt at about the 100 meter isobath, though they
acknowledge that sample density was inadequate to reliably map sediment
texture or composition.

Hussey (1970) speculated on the origin of the Wells Beach system by
erosion of till and formation of migrating spits and tombolos. Hulmes
(1981) collected cores from Biddeford Pool and demonstrated that the spits
of that area migrated into position and that lagoonal sediments were
deposited directly upon the Presumpscot Formation, She encountered the
Presumpscot Formation in 9 cores from Biddeford at depths of less than 6
meters. The U.S. Army Corps of Engineers (Luepke and Grosz, 1986)
similarly encountered the Presumpscot Formation beneath less than 5 meters
of sand in a dozen cores from inner Saco Bay. Kelley and others (1986)
summarized the existing literature on Saco and adjacent Casco Bays and
contrasted the two embayments on the basis of their Holocene geologic
evolution.

Elsewhere within the region, Ostericher (1965) first employed coring
and seismic reflection techniquea to examine submarine stratigraphy in
coastal Maine. He described reflectors that correlated with bedrock, till,
and the Presumpscot Formation, as well as surficial sediment textures from
Penobscot Bay. He recognized the regressive unconformity on the surface of
the Presumpacot Formation and dated wood fragments from cores of its
surface at 7,390 years before present. On the basis of this he concluded
that the "post-Presumpscot Formation" lowstand of sea level occurred at
that time at a depth of 15-20 meters. KXnebel and Scanlon (1985) have re-
occupied Ostericher's (1965) lines with better seismic equipment and
described details of submerged moraines and provided sediment thickness
maps.

Schnitker (1972, 1974) also used seismic reflection methods to examine
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the central coastal region and interpreted subaerially dissected till from
the records to a depth of 65 meters, where he recognized a "berm"., At
depths greater than 65 meters, he interpreted “undissected till" from the
seismic records and constructed a widely cited sea level change curve which
depicted the relationship of the land and sea between 14,000 years BP and
the present. Belknap and others (1986 and in press, a) reinterpreted
Schnitker's (1974) "undissected till" as natural gas, but otherwise
acknowledged a 65 meter lowstand shoreline and generally accepted the sea
level curve (Belknap and others, in press a).

On the northern border of Maine, Piper and others (1983) described the
evolution of parts of the Nova Scotian coast on the basis of seismic
profiling. Fader and others (1977) mapped the seafloor of the northern
Gulf of Maine off the Bay of Fundy using seismic methods and bottom
sampling, and King and Fader (1986) extended that work along the Scotian
shelf. To the south, Birch (1984a, b) presented a structure contour map of
the buried bedrock surface and isopach maps of seismic units representing
early Cenozoic sediments, till, the Presumpscot Formation, as well as
gurficial deposits of sand and mud winnowed from the older units. He
recognized a sea level lowstand at 35 meters depth on the basis of
truncated deltaic foreset beds at that depth (Birch, 1984b).

METHODS

Bottom Samples

During the summer of 1984, 400 bottom samples Were collected from the
southwestern Maine inner shelf by means of a Smith-MacIntyre grab sampler
(Figure 3). The device reliably collects a .25m° sample of gravel, sand,
or mud with minimal loss of material, Sample stations were more closely
spaced nearshore where sand was expected (Farrell, 1972; Folger and others,
1975). The position of all samples was obtained by LORAN-C and depth
measured by Raytheon Fathometer.

All samples were frozen immediately after collection and field
description. Table 2 summarizes the laboratory procedure by which the
samples were analyzed. After standard sample splitting, gravel was
screened out of the material for carbon analysis and results are reported
for the finer than gravel (2 mm) fraction. While gravel was also screened
out of carbonate analysis splits, the weight of gravel was noted and
carbonate is reported for the total sample.

The carbon and nitrogen analyses were performed at the University of
Maine's I. C. Darling Center on a Carlo-Erba Model 1106 Elemental Analyzer.
All crushed samples were treated with acid vapor to remove carbonate. The
accuracy of the device when evaluating known standards is better than .02%
N and better than .04% C (L. Mayer, personal communication, 1985).
Coefficients of variation of 2.75% (carbon) and 1.16% (nitrogen) were
calculated from 45 Gulf of Maine sediment samples, and the average standard
deviation of 28 triplicate samples from this study was 0.74% carbon. The
range in values on the triplicates increases with the overall carbon or
nitrogen content of the sediment, and reflects the difficulty in obtaining
representative carbonate-free aliquots of very shelly samples.
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The carbonate analyses were performed by the acid filtration technique
of Molnia (1974). Gravel was removed from the sample prior to crushing,
although the weight of gravel was incorporated into the calculation of
percent carbonate. This technique accurately evaluated known standards to
within 0.5%. Eighty-five replicate determinations were made on paired
splits of samples to evaluate precision (Figure 4). The decrease in
reproducibility with increasing carbonate content reflects the difficulty
in obtaining representative splits of coarse-grained, carbonate~rich
samples, and not in the reliability of the chemical method.

The textural analyses followed the procedure outlined by Folk (1974).
For most samples, percent sand, percent gravel, percent silt, and percent
¢clay were the only parameters evaluated. Selected samples representing
specific environments were completely evaluated for mean grain size and
related values (Folk, 1974). The proportion of gravel is probably not well
represented owing to the difficulty of sampling such large clasts (Folger
and others, 1975). For some samples a determination of the weight percent
heavy minerals was made by flotation of the low density grains (p<2.8) in
tetrabromoethane.

Seismic Reflection Profiles

Approximately 1000 km of seismic reflection profiles have been
collected from the study area (Figure 5). Navigation was by LORAN-C and
position fixes were made every 4 or 5 minutes, with ship speed varying from
3 to 5 knots. Two types of seismic systems were employed in the study: a
Raytheon RTT 1000A unit and an 0.R.E. Geopulse system. In general the two
systems were operated simultaneously, although there were times when only
one device was in operation.

The two systems operate in a complementary fashion. The Raytheon unit
runs on a 3.5/7.0 kHz frequency and simultaneously at 200 kHz. The 200 klz
signal provides an accurate trace of the bathymetry while the 3.5 kHz
signal generates a high resclution record of sub-bottom acoustic reflectors
in generally shallow water (<80 m) and muddy substrates. The 0.R.E.
Geopulse is a wide frequency "boomer" system with reduced resclution but
greater penetrating power than the Raytheon. Even on sandy or gravelly
bottoms, penetration through greater than 50 m of cover to bedrock was
obtained at all depths (<100 m).

The seismic records were used to deduce the nature of the subbottom
geology as well as of the surficial material. In the latter capacity,
side-scan sonar and bottom sampling provided ground truth "calibration" for
interpreting surficial texture as revealed by the relative intensity of the
surface acoustic return and overall geometry of the upper acoustic unit,
The seismic lines were of great use, thus, to interpolate the surficial
geology between the relatively widely spaced bottom samples (Folger and
others, 1975).

Interpretation of the subbottom geclogy was less direct, and
inferences drawn from observations on land, in borings and core holes, and
from nearby studies were employed to identify the acoustic reflectors.
Bedrock was never penetrated by the seismic systems and its surface usually

10
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formed the lower-most reflector on a record. Relief on the surface of the
bedrock was extreme, and ranged over tens of meters across short horizontal
distances. In other nearby areas (Birch, 1984a, b; Fader and others, 1977)
early Cenozoic sediment unconformably overlies bedrock. No such deposits
were identified in the study area, however. Instead, a seismic unit with
chaotic internal reflectors and an irregular surface commonly rested on
bedrock. This has been interpreted as till though no prominent moraines
were recognized as in nearby locales (Oldale, 1985; Knebel and Scanlon,
1985). Frequently, a relatively transparent acoustic unit with closely
gpaced basal reflectors mantled the till or bedrock. The hard surface
return of this unit was usually flat except in valleys where it was
channel-shaped. Where it outcropped near the surface and was cored (Luepke
and Grosz, 1986) this unit was identified as the glaciomarine Presumpscot
Formation. Because of ita readily identifiable characteristics, the
glaciomarine sediment has been called Presumpscot Formation far offshore,
and well outside the area within which it was originally described (Bloom,
1960). Its upper surface on land marks the regressive unconformity,
terminating its deposition, while the offshore surface of the Presumpscot
Formation is probably capped by the transgressive unconformity. Overlying
the Presumpscot Formation, an acoustically transparent unit of modern mud
was identified in some deep water locations {>75 m). Nearshore, a more
acoustically opaque unit of sand forms the uppermost deposit. Each of
these deposits is relatively smooth on its surface and generally lacking
internal reflections. Unlike nearby areas (Kelley and others, 1986) no gas
occurrences wWere recognized in the study area.

Seafloor Obsgervations

Observations on the seafloor itself were made by side-scan sonar
profiling as well as by submersible visits (Figure 6). The side-scan
system used was the EG&G SMS 960 Seafloor Mapping System. This system
automatically provided slant range corrections to the analogue output and
was operated succesafully at all depths in the study area. It was usually
run at a 100 m or 200 m range (to either side of the vessel) and allowed
bottom sample ground truth to be widely extrapolated.

One submersible dive was made with the Johnson Sea Link in the summer
of 1985 and two dives were made in Saco Bay with the Delta submersible in
the summer of 1986. Thousands of still photographs and hours of color
videotape Were collected during the dives. In addition, several samples
and a box core were recovered during the dives. The greatest benefit of
the dives was to provide detailed observations on the nature of the
seafloor and on contacts between surficial units recognized from side-scan,
seismic profiies, or bottom samples. In this report, those observations
are referred to as "unpublished field notes".

BATHYMETRY

Unlike the inner shelf of New Hampshire and Massachusetts (Birch,
1984; Folger and others, 1975), the physiography of the study area is
extremely irregular (Figures 2 and 7). As a submerged extension of Maine's
coastal lowland (Denny, 1982) its bathymetry is dominated by bedrock
exposurea and glacial depo=its. Glaciation has probably exaggerated the

14
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local relief by preferentially eroding foliated rocks and leaving resistant
knobs of plutonic bodies {Kelley, in press). Although mapped with a 5 m
contour interval, some regions of the shelf were too irregular to be mapped
(National Ocean Survey, 1970), and most areas were too complex to be
reproduced for publication., For this report a 25 m contour interval is
used as a base map (Figure 2), and smaller regions are enlarged to depict
the major physiographic subdivisions (Figure 7).

Four physiographic zones exist along the inner shelf of southwestern
Maine (Figure 8). The Nearshore Ramp is an area of coast-parallel contours
seaward of the region's many sandy beaches, but also directly offshore of
some high bedrock cliffs (Baldhead Cliff, Figure 8). The Ramp has a gentle
slope averaging about 0.5% to the 15 m isobath where it steepens to about
1.5% before flattening out at 30 m depth. Beyond the 30 m isobath the
chaotic bathymetry of the Rocky Zone prevails at all places on the
southwest inner shelf (Figure 8). The Rocky Zone is the most abundant
physiographic component of the study area and is characterized by rapid
changes in relief ranging from 5 m vertical bedrock cliffs to areas
littered with 3 m diameter boulders (Figure 8). Although bedrock outcrops
exist locally in all of the physiographic regions of the shelf, within the
Rocky Zone they are the dominant type of bottom.

Extending gradationally from the Nearshore Ramp, numerous Shelf
Valleys cut through the Rocky Zone (Figure 8). These valleys are bordered
by steep bedrock walls and generally widen in a seaward direction (Figure
7). Their slope averages 0.8%, but no fathometer lines were run along
their thalwegs and bedrock appears to outcrop occasionally within the
channels. The Shelf Valleys all terminate in the Outer Basins. These
extensive areas of very gently sloping seafloor often begin with an abrupt
break in slope at 60 m interpreted as a lowstand shoreline and continue
into water deeper than 100 m, Bedrock frequently borders the Outer Basin
and crops ocut through the otherwise flat seafloor. On submersible dives,
occasional 1 m diameter boulders have heen recorded from the surface of the
Quter Basin.

BOTTOM SEDIMENT TEXTURE AND COMPOSITION

Bottom sediment texture on glaciated shelves is notoriously
heterogeneous (Trumbell, 1972), Virtually all components of the particle
size spectrum were encountered in bottom samples from southwestern Maine
(Figure 9). Although fewer than 20 samples were true gravels, greater than
100 grabs contained some material coarser than 2 mm in diameter (Table 3).
As in other studies (Folger and others, 1975) the abundance of gravel is
probably underrepresented by bottom sampling due to the difficulty of
collecting large objects in the sampler, and of obtaining enough gravel
gized material to perform statistically meaningful grain size analyses.
Despite these limitations, several extensive areas of gravel bottom were
mapped {Figure 10). Subparallel to the coastline from New Hampshire to
Wells a band of gravel exists between a sandy inner area, and a more
seaward region of rock. 1In several other locations offshore of Wells or
Kennebunk, smaller bodies of gravel were also mapped adjacent to areas of
exposed bedrock (Figure 10).
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Figure 9. Ternary diagrams depicting the texture of sediment samples from
the southwestern Maine inner shelf.
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Sandy gravels and gravelly sands are relatively common substrates in
water depths less than 50 m, while muddy gravels frequently outcrop at
greater depths. These coarse-grained sediments usually occur as isolated
pockets within or adjacent to larger regions of bedrock. The single large
area of sandy gravel mapped offshore of Biddeford Pool is constrained by
only one bottom sample from this study, although Folger and others (1975)
reported coarse-grained sediment from the area. In general, samples
dominated by coarse-grained sediments are found in the Rocky Zone (Figure
8) where the gravel content averaged 46% (Table 4).

Forty-three samples contained 100% sand and many others were diluted
by only a few percent mud (Figure 9). Sandy samples were exclusively found
in water depths less than 30 m in the Nearshore Ramp {(Figure 10; Table 4).
In general, the sorting of sand in the Nearshore Ramp decreases offshore due
to the addition of mud or, near rock outcrops, of gravel (Farrell, 1972).

The proportion of mud in the samples varied greatly across the study
area, but generally increased with depth (Figure 11). Only four samples
from greater than A0 m lacked mud and only four samples with greater than
50% mud were from less than 40 m depth. Muddy sands extend gradationally
from the Nearshore Ramp along Shelf Valleys and are the most common texture
from that environment. Sandy muds are also common in the Outer Basins
where the only regions with greater than 50% mud in the bottom sediment
exist (Figure 9; Table 3). It is noteworthy that Folger and others (1975)
mapped all the OQuter Basin sediment as sand, albeit on the basis of only 2
botton samples. Although the surface material of these regions was largely
muddy when sampled for this study, often the mud was a relatively thin
veneer (less than 10 cm) overlying sand or gravel (Kelley, unpublished
field notes).

Carbonate content of the sediment generally increases with depth
(Figure 12) although there is no significant correlation between carbonate
abundance and grain size, Several modes of carbonate abundance are
discernible in a histogram (Figure 13) however, and correlate with samples
from different physiographic zones (Table 4). The lowest carbonate values
(<2.5%) are from the Nearshore Ramp and are frequently fragments of Mya
arenaria and other nearshore organisms. The Shelf Valley muddy sands
contain significantly more carbonate with a mean value of 3.3%. The most
commonly observed organism in the Outer Basin was Astarte spp. but the
relatively high carbonate values here (4.5%) suggest foraminifera may also
have been common, but were not sampled., The most carbonate-rich area, the
Rocky Zone, contained a great variety of carbonate remains, and as much as
85% shell fragments. While most of these were of organisms which attach to
rocks, like Balanus and coralline algae, every shell found in the study was
represented in the Rocky Zone. Although significant differences in
carbonate content exist between the four physiographic zones (Table 4), no
significant differences exist between the two bays, and considerable
variation in shell abundance exists within all the environments.

Carbon and nitrogen content of the sediment showed strong associations
with physiographic zones (Table 4), but were more variable than the
carbonate values. A logarithmic graph of %C versus %N (Figure 14) shows a
correlation between the two parameters similar to that observed elsewhere
(Bornhold and Yorath, 1984), but a number of samples from Wells possess
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Figure 13. Histograms showing the abundance of carbonate from Wells and Saco
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Bay sediment.
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lower C/N ratios than usually seen in Gulf of Maine sediment (L. Mayer,
pers. comm.). This may be due to incomplete carbonate removal or elevated
Nitrogen values related to sewage discharge in the highly developed Wells
Beach area. Generally, the remainder of the samples show relatively low
carbon and nitrogen values in the sandy Nearshore Ramp and Rocky Zone, with
higher values in the muddier Shelf Valleys and Quter Basins (Table 4). The
overall ahundance of carbon, like that of carbonate, is polymodal,
reflecting variations between physiographic zones (Figure 15).

The abundance of heavy minerals (s.g. >2.9) in the study area was
evaluated only in sandy samples from the Nearshore Ramp. The mean value of
the 37 samples investigated was 3.1%, with a range from 0.2% to 7.5% in the
Wells Embayment. Luepke and Grosz {1986) found an average concentration of
heavieg in Saco Bay of 0.9%, but they included muddy samples from within
cores as well as sandy surficial material.

The composition of the heavy mineral fraction was not evaluated for
this report, but Luepke and Grosz (1986) found garnet, pyroboles, and
metamorphic minerals to be the most abundant species present. It is
anticipated that a comparison will be made of the heavy mineralogy of a
longer stretch of the Maine coast following the completion of the Year
Three study.

GEOPHYSICAL AND SUBMERSIBLE OBSERVATIONS

Bottom sediment properties correlate well with environmental settings
defined by bathymetry (Table 4). Nevertheless, considerable variation
exists within the physiographic zones that is best accounted for by
subdividing the zones into facies on the basis of side-scan sonar and
seismic reflection records, as well as direct observations from
submersibles (Table 5).

Nearshore Ramp

Geophysical observations permit a subdivision of the Nearshore Ramp
into an inner, relatively steeply deepening region marked by oscillation
megaripples, an outer area of gentler slope which generally lacks bedforms,
and rocky outcrops with associated mud and gravel (Table 5). A side-scan
sonar profile parallel to 0ld Orchard Beach (Figure 16) displays the
contact between the inner region where megaripples possess a wavelength of
1.7% m, and the more uniform outer area. The abrupt contact between the
two areas may be controlled by wave base under summer wave conditions. In
other areas the contact is less abrupt, and in several locations "rippled
scour depressions" similar to those described elsewhere (Cacchione et al.,
1984, Morang and McMaster, 1980) extend from shallow water across the outer
area (Figure 17).

Although most of the Nearshore Ramp is sandy with slight local relief,
occasional exposures of bedrock or till interrupt this uniformity. Where
bedrock is exposed at the seafloor, gravel or mud is also frequently found.
Seismic profiles show that the mud and gravel are probably derived from
eroded Pleistocene sediment which usually rests on bedrock (Figure 18).
Offshore of Wells Beach an extensive gravel area extends from a rocky part
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of that beach (Figure 19). Since this is wholly surrounded by sandy
material (Figure 9) it is nonetheless included in the Nearshore Ramp.

One additional feature was observed in the Nearshore Ramp, although
not enough occurrences of it were noted to warrant defining another faciles
(Figure 20). Offshore of Higgins Beach, and adjacent to the Shelf Valley
of the Spurwink River, a 3 m high mound of material was seen in the seismic
records. This appears to overlie till and its opacity to the 3.5 kHz
signal suggests it is composed of gravel. This is tentatively identified
as a paleoshoreline although more data will be necessary to confirm this
suggestion.

Rocky Zone

The Rocky Zone is the largest physiographic element of the
southwestern Maine inner shelf (Figure 8). To account for variation in
bottom sediment properties from this area, three subenvironments are
defined: exposed bedrock, gravel plains, and sediment ponds (Table 5).

Bedrock exposures occur throughout the study area but are most
concentrated in shallow water (<25 m) surrounding Bluff, Stratton, Boon,
and other islands. These are regions of complex bathymetry (NOS, 1970) and
represent shoals surrounded by deep water that have relatively recently
been drowned by the sea. Where the bedrock is foliated, fracture patterns
similar to those on land are apparent (Figure 21). Encrusting organisms
are common here and carbonate production is probably high on the large
surface area of the irregular, exposed bedrock.

Within areas of exposed bedrock, sediment ponds exist in the bedrock
depressions (Figure 21). Sandy and muddy gravele rich in carbonate are
common in these locally small, but abundant environments. In some
locations the ponds are covered by megaripples with 1-2 m wave lengths
(Figure 22). The crests of these bedforms usually trend NW-SE and may have
formed during winter storms. Over many rocky regions in the study area,
and elsewhere in Maine (Kelley and others, 1986) the sediment ponds dip in
an offshore direction {Figures 23, 24).

Extensive areas of the Rocky Zone covered with coarse-grained sediment
are called gravel plains {Table 5). These regions typically are of low
relief, although boulders up to 5 m in diameter have been observed (Figure
25). Bottom samples from these areas are the most variable encountered in
the entire shelf area, and side-scan observations shoWw that patches of
bedrock, gravel, sand, and mud are frequently Jjuxtaposed. Seismic
reflection profiles suggest that many of the gravel plains are deposits of
"thin drift", as mapped on land (Thompson and Borns, 1985).

Shelf Valleys

Shelf Valleys are the major sedimentary regions which extend through
the Rocky Zone and connect the Nearshore Ramp to the Quter Basin. They are
bedrock channels which have been filled to varying degrees by glacial and
post-glacial sediment. The physiographic form of the valleys disappears at
about 65 m depth, and although many of the valleys have smooth seaward
gradients (NOS, 1970), some are interrupted and wrap around irregular
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Figure 20. ORE Geopulse seismic profile offshore of Higgins Beach., The line

is normal to a Shelf Valley on the edge of the Nearshore Ramp.
Arrow points to possible former shoreline feature.
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obstacles of apparent bedrock. While some valleys may be traced directly
to modern rivers (Saco, Spurwink), others have no obvious terrestrial
source.

The mos%t abundant environment in the valleys are thalwegs floored by
muddy sand (Table 5). These are relatively featureless on side-scan
imagery and have a U-shape or flat bottom in cross section (Figures 26,
27). Submersible observations in one of Saco Bay's Shelf Valleys reveal a
muddy seafloor with numerous burrows and animal traces (Kelley, 1986,
unpublished submersible notes).

Distributed along the central axes of the channels are relatively
small areas of apparent current scour (Figure 28). The seafloor here is
marked by megaripples and gravelly sand and often the scour areas are in
small depressions in the channel floor. As the contact between the scour
zone and channel thalweg is approached the megaripples become small ripples
draped by increasing amounts of mud (Kelley, 1986, unpublished submersible
notes). Though the origin of the scours is not clear, many of the patches
are elongate in a "downstream" direction near, or behind, bedrock outcrops
(Figure 28).

Along the edge of the Shelf Valleys, the channel margin environment
represents a transition to a rocky interfluve. The channel margin is
usually sandy muddy gravel with occasional boulders and abundant carbonate.
On side-scan imagery it appears as a dark apron around the bedrock, and
sometimes shows patches of megaripples (Figure 29). Seismic reflection
profiles across these areas (Figures 25, 27, 30) show subbottom reflectors
outcropping at the wvalley walls and thus the coarse material may be
exhumed, older sediment.

Quter Basins

The Quter Basins are distinct regions of very low relief extending
from about 55 meters depth to greater than 100 meters outside the study
area (Figure 8). The landward border of the Outer Basins is frequently a
rocky escarpment, but in some locations is a more gentle break-in-slope
with a concave-up profile (Figures 31, 32). On the margin of a broad basin
the relief is very gentle (Figures 31, 32) and direct observations from
submergible indicate a muddy surface in Saco Bay (Kelley, 1985, unpublished
submersible notes). The depth of the break-in-slope ranges from 55 to 75
meters. Near areas of bedrock, mounds of sediment appear piled up against
the rock on seismic reflection profiles, but the overall cross section
remains similar (Figures 33, 34). Where several of the features occur near
one another, their depths are generally equivalent, although the overall
depth range remains between 55 and 75 meters in the study area. These
features have been interpreted as shorelines formed during the sea level
lowstand (Schnitker, 1974; Kelley and others, 1986) although no cores have
yet been ¢btained from them. Bottom samples from the shoreline features in
rocky areas are typically gravelly, shelly sands.

Most of the Outer Basins have a smooth, very gently sloping bottom.
The sediment is usually muddy, although sand was locally common and sandy
sediment often existed beneath the surface mud (Kelley, 1985, unpublished
field notes). Side-scan images from these areas are very monotonous except
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Figure 31. Seismic reflection profile across lowstand shoreline in Saco Bay.
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Figure 33. Seismic reflection profile (3.5 KHz) across mounds of sediment in

Saco Bay. A bottom sample was collected from one mound and was
composed of gravelly sand.
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where bedrock outcrops (Figure 35). Near rocky areas, gravelly muds
surround outcrops and carbonate concentrations are high. A submersible
dive was made on one rocky outcrop in a muddy basin north of Saco Bay and
several centimeters of mud covered the gravelly, shelly mud apron around
the rock. Similarly, the bathymetry of much of the outer areas of the
study area suggested a rocky bottom, yet small quantities of mud were
returned in the sampler, suggesting a thin mantle of mud overlying bedrock
was collected.

SEISMIC REFLECTION PROFILES

The two seismic reflection profiling (SRP) systems employed in the
study permitted recognition of numerous subbottom reflectors, many of which
have been interpreted as the submarine equivalent of terrestrial units
mapped by Thompson and Borns (1985). Confidence in the interpretation of
the reflectors is enhanced by cores and borings from the study area, as
well as by comparison with similar research results from nearby locations
(King and Fader, 1986; Birch, 1984; Knebel and Scanlon, 1985; Belknap and
others, 1986; Oldale, 1985).

The lowermost seismic unit in this study has no internal reflectors
and yields a strong, continuous, high relief return from its surface. This
unit is interpreted as, largely, pre-Cenozoic bedrock, and often it could
be traced from outcrops on land at the start or finish of a trackline. No
strong evidence for Cenozoic sediment as has been reported elsewhere was
recognized (Birch, 1984; King and Fader, 1986).

Overlying the bedrock, a relatively thin unit with discontinuous
internal reflectors and a strong surface return was frequently observed.
Although this unit's thickness exceeded the ability of the seismic
equipment to fully penetrate it in some places, usually it was only a few
meters thick, and locally was often abment. This unit is interpreted as
till, with subdivision into lodgment or reworked facies possible only when
the unit is exposed on the seafloor.

Directly overlying till or bedrock is the thickest, most widespread
seismic unit in the study area. Its lower surface drapes over whatever
lies beneath it and it possesses continuous internal reflectors with
relatively high relief, This unit is interpreted as the offshore
equivalent of the glaciomarine Presumpscot Formation, first mapped on the
adjacent coast by Bloom (1960). Strictly speaking, the Presumpscot
Formation is "emergent marine mud", but others have recognized it from
seismic reflection profiles, cores, and borings {(Ostericher, 1965; Knebel
and Scanlon, 19853 Birch, 1984; Hulmes, 1983; Luepke and Grosz, 1986). 1In
appearance on seismic reflection profile data, the Presumpscot Formation is
similar to the Emerald Silt (facies A, B; King and Fader, 1986), but the
difference in the time of formation makes correlation impossible at
present. The surface of the Presumpscot Formation is a strong continuous
reflector which generally slopes seaward. In Shelf Valleys, it is
frequently channel-ghaped in cross section. This surface is interpreted as
an early Holocene transgressive unconformity, although in places the
regressive unconformity may also be preserved. In cores, this surface
contains sand and gravel in a muddy matrix, and on land is frequently
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desiccated (Bloom, 1963).

Overlying the Presumpscot Formation are a variety of sediment types,
described above as surficial sediments, that are of Holocene age. Some of
these are drowned littoral materials, derived from fluvial sources or
reworked from older deposits.

The seismic reflection profiles permit an understanding of the
location of major late Quaternary centers of sediment deposition as well as
insight into the origin of surficial sediment characteristics and the
processes which formed them. Although the seismic tracklines are of
sufficient density to permit construction of a structure contour map of
regional sediment thickness (Figure 47), the lack of cores from most
environments on the shelf precludes isopach maps of the stratigraphic units
at the present time.

TILL

What has been interpreted as till is very irregularly distributed
throughout the study area. The largest deposits ocecur in topographic lows,
and reach thicknesses up to 30 meters. These were best observed in the
Outer Basin where bedrock could not always be clearly detected beneath till
(Figure 36), and in the Shelf Valleys (Figure 36, 37). Contrary to
speculation by Oldale (1985) no morphologic features resembling submarine
moraines were identified in the study area. In most places where till is
recognized at the sediment-water interface, the seafloor has been planed
into a boulder-strewn surface of very low regional relief (Figures 38, 39).
Widespread areas offshore of Wells (gravel plain) appear to have formed by
wave planation just as the existing high bluffs along the coast are today
eroding (Figure 38). Some of the large deposits of till that are covered
by younger material rest on bedrock knobs and may be minor moraines similar
to those described by Smith (1984) or possibly "lift-off" moraines (King
and Fader, 1986). That is especially true for the locations where till was
inferred to exist beneath shorelines adjacent to deep Outer Basins.

GLACIOMARINE SEDIMENT (PRESUMPSCOT FORMATION)

The most widespread unit recognized in the seismic survey correlates
with the Presumpscot Formation described by Bloom {1960, 1963) from
southwestern Maine, Like till, the glaciomarine sediment is thickest in
the low areas of the Outer Basins and axes of Shelf Valleys. Although it
rarely exceeds 30 meters in thickness, it is commonly greater than 10
meters thick (Figures 31-35). WNear its base, seismic reflectors within the
Presumpscot Formation drape over the irregular, underlying topography
(Figure 40). This has been attributed by others {King and Fader, 1986;
Piper et al., 1983) to deposition of sand and mud from suspension near a
melting ice margin. Less commonly within this study area the lower portion
of what is called Presumpscot Formation is acoustically transparent {(Figure
41). The upper surface of the seismic unit correlated with the Presumpscot
Formation is a reflector which commonly truncates lower reflectors (Figure
41). This is most likely the unconformity marking the early Holocene
marine transgression across the shelf. Although it dips gently seaward
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Figure 36. Digitized seismic reflection profiles normal to the shoreline of

Saco Bay. Location of lines indicated in Figure 5. Each of these
profiles crosses all the major physiographic zones of the shelf.
It is of note that the Outer Basin in this area slopes gently from
northeast to southwest so that its depth as well as that of
bordering shorelines is greater in line 8 than in line 22.
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Figure 38, Digitized seismic reflection profiles parallel to the coast of

Wells Bay. The paucity of sediment in this area is apparent in
each of these lines. Sediment is concentrated largely in the
shelf valleys. Along the nearshore line (line 6) it was possible
to clearly distinguish rock from gravel only where the bedrock
projects through the low relief, gravel plain.
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Figure AO;“.SeiEmié refiection profile féoﬁ central Saco.Bay. The undulating

nature of reflectors at the base of the Presumpscot Formation is

striking.

The surface of the Presumpscot Formation is not clearly

seen here possibly because the overlying sand provides too little

acoustical contrast to produce a reflector.

That the glaciomarine

sediment is near the surface is evidenced by the gravelly nature
of sample 3C-29 (it is surrounded by sand) which was collected
where the Presumpscot Formation appears to outcrop on the seaflcor
over a bedrock pedestal.
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Figure 41.

Undulating reflectors within the Presumpscot Formation do not
extend to the base of the unit in this Saco Bay seismic reflection
profile., Rather, an acoustically transparent material rests on
bedrock. Truncation of undulating reflectors by the strong
reflector representing the transgressive unconformity is apparent
on the left side of the illustration.
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down the axes of Shelf Valleys, it is c¢ommonly channel-shaped or absent in
the thalwegs of paleochannels (Figure 42).

In cores from the study area (Figures 43-45) (Hulmes, 1980; Luepke and
Grosz, 1986) and nearby (Kelley et al., 1986; Belknap et al., 1986) the
surface of the Presumpscot Formation is an indurated, compact clay
frequently capped by gravel which occasionally contains wood (Knebel and
Scanlon, 1985). Where this surface intersects the present seafloor (Figure
30) gravel rubble or coarse grained megaripples are found. The surface of
the Presumpscot Formation is most commonly exposed at the seafloor wherever
bedrock knobs project through the sediment-water interface such as at the
margins of Shelf Valleys.

Origin of Surficial Sediments

The coastal geomorphology of Maine is controlled by bedrock, which
determines the geometry of each cocastal compartment, and glacial sediment
availability, which dictates the sediment texture of coastal environments
(Kelley, in press). Modern processes interact with bedrock and available
sediment to create the landforms extant on the present shoreline. The
inner shelf of Maine is similarly influenced by bedrock, glacial sediment,
and modern processes, but the distribution of sediment across the shelf has
also been strongly affected by late Quaternary sea level changes. The
initial transgression and regression were major times of sediment
introduction to the shelf, while the present transgression appears to be
largely a period of sediment reworking.

During the late Pleistocene transgression (Transgression 1, Figure 46)
which accompanied deglaciation, bedrock probably exercised some control on
sediment deposition by creating a series of pinning points which grounded
the ice and led to till deposition (King and Fader, 1986). Glaciomarine
sediment was deposited seaward of the grounded ice mergin and poured into
bedrock basins which had probably formed by pre-~glacial fluvial action.

The location of till on bedrock high points {and of gravel plains)} and the
undulating nature of nearby reflectors within the Presumpscot Formation
supports this idea. The present coastline apparently acted as a major
pinning point for the retreating ice, and major stratified coastal moraines
reflect interaction between marine and glacial processes (Stuiver and
Borns, 1975; Smith, 1985). The variety of facies present in coastal
moraines (Figure 46) cannot be compared to the "till" recognized on seismic
reflection profiles, furthermore, the absence of morphologic forms similar
to those described by Oldale (1985) suggests they may never have been
present at all on the present shelf.

Landward of the present coast the glaciomarine sequence ends at the
marine limit and is marked by extensive glaciomarine deltas (Figure 46;
Thompson and Borns, 1985). Following deposition of these features, sea
level fell very rapidly across the landscape due to isostatic uplift. A
deranged drainage network was incised in the former seafloor as numerous
buried valleys remained choked with sediment (Tolman et al., 1986). A few
large rivers with headwaters in mountainous areas began downcutting into
glacial sediment, and sandy marine-fluvial sediment was deposited over the
Presumpscot Formation muds {Kelley and others, 1986). In the Kennebec
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Bay. The lower reflector within the
the Presumpscot Formation mimics the
bedrock and is characteristic of the
ma jor reflector above it dips gently

late Holocene transgressive unconformity.

Seismic reflection profile down the axis of a shelf valley in Saco

seismic unit identified as
topography of the underlying
glaciomarine sediment. The
seaward and appears to be the
Where this reflector

disappears, a channel cuts into the Shelf Valley from out of the

plane of the section.
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River valley this material is called the Embden Formation (Borns and Hagar,
1965) although similar material may also be seen in the Saco River area
(Thompson and Borns, 1985). Smaller streams which originate within the
marine limit are not generally associated with this sandy material (Kelley
and others, 1986).

Terraces were etched into sandy alluvium as sea level fell below the
present coast, and sandy sediment poured into the present shelf area as the
regreasion reached the lowstand limit. A large stream like the Saco River
undoubtedly transported more coarse clastic sediment to the sea than did
the other minor streams entering the study area (Kelley and others, 1986).
Mixed with the early Holocene fluvial contributions to the shelf were
sediments locally reworked as the surf zone crossed the present sghelf. In
addition to sediment reworked from interfluves, material was removed from
Shelf Valleys aa relatively high gradient streams cut into the previously
buried channels. Although sea level is inferred to have rapidly fallen and
left few raised beaches (Belknap et al., 1986; Thompson and Borns, 1985),
sufficient reworking of sediment occurred to leave most bedrock ridges and
high points seaward of the marine limit covered only with "thin drift", or
less than 3 meters of material (Thompson and Borns, 1985).

The exact time of sea level lowstand in southwestern Maine is not
known, and is probably a time-transgressive phenomenon within the Gulf of
Maine (King and Fader, 1986). While the depth of the lowstand is also
inferred to be variable within the region (King and Fader, 1986; Oldale and
others, 1983; Birch, 1984; Knebel and Scanlon, 1985), notches cut into
glacial sediment as well as constructional features interpreted as beaches
were recognized on virtually every seismic profile crossing the 65 meter
isobath in the study area. While samples collected from these areas today
are generally sandy shelly gravels, and strong coherent seismic reflectors
were observed within the landforms, the basins seaward of them are more
acoustically transparent and presently floured by mud. Thus, at the time
of the sea level lowstand, the fine grained sediment load of rivers may
have escaped into the deeper Gulf of Maine while coarser sediment remained
nearshore.

Following the marine lowstand, sea level rose very rapidly during the
early Holocene across the already-wave-washed shelf (Figure 46; Belknap and
others, in press). Material not removed during the prior regression was
again subject to wave and current action. The currently extensive areas of
bedrock on the shelf were finally exposed at this time, and till outcrops
were planed off at the surf zone. Some of this reworked sediment, plus the
continued, albeit probably reduced, load of streams added increasingly
finer sediment to the Outer Basinas. As the transgression moved up the
Shelf Valleys, the reflector interpreted as an unconformity on the surface
of the Presumpscot Formation was probably formed.

Dating of hasal salt marsh peats behind the Wells barrier spit and in
other places in the region (Belknap and others, 1987) indicate relative sea
level rise began to slow down around 3,000 years ago (Figure 46). This
permitted the general buildup of barrier spits and marshes that presently
characterize the coastline around Wella, 0ld Orchard, and elsewhere. As
the barriers in the Wells area moved landward, they may have done so as a
system of evolving spits tied to eroding glacial deposits (sediment
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sources) (Hussey, 1970). Thus the Nearshore Ramp contains numercus patches
of gravel and rock and probably little sand at depth. Because of the
proximity of the Saco River, 0ld Orchard Beach may have migrated more
slowly, although a relatively thin veneer of sand rests on the eroded
surface of the Presumpscot Formation within Saco Bay (Figure 45). 1In all
parts of the southwestern shelf, spits may have formed any time sediment
from eroding bluffs was available and then drowned when it ran out. One
example is inferred from Saco Bay (Figure 20) but others have been inferred
(Farrell, 1972; Hussey, 1970).

Although all the physiographic elements of the present shelf have been
in place for thousands of years, modern processes continue to influence the
surficial sediment. Megaripples on the inner Nearshore Ramp {(Figure 16)
reflect contemporary wave action just as the rippled scour depressions
(Figure 17) probably represent reworking of nearshore sand by water
escaping the surf zone during major storms (Morang and McMaster, 1980;
Cacchione and others, 1984). This may ultimately result in sand starvation
and beach erosion in southwestern Maine in light of the post-colonial
congtruction of dams on rivers and the modern construction of seawalls on
eroding bluffs. Although the scour depressions have not been traced into
deep water, the rippled areas near bedrock outcrops in channel thalwegs
(Figure 28) and the coarse-grained rubble on Shelf Valley margins (Figure
29) may also result from scouring of the seafloor by seaward moving jets of
water during storms. It appears that the Shelf Valleys are not only acting
as conduits for nearshore sediment escaping the coastal zone, but are
themselves being stripped of sediment wherever rock outcrops focus
currents. Since glaciomarine sediment and ¥ill commonly rest on bedrock,
these deposits are being exhumed by scouring action. Resuspension of
glaciomarine mud iz in fact the most likely source for mud currently
accumulating in the Quter Basins and Shelf Valley thalwegs. During two
submersible dives in Saco Bay, high levels of turbidity made bottom
observations impossible more than a few inches away from viewing areas.
While dragging by modern fishing boats in Quter Basins may be partly
responsible for resuspending mud, it cannot account for the sandy muds seen
in the Outer Basins or the sand layers observed there beneath modern mud.
It is conceivable that mass movements of sand and mud move down Shelf
Valleys and lead to the graded deposits commonly observed in deep water.

Aside from some very shallow water sand that may be introduced to the
shelf by the Saco River, the only new sediment accumulating today is
carbonate detritus, The very large surface area of exposed bedrock
available to encrusting algae and fauna (Figure 21) has led to a
surprisingly high carbonate content in sediment near rock (Table 4). In
conjunction with gravel, carbonate is the only sediment returned from many
samples collected near bedrock outcrops. In general, the inner shelf of
southwestern Maine may be viewed as sediment-starved with only a few amall
areas containing greater than 40 meters of Quaternary sediment {Figure 47).
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Figure 47. Inferred thickness of Quaternary sediment on the inner shelf.

Bedrock sills exist throughout the study area, and even within the
20 meter contour interval there are places with less than 20
meters of sediment. Where line is dashed, inadequate data exists
to confidently map thickness, or data indicates pockets of thick
sediment with numerous shallow bedrock exposures.
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