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BEDROCK GEOLOGY OF SMALL POINT, MAINE:  
A FRESH LOOK AT THE STRATIGRAPHY, STRUCTURE, AND METAMORPHISM 

By 
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DEDICATION 

This trip is dedicated to Professor Arthur Hussey for his lifetime of geologic mapping in Maine, his collegiality 
and willingness to share those geologic insights, and his constant reminder to legions of students that all geologic 
research starts with sound field observation and attention to detail. We will miss Art and know his legacy of 
contributions to the New England geologic community and Maine geology will live on. Eusden would also like to 
thank Heather Doolittle, Peter Miller, Jen Lindelof and Haley Sive, all alumni of Bates Geology class of 2012, for 
their excellent work in remapping the bedrock geology of Small Point. Thanks also to Maine State Geologist Robert 
Marvinney and Henry Berry for supporting this USGS EdMap project. 

The mapping crew at Icebox beach, from L to R: Art Hussey, Heather Doolittle, Peter Miller, Haley Sive, Henry 
Berry, and Jen Lindelof. 
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INTRODUCTION 

 This field trip will examine the Ordovician stratigraphy and Silurian through Permian deformation and 
metamorphism along the spectacular coastal outcrops of Small Point, Maine. There is one moderate walk along dirt 
roads and the coastline of about 2.5 miles and three other easy walks of about a mile each.  All of the STOPS are on 
private land that is very strictly controlled and posted. Figure 1 shows the location of Small Point and the STOPS for 
the field trip. 

 The stratigraphy we present here is a revision of that originally proposed by Arthur Hussey and most 
recently updated by him in 2012 (Hussey, 2012). Figure 2 shows Hussey's 2012 bedrock geologic map. Our 
interpretation differs from his in that we mapped the rocks at Small Point as an east younging, structurally 
overturned section without significant stratigraphic discontinuities. The structural geology was studied well by 
Hussey and Berry (2002) and Swanson and Bampton (2009). Our five stage structural model for the deformation 
blends aspects of both previous researchers and focuses on D3 regional folding event and D4 dextral shearing along 
the Phippsburg Shear Zone. Hussey and Berry (2002) and Grover and Lang (1995) studied the metamorphism at 
Small Point and the latter pair visited our last STOP on their own NEIGC trip. Our interpretation of the 
metamorphism focuses on the isograd pattern of M3 metamorphism and an older M2 metamorphism with relict 
mineral assemblages and textures.  

 Our work to remap the bedrock geology of the Small Point region was a USGS EdMap project supported 
by the Maine Geological Survey and completed during the field season of 2011. Four Bates students, Doolittle, 
Lindelof, Miller, and Sive, all participated in the bedrock mapping and then each did a full year senior thesis on a 
specific aspect of the geology (Doolittle, 2012, metamorphism; Lindelof, 2012, rock-water geochemical 
interactions; Miller, 2012, Phippsburg Shear Zone and Sive, 2012 geologic map). Tim Grover has joined us on this 
field trip to offer his insights on the metamorphism as well as the overall geologic setting in a region where he has 
spent numerous field seasons of mapping. 

REGIONAL GEOLOGIC AND TECTONIC SETTING 

The bedrock at Small Point is composed of the Middle to Late Ordovician Casco Bay Group, part of the 
regional Merribuckfred Basin that was deposited on peri-Gondwanan basement in an active plate setting, 
presumably an arc, of poorly constrained plate geometry (Hussey et al., 2010). The traditional units of the Casco 
Bay Group are, from oldest to youngest, the Cushing, Cape Elizabeth, Spring Point, Diamond Island, and Scarboro 
Formations. Figure 3 shows a possible plate tectonic reconstruction for the Casco Bay Group from Hussey et al. 
(2010) and two stratigraphic correlation charts, one for Maine and New Hampshire (Hussey et al., 2010) and the 
other for the rocks we mapped at Small Point. We have chosen to use local geographic names (e.g. Aliquippa, Cape 
Small, etc.) for the revised stratigraphy shown in Figure 3C. 

Subsequent to the deposition and eruption of the Casco Bay Group onto a Ganderian fragment, the rocks 
were impacted by the numerous orogenic cycles. The first was the Early Silurian Salinic Orogeny as the 
Tetagouche-Exploits basin closed reuniting two wayward pieces of Gander (Reusch and van Staal, 2012). This was 
then followed by an early Acadian Orogenic phase in the latest Silurian as the leading edge of Avalon collided with 
composite Ganderia (Bradley et al., 2000), and in turn was followed by a later phase of the Acadian (Early to Middle 
Devonian?) as the oblique collision continued (Hussey et al., 2010).  In the Late Devonian to Early Carboniferous, 
Meguma obliquely collided with everything else to the west initiating the Neo-Acadian Orogeny characterized by 
dextral strike slip motion along the expanding Norumbega Fault Zone (Swanson, 1999). The culminating 
Pangea-forming Paleozoic collision was the Alleghanian Orogeny in the Permian when Gondwana collided 
obliquely with the rest to the west (Wintsch et al., 2014). In the Triassic and Jurassic continental breakup began as 
Pangea rifted apart. To widely varying degrees, all of these events have left both deformational and/or metamorphic 
imprints on the rocks at Small Point.  

STRATIGRAPHY 

 Our new bedrock geologic map is shown in Figure 4. W have interpreted the metasedimentary units as 
younging to the east but overturned in the inverted limb of an early D1 or D2 nappe-scale fold with poor structural 
control. Though there are preserved primary bedding features in many places, typified by interbedded schists and  
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Figure 2. A) Regional geologic setting of the Casco Bay 

Group from Hussey et al. (2010). Small Point region shown 

in box. B) Bedrock geologic map and legend (C) of Small 

Point, Maine by Hussey (2012)
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Figure 3. A) Correlation chart 

of stratified units in Maine and 
New Hamshire from Hussey 

et al. (2010). B) Stratigraphic 

correlation of units mapped 
by us at Small Point to the 

Casco Bay Group of Maine.  
C) Possible Ordovician plate
tectonic setting for the Casco 

bay Group from Hussey et al. 

(2010).
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quartz-rich granofels, there was only one convincing topping indicator; a reversed (via metamorphism), inverted, 
graded bed (STOP 5). This lack of topping control makes lithologic correlation to other sections of the Casco Bay 
Group the only way to establish stratigraphic order. The new stratigraphy uses local names that we have correlated 
to the traditional formational names in the region. Nearly all of the contacts between the units are somewhat 
gradational. From oldest to youngest the stratigraphy consists of the following units: 

Cape Small Formation with its two main members, the Cape Small Silver Schist and the Cape Small Rusty Schist. 
These units are all correlated to the Cape Elizabeth Formation. 

Cape Small Silver Schist (Ocsss), a schist with the submembers Singing Sands Schist a staurolite-rich 
silver schist (Ossss) and the quartz-rich granofels member (Ocsss-g). Thin calc-silicate units are  
infrequently found throughout these units.  

Cape Small Rusty Schist (Ocsrs), a deeply rusty weathering schist and with numerous interlayered horizons 
of Icebox Amphibole-rich Calc-silicate (Oiacs).  

Alliquippa Formation a moderately rusty weathering schist (Oars) with members Aliquippa Amphibolite (Oaa) and 
Aliquippa Marble (Oam). These units are correlated to the Spring Point Formation. 

Graphitic Phyllite (Ogp), a black, rusty weathering, phyllitic schist that is correlated to the Diamond Island 
Formation. 

West Marsh Formation with its six different members that are all correlated to the Scarboro Formation. 
West Marsh Rusty Schist (Owmrs), West Marsh Schist (Owms), muscovite-rich West Marsh Schist 
(Owms-m), garnet-rich West Marsh Schist (Owms-g), West Marsh Amphibolite (Owma), and West Marsh 
Granofels (Owmg).  

The West Marsh Formation is found in the northeast portion of the map (Fig. 4). This is one area where our 
map differs significantly from Hussey's 2012 map (see Fig 2B). He correlated most of these rocks to the Cape 
Elizabeth Formation (Oqs on Fig 2C). Our recognition of the granofels and amphibolite members within the non-
rusty schists of the West Marsh Formation makes this section very different lithologically from the Cape Small 
Formation that both Hussey and us agree are correlative to the Cape Elizabeth Formation. Amphibolites and calc-
silicate granofels in the Cape Small Formation are typically within deeply rusty weathering schists. Juxtaposition of 
the West Marsh Formation against the Graphitic Phyllite (yellow unit in the middle of the map, Fig. 4), a very good 
correlative to the Diamond Island Formation, further justifies our interpretation.  Our interpretation that there are 
several different amphibole-rich calc-silicate units in the Cape Small Formation at Ice Box Beach (Oiacs on Fig 4) is 
also significantly different from Hussey (2012) who interprets these as a single unit repeated by isoclinal folding 
(Obc on Fig 2B). The different outcrop expressions and internal characteristics of the units led us to believe these 
were different horizons.  We also did not find any evidence of early, macroscopic, isoclinal fold hinges that would 
repeat these units, supporting our interpretation of a more complex stratigraphy and simpler structure. The remainder 
of our map (Fig 4) and Hussey's 2012 map (Fig 2B) are quite similar in both shape and stratigraphic correlation, 
give or take a few structural details here and there.  

STRUCTURAL GEOLOGY 

The history of deformation at Small Point is complex and multi-phase. All previous researchers have 
recognized this and we offer here a revision to the deformation sequence by combining our observations with those 
of Hussey (Hussey, 1988 and 2012; Hussey and Berry, 2002) and Swanson (Swanson, 1999; Swanson and Bampton, 
2009). We interpret the deformation as having formed in a 5-stage model, D1 through D5.  

First Deformation - D1
D1 is characterized by a penetrative early S1 schistosity and very rare F1 isoclinal folds of relict bedding (S0).  
Though the timing is poorly constrained, this deformation event seems most likely to be related to the Salinic 
orogeny sometime in the early Silurian.  
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Figure 4. New bedrock geologic map and cross sections of Small Point, Maine. *1 STOP locations
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*5
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Second Deformation - D2
D2 is characterized by a second penetrative schistosity, S2, and fairly common, but infrequent F2 isoclinal folds of 
especially metamorphic quartz veins, S1 schistosity, and less so relict bedding (S0). S2 schistosity is seen cutting S1 
schistosity in many thin sections from Small Point and we will hopefully see it in outcrop at STOP 5.  Hussey 
(1988) recognized these two structural fabrics referring to them as F1 and F1a. As with D1, the timing of D2 
deformation is poorly constrained and hypothesized to be part of the earliest Acadian Orogeny in the latest Silurian. 
The deformation created by the combined effects of D1 and D2 most likely produced what we interpret to be an 
overturned stratigraphy, albeit poorly constrained by one graded bed. 

Third Deformation - D3
D3 folding in turn strongly deforms the earlier fabrics and is characterized by widespread folding at the meso and 
macro-scales. Most folds that you will see on the trip are of D3 age. Four macro-scale folds are easily recognized by 
regional changes in the attitude of the composite fabric S0/S1/S2. From east to west the macroscopic folds are: Seal 
Island antiformal syncline; Cape Small synformal anticline; Head Beach antiformal syncline; and Hermit Island 
synformal anticline. The fold form of these macro-scale structures changes progressively from tight, upright folds in 
the north (cross sections A-A' and B-B' Fig 4) to broad, open to gentle folds in the south (cross section C-C' on Fig 
4). 

All mesoscopic folds, with a few exceptions, plunge gently to the south (ave. F3 trend and plunge = 188, 
28) with predominately west, but many east, steeply dipping axial surfaces striking N-S (ave. S3 axial plane = 181,
71).  The axial plane is defined by a spaced S3 cleavage and rarely a weak S3 schistosity. Meso-scale folds are quite 
variable in their distribution and intensity in the Small Point area. In general the most abundant meso-scale folds 
occur in trains with 3-4 anticline crests per every .5 meter. These zones of abundant F3 folds are mostly limited to 
the Cape Small Formation and especially the Cape Small Silver schist (Ocsss), which we will see at STOPS 4 and 5. 
This is in stark contrast to the fold density of the West Marsh Formation where few if any meso-scale F3 folds are 
found. We speculate that these units may exhibit different multilayer rheologic properties where the West Marsh 
Formation, with mostly just massive schist and no rigid interbeds, folds less, and the Cape Small Formation, with 
thin rigid interbedded quartz-rich granofels and garnet coticule layers in the schists, folds the most.  

Hussey's (2012) map of the Cape Small synformal anticline (Fig 2B) is nearly identical to ours (Fig. 4), 
however our map pattern of the other three macroscopic D3 folds differs in location of the axial traces. The other 
major difference between our map and Hussey's (2012) is his use of multiple D2 macroscopic fold hinges on the east 
side of Small Point near STOP 3.  In these places Hussey (2012) connects his units Oma, Ogr, Ors, and Obc (see Fig 
2B) together with isoclinal hinges that are shown folding around either underwater or in thick woods with little 
outcrop and thus poor control. Because we did not see any evidence for D2 macroscopic fold hinges, we favor a 
more complex stratigraphy with fewer repetitions by folding in an overall less complex structure dominated by D3 
macroscopic folding. The age of D3 is poorly constrained but likely records the culminating effects of the Early to 
Middle Devonian Acadian Orogeny.  

Fourth Deformation - D4
D4 is restricted to the western part of Small Point and in particular Hermit Island. It is part of the Phippsburg Shear 
Zone, a dextral-oblique, ductile transitioning to brittle, shear zone that is probably a splay off of the Norumbega 
Fault. Figure 5A shows a structural model for the entire shear zone width in the vicinity of Small Point. As one 
moves west across Small Point and approaches Hermit Island, the composite fabric S0/S1/S2 changes orientation 
from that dominated by D3 folding (with both east and west dips of S0/S1/S2), to an east-only dipping domain of 
S0/S1/S2 at Hermit Island (STOP 6). The boundary between dip domains is sharp and shown on Figure 5C.  A south 
plunging quartz rod lineation, some exhibiting sheath fold-like properties, also increases in intensity as one 
approaches Hermit Island and the east dipping S0/S1/S2 domain.  

Open and gentle D3 folds transition to tight to isoclinal folds with a stronger S3/S4 axial plane schistosity in 
the shear zone.  In places west of Hermit Island (e.g. STOPS 4 and 5) mineral lineations defined by aligned 
sillimanite, quartz, and mica, parallel to F3 hinge lines fill the gaps between pieces of boudined andalusites. This 
may record the transition from D3 to D4 as hinge parallel extension possibly related to regional extrusion begins 
(Swanson and Bampton, 2009). A structural model showing the transition from D3 to D4 is shown in Figure 5B.  
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Figure 5. Structural geology at Small 

Point. A) Phippsburg Shear Zone model 

showing regions of varying shear strain 

and deformation. B) Deformation 

model for Hermit Island showing D
3
 

through D
5
 deformation. C) Dip domain 

map of S
0
/S

1
/S

2
 at Hermit Island. Red 

lines show east dipping domain defining 
the edge of the Phippsburg Shear Zone. 

D) Shear strain map calculated from

rotated granitic veins intruded initially 

orthogonal to S
0
/S

1
/S

2
. E)  Region of 

crustal extrusion indicated by the large 

single arrow pointing south (Swanson 

and Bampton, 2009). Regional, south 

plunging, D3 folds and subsidiary shear 

zones are linked to a restraining bend 

on the dextral Norumbega Fault Zone 

(bold black line). F) Swanson’s (1999) 

model for dextral rotation and folding 

of granitic and quartz veins which 

were initially orthogonal to shear zone 

foliation. S-shaped folds with boudined 

limbs are produced by dextral shear. 

B

D
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A
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Shear strain values, as measured using quartz and granitic veins that were emplaced orthogonal to S0/S1/S2
and then dextrally rotated, range from zero in the west to shear strain values of 5-10 at Hermit Island. A map of 
shear strain values for Hermit Island is shown in Figure 5D.  These veins and intrusions are now oblique by about 
20° to S0/S1/S2 and exhibit excellent forward rotated boudinage. Dextral kink bands infused with tourmaline (schorl) 
mineralization accompanied the intrusion and formed during rotation of the granitic veins. Enigmatic S-shaped folds 
of some of these granitic veins developed by dextral rather than sinistral shear as the veins rotated through the 
shortening field and then became extended and boudined. A model of how this might work from Swanson (1999) is 
shown in Figure 5F. As exhumation progressed during shearing, late stage, bookshelf style, sinistral brittle faults 
developed in some of the granites, again in an overall dextral strain regime. Taken together these D4 structures 
record a continuous and protracted period of ductile to brittle-ductile to brittle, dextral shearing during exhumation. 

We support the transpressional model presented by Swanson and Bampton (2009) and shown in Figure 5E 
calling for crustal scale extrusion of a midcoast block bounded on the west by the dextral Phippsburg Shear Zone 
and on the east by the sinistral Pemaquid Shear Zone. We offer a wrinkle to this model and suggest that at least the 
tail end of the shearing was transtensional. This is supported by the overall dextral motion, the east dipping domain 
of the S0/S1/S2 shear zone fabric, and the south plunge of the shear zone quartz rod lineations. These suggest a 
kinematic model dominated by strike slip but with a subordinate normal component of dip slip created by 
transtension (see Fig 5B cartoon d). Though poorly constrained, D4 shearing most likely began at the very end of the 
Acadian Orogeny, and continued through both the NeoAcadian (Late Devonian-Carboniferous) and Alleghanian 
(Permian) Orogenies. Hussey (2012) does map a shear zone at Small Point but not at Hermit Island. His zone of 
"highly deformed rocks" lies to the east near the Sprague Marsh (Fig 2B). This shear zone has no kinematic 
information reported and is drawn based on map-scale truncations of units. We did not see evidence to support this 
shear zone.   

Fifth Deformation - D5
D5 is characterized by a late brittle fault seen north of Icebox Beach (thin red line near STOP 3 on Fig. 4) and is 
probably associated with normal faulting perhaps at the end of the Alleghanian (Permian) and into the initial 
breakup of Pangea in the Triassic. There is truncation of the amphibolite-calc-silicate units in the Cape Small Rusty 
Schist and widespread development of cm-scale crenulations (axial plane of 193°, 15°; hinge line trend and plunge 
of 196°, 9°). The relationship between D4 shearing and D5 faulting associated with these crenulation is unclear as 
they appear in geographically separate areas. Hussey (2012) maps similar late faults in the same region though with 
a different spatial pattern, and another late fault he named the Phippsburg Fault near Head Beach that we did not see. 

METAMORPHISM 

Two Buchan-style (low P, moderate T) metamorphic events, M2 and M3, have been found in the area (Dunn 
and Lang, 1988; Lang and Dunn, 1990; Grover and Lang, 1995). M1 has been reported by West et al. (2008) and 
Guidotti (1989) in coastal and western Maine, but not found by us at Small Point. D1 is probably synchronous with 
M1, M2 and D2 are synchronous, and D3 develops before M3, which is synchronous with D4. A schematic PT diagram 
showing the path of metamorphism linked with the deformation at Small Point is shown in Figure 6D. 

M2 Event 
The first of these metamorphic events at Small Point (M2) occurred during D2 isoclinal folding in the Early Acadian 
Orogeny and developed the dominant S2 foliation defined by an early biotite + muscovite foliation and inclusion-
rich, poikioblastic garnet cores. Relict staurolite-andalusite grade assemblages typify M2 in the entirety of Small 
Point, and as such no isograd maps can obviously be made. Pseudomorphs of M2 andalusite by M3 muscovite and 
inclusions of relict M2 staurolites preserved as inclusions in the larger M3 andalusites are the typical manifestations 
of the M2 staurolite-andalusite grade. M2 has been strongly overprinted by M3, which is slightly higher in 
metamorphic grade. The M2 biotite foliation, S2, is clearly folded by D3 establishing its pre-D3, syn-D2 relative order 
in the sequence of geologic events at Small Point. Grover and Lang (1995) and Hussey and Berry (2002) previously 
recognized M2. 

M3 Event 
The next event (M3) was syn-D4 shearing (Phippsburg Shear Zone) in the NeoAcadian and Alleghanian Orogenies 
and shows a second generation of less to non-foliated biotite and muscovite, clear garnet rims, fresh staurolite  
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Figure 6. Metamorphism at Small Point, 
Maine. A) Isograd map from Hussey and 
Berry (2002) showing staurolite-out isograd 
and migmatite front. Small Point region 
is outlined by the box. B) Isograds and 
mineral assemblages in the Harpswell-
Small Point region by Grover and Lang 
(1995). All of their samples in the Small 
Point region are in the sillimanite zone with 
the assemblage Grt+Bt+Sil+And+/-St. Box 
shows the Small Point area. C) Our isograd 
map for the Small Point region. We refined 
the position of the M3 staurolite-out isograd 
and drew the M3 andalusite-out isograd. M2 
assemblages are all within the andalusite-
staurolite zone and variably overprinted 
by M3. STOPS = *1. D) Possible P-T path 
and metamorphic reactions with phases 
of deformation D1-D4 and metamorphic 
events M1-M3 labelled along the path. Phase 
bondaries from Theriak Domino.
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showing a later staurolite out reaction, F3 hinge parallel fibrolitic sillimanite filling between boudined andalusite, 
and fibrolite pseudomorphic lenses of M2 and/or M3 staurolite or andalusite. M3 sillimanite is present in all thin 
sections we studied which is why Grover and Lang (1995) placed the entire M3 assemblage at Small Point in the 
sillimanite zone (Fig 6B). We were able to map three M3 metamorphic zones: a staurolite+andalusite+sillimanite 
zone (Zone I) terminating against the staurolite-out isograd; an andalusite+sillimanite zone (Zone II) stopping at the 
andalusite-out isograd; and a sillimanite zone (Zone III). The isograd map for Small Point (Fig 6c) shows the grade 
increasing from the SW to the NE, towards the map-scale Morse Mountain granite in the northeast. This compares 
well to the map shown by Hussey and Berry (2002) with the exception that they did not map the 
andalusite+sillimanite zone and andalusite-out isograd (Fig 6A).  
 
 

DRIVING AND WALKING LOG FOR STOPS 
 
MEETING POINT FOR TRIP: (43.745037°, -69.837317°) 8:00 am at the Bates-Morse Mountain Public Parking 
Lot. From Bath, drive south on Rte. 209, continue straight on Rte. 216 at the left turn to Popham Beach (Rte. 206 
veers off to the left) and drive .8 miles where you take a left on Morse Mountain Road (dirt) to the nearby parking 
lot .1 mile down the road. Assemble here for an overview of the trip and logistics. Please pack your lunch and water 
as there are no options to pick up food along the trip.  There are no bathrooms except at the very last stop at Hermit 
Island in the mid-afternoon. Ticks and poison ivy are prevalent and the best strategy is to cover up with long pants 
and long sleeve shirt. Though the driving distance for this trip is only about 3 miles, the cumulative walking distance 
is about 5 miles along trails, the slippery intertidal region, and rugged rocky coastline. We will need to consolidate 
vehicles here as well. 
  
Mileage 
0.0 Walk .3 miles easterly on Bates-Morse Mountain access road to just before (W of) the causeway over the marsh. 
Outcrops are immediately south of the road in the woods and above the marsh. 
 
STOP 1 – Sprague Marsh: (43.743299°, -69.832685°; 1 hour)  
Stratigraphy: The upper section of the stratigraphy is exposed here in low woods outcrops with poison ivy and 
mosquitoes. There are no topping controls here and in most of the quad (we will show you THE one graded bed we 
found later in the day!) so the stratigraphic order is by correlation to other known sections.  Exposed from youngest 
to oldest and east to west in a structurally inverted (?) section are the following: West Marsh Granofels  (Owmg); 
West Marsh Amphibolite (Owma); West Marsh Garnet-rick Schist (Owms-g); Mica-rich West Marsh Schist 
(Owms-m); and West Marsh Schist (Owms). All contacts are gradational and a few scattered, undeformed 
pegmatites, granites, and/or aplites of the Morse Mountain Granite are found across the causeway to the east.   
 
The three varieties of West Marsh schist could easily be lumped as one unit; they were simply subdivided by 
variations in the mode of muscovite and/or garnet. The Amphibolite has nicely aligned amphiboles in thin section as 
well as quartz/plagioclase porphyroblasts with symmetric tails. The granofels has granoblastic texture with the 
assemblage quartz-plagioclase-muscovite-biotite. We would correlate all of these rocks to variations of the Scarboro 
Formation. We interpret the section to young to the east. This is differs significantly from the interpretation by 
Hussey (2012) where these same rocks are less subdivided and correlated by him to the Cape Elizabeth Formation.  
 
Structure: The attitude (right hand rule) of bedding/layering S0 (which is nearly always parallel to the principal 
foliation S1 and S2) is 160-180°, 50-70°. There is a conspicuous absence of any minor D3 folding here. The west dips 
and our stratigraphic assignment suggest that this is an inverted section, which, in theory, is on the limb of a regional 
D1 or D2 nappe-scale fold of unknown vergence.  The overall structure is controlled by a D3 synform as these 
outcrops are on the east limb of the south plunging Cape Small synformal anticline. There is no topping control, so 
lots of room for future reinterpretations, both stratigraphic and structural! As an example of this, Hussey (2012) 
recognizes a zone west of STOP 1 of “highly deformed rocks” that he interprets to be an unspecified shear zone that 
would juxtapose the Scarboro Formation to the west against the Cape Elizabeth Formation. We did not see this zone 
in the field nor the apparent truncations along it to the south and hence do not support its existence on our map. 
 
Metamorphism: These schists are without andalusite and staurolite placing them on the high-grade side of the M3 
andalusite-out isograd with an overall assemblage of bio+gar+/- sill. M3 is a local event likely caused by contact 
metamorphism associated with the Morse Mountain Granite and other plutons to the east and northeast. Garnets in 
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these schists are texturally zoned with relatively narrow, clear, inclusion-free rims, yielding to wider, inclusion-rich 
(ilmenite and/or graphite) cores.  Overall in the quadrangle, texturally zoned garnets occur to the east while unzoned 
garnets occur to the west and at lower M3 grades. Our interpretation is that the texturally zoned garnets record two 
episodes of garnet growth, first M2 (cores), then later during M3 (rims). M2 is an earlier regional event that developed 
during the Acadian Orogeny and throughout the quadrangle is at andalusite-staurolite grade, but here overprinted 
completely by the higher M3 assemblages.  
 
The M3 isograds presented here are modified and expanded from those of Hussey and Berry (2002) and Grover and 
Lang (1995). M2 assemblages have never been mapped in this region but have been discussed previously by Hussey 
and Berry (2002) and Grover and Lang (1995).  
 
Retrace walking route back to vehicles.  
 
0.3  Drive back to Rte. 216 and proceed left (south) down the road for .3 miles. Take a right (west) on 

 Aliquippa Rd.  
0.6  Drive another .3 miles to the boat landing and the end of Aliquippa Rd. There is very limited parking here 
 so we’ll have to be creative! 
 
 
STOP 2 – Aliquippa Landing: (43.741472°, -69.843853°; 1 hour) We will examine the rocks (low tide mostly) to 
the west and south of the boat landing. 
 
Stratigraphy: The next lower units in the stratigraphy are exposed here. Exposed from youngest to oldest (?) are the 
following units: West Marsh Rusty Schist (Owms-r); and the Aliquippa Rusty Schist (Oars). The difference between 
the rusty schists of the Owms-r and Oars is subtle and mostly based on the increased abundance of calc-silicate and 
amphibolite horizons in the Oars. The rusty weathering is moderate in both units. 
 
We would correlate these rocks to the Scarboro Formation (Owms-r) and Spring Point Formation (Oars). This 
agrees mostly with the interpretation of Hussey (2012) who correlates these rocks to the same formations.  
 
Structure: This is one of the rare places in the quad where one can see an early D2 fold refolded by a D3 fold. We 
have mapped this as a north plunging D2 macroscopic antiform refolded by a D3 antiform with a somewhat 
anomalous southeast trend. Due to the complex folding, bedding/layering is more variable, ranging from typical 
attitudes (RHR S&D) of 190-160°, 45-80° to less common attitudes of 10°, 80°.  Minor D3 folds are present but not 
as abundant as the exposures we will see later to the south. Due to the complex interaction of D2 and D3 fold 
generations, the D3 minor folds have both north and south plunges and as a result are somewhat atypical of D3 minor 
structures elsewhere which uniformly plunge southerly. D3 folds are also characterized by a smaller interlimb angle 
here and are classified as tight folds. This D3 fold parameter progressively changes to the south where the fold form 
changes to a much more open style. Overall in the quadrangle, D2 deformation is much less well constrained but is 
always characterized by a strong, pervasive, early foliation (S2) and in rare instances like this, isoclinal folds of 
bedding/layering and, in other places, quartz veins.  
 
The overall fold style and age is much the same as portrayed by Hussey (2012), however he maps the Phippsburg 
fault through here based on apparent stratigraphic offsets. We did not see this structure and would not support its 
existence. 
 
Metamorphism: As with STOP 1, these schists are without andalusite and staurolite placing them on the high-grade 
side of the M3 andalusite-out isograd with an overall assemblage of bio+gar+/- sill. These garnets also exhibit 
textural zoning from core to rim again indicating complex metamorphic growth during both M2 and M3. 
 
0.9  Retrace route on Aliquippa Rd. back to Rte. 216 and turn right (south).  
2.2  Proceed for 1.3 miles and turn left on to Club Rd (private). We have been given permission by the Small 
 Point Association to park our vehicles just south of the tennis court (43.724411°, -69.838024°) and then 
 walk to the next two stops from here. Bring your lunch! Walk south on Club Rd .3 miles to the Small Point 
 Association clubhouse (a green building). If there is time and interest we may quickly pop down to the 
 clubhouse beach to see the graphitic phyllite (Ogp) that is correlated to the Diamond Island Formation. Just 
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 south of the clubhouse turn right and ascend a set of concrete stairs to the top. Take the trail to the left at 
 the top of the stairs that goes along the ledges overlooking the ocean, the Cliff Trail (no sign), hugging the 
 water's edge until you arrive at the first private beach (Icebox Beach) a distance of about .3 miles. 
 
 
STOP 3 – Icebox Beach: (43.715366°, -69.836023°; 2 hours including walking time) We will examine the outcrops 
just above the high tide line as we walk generally south on Icebox beach. 
 
Stratigraphy: Exposed here are three units: the Cape Small rusty schist (Ocsrs); Icebox amphibolite and calc-silicate 
(Oiacs); and Cape Small Silver Schist (Ocsss) which is found both above and below the Ocsrs and Oiacs. The high 
cliffs to the east are made up of Cape Small Silver Schist (Ocsss) where original bedding (?) can be seen as layers of 
schist alternate with thin layers of quartz-rich granofels. Garnet occurs as both porphyroblasts and as thin 
discontinuous coticules.  Along the remaining length of Icebox Beach to the south are the deeply rusty weathering 
Ocsrs schists.  These are in places slightly magnetic due to pyrrhotite. Interlayered in many different locations are 1-
4 m wide amphibolites with or without calc-silicate. These resistant layers are featured prominently in these 
outcrops. Each layer is unique in its appearance and thickness, suggesting to us that these are individual units in the 
stratigraphy. We would correlate all of these rocks to the Cape Elizabeth Formation, as does Hussey (2012).  
 
Structure: The attitude of bedding/layering ranges from 180, 60 in the north section of the beach, to 130, 20 towards 
the southeast part of the beach as the layers fold through a regional D3 fold (east limb of the Cape Small synformal 
anticline or west limb of the Seal Island antiformal syncline). This is an area where the D3 macro-scale structures 
dominate and south plunging D3 meso-scale folds are less common.  We mapped a late, normal (?) fault that 
truncates the amphibolites to the east and is seen as a brittle structure in outcrop sometimes with associated local 
crenulations. We’ve termed these D5 features and they would represent the youngest deformation (aside from late 
joints) in the quad. 
 
Our interpretation of the stratigraphy and structures here differs significantly from Hussey (2012).  He interpreted 
the amphibolites and rusty schists as being repeated by D2 (?) isoclinal folding. We mapped a more complex 
stratigraphy and simpler structure. This was based on two things: 1) each amphibolite unit appeared to be 
lithologically unique; and 2) we did not see any early fold hinges repeating these units. Hussey (2012) also mapped 
several inferred faults here, one of which is similar to the location of the late fault described in the previous 
paragraph.  
 
Metamorphism: We have moved to slightly lower M3 grades at this STOP. Icebox Beach lies just west of, or on the 
low grade side of, the M3 andalusite-out isograd. In thin sections from the Cape Small Silver Schists at this locality 
coexisting andalusite and sillimanite can be found. In places the andalusite is partially to completely replaced, 
reflective of the proximity to the andalusite-out isograd. Relict M2 staurolites, preserved as inclusions in the larger 
M3 andalusites, are seen in thin section here. Garnets here continue to exhibit the textural zoning seen at the previous 
STOPS. 
 
At the south end of the Icebox Beach traverse we will follow a short 50 yd. walking trail to join Gun Club Rd. (dirt). 
Follow this road for .7 miles past the last houses on the Point via a grassy path to Navy Rd., go left down Navy Rd. 
about 50 yds, then right on a path through the dunes to Bald Head Cove, another private beach.  Pending the time, 
we’ll eat lunch either before or after looking at the rocks; enjoy the awesome view! 
 
 
STOP 4 – Singing Sands Beach: (43.705502°, -69.840564°; 2.5 hours including walking time and lunch) We will 
examine the outcrops just west of the Singing Sands beach by walking west across the ledges to the next beach. 
 
Stratigraphy: Exposed here are the oldest units (?) in the stratigraphy: Singing Sands Silver Schist (Ossss) and Cape 
Small Silver Schist (Ocsss). The “host” rock here is the Cape Small Silver Schists (Ocsss) which we saw at STOP 3.  
It has the relict bedding in the form of interlayered schists, granofels, rare calc-silicate layers, and discontinuous 
garnet coticule layers. The Singing Sands Silver Schist (Ossss) which forms 1-5 m thick bands of schist interlayered 
with the Ocsss and rendered mappable by the increase mode of coarse staurolite porphyroblasts. These rocks are 
correlated to the Cape Elizabeth Formation, in agreement with the stratigraphic assignment of Hussey (2012).  
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Structure: Bedding (S0) is again parallel to foliation (S1 and S2) and has attitudes of 90-110°, 30-40°.  We are just 
about on the axial trace of the macro-scale D3 Cape Small synformal anticline that plunges gently south. If we had 
time to walk the entire length of the beach to both the west and east, one would see the attitudes of S0/S1/S2 
progressively change defining the fold with an impressive wavelength of approximately 2 kms. Meso-scale D3 folds 
are pretty much everywhere with about 3 anticlines per every .5 meters. These folds are mostly open, upright, and all 
plunging to the south. S3 is a spaced axial planar cleavage here. The overall structure presented here is in good 
agreement with that described by Hussey (2012) 
 
Metamorphism: These outcrops should be in the “Shrine to Polymetamorphism”. Spectacular coarse-grained 
porphyroblasts of staurolite, andalusite, garnet, and biotite are found. These rocks are slightly lower grade than those 
we’ve seen at the previous STOPS and lie just about on the M3 staurolite-out isograd. The M3 mineral assemblage is 
staur+and+sill+gar+bio.  M3 staurolite can be as large as a 1-3 cm across and often exhibit cruciform twinning. M3 
andalusite occurs in strikingly large somewhat rectangular lumps ranging from 2-10 cm in length that in the correct 
light show a cleavage "flash" indicating these are single crystals. In thin section M2 staurolite inclusions are found in 
these M3 andalusites. An unusual texture exhibited by some of these M3 andalusite porphyroblasts is boudinage with 
the gaps filled with aligned M3 quartz, sillimanite, and muscovite. The extension direction implied by these 
boudined andalusites is parallel to the D3 meso-scale fold axes. One of the harder to find features here are the M2 
andalusite pseudomorphs that nicely record the relict M2 andalusite-staurolite regional grade. These porphyroblasts 
are completely replaced by muscovite yet preserve the andalusite shape. We have not seen convincing relict or fresh 
chiastolite crosses in either the M2 or M3 andalusites (Help us find one!). M3 garnets are both texturally zoned and 
unzoned and are typically up to .5 mm in size. 
 
At the west end of the ledges in east corner of the next beach we’ll pick up a trail (watch the poison ivy) taking us to 
Navy Rd. Follow the trail for about .2 miles, then head north on Navy Rd to the junction with Seal Cove Rd. Go 
downhill (southeast) on Seal Cove Rd. to Icebox Beach (about 100 yds) and retrace our steps on the Cliff Trail and 
Club Rd to the vans, a distance of about 1.4 miles.   
 
2.7 Drive the vehicles .5 miles south on Rte. 216 and take a right for Hermit Island Campground on Head 
 Beach Rd.  
 
2.9 Drive about .2 miles and park at the Head Beach Parking lot (43.719185°, -69.849865°), about .1 mile 
 before the Hermit Island campground complex. Walk to the beach and proceed south down the shoreline a 
 distance of about .3 miles from the van parking lot.  
 
 
STOP 5 – South Head Beach: (43.716011°, -69.850185°; 1 hour) We will examine the outcrops of Cape Small 
Silver Schist (Ocsss) and on the way, very quickly, an exposure of Icebox amphibolite calc-silicate (Oiacs).  
 
Stratigraphy: The exposure of Oiacs connects to those we saw earlier at Icebox Beach (STOP 3) and serves to 
demonstrate the extent of these amphibolite-calc-silicate units. Though we didn’t really appreciate it at the time, the 
outcrop of Ocsss south of Head Beach turns out to have the ONLY reliable topping indicator in the entire quad! 
Bedding grain size is reversed due to metamorphism and we’ll show you one pretty convincing reverse graded bed 
that indicates tops are inverted. We can debate at the outcrop the topping direction but this was “blessed” as inverted 
by preeminent geo-heavy weights Henry Berry and Arthur Hussey.  The grading is likely preserved here due to the 
thicker-than-normal quartz-rich granofels interbeds in the schist. D1 and D2 isolcinal folding is very difficult to see 
but most likely present in these rocks. As such, regional extrapolation of the significance of this single inverted bed 
should be done with appropriate caution! All of these rocks are correlated to the Cape Elizabeth Formation by us and 
also by Hussey (2012). 
 
Structure: In the Ocsss outcrop, bedding/foliation (S0/S1/S2) have attitudes of 50-90°, 30-40° to 270°, 30°. The 
exposure is located on the west limb of the D3 Cape Small synformal anticline and the east limb of the Head beach 
antiformal syncline. Minor D3 folds with meter-scale wavelengths are common and fold the earlier fabric elements 
S0/S1/S2. We’ll try to find the exposure here that shows S2 foliation oblique to and cutting the early S1 foliation. This 
argues for the existence of an early D1 and a late D2 set of isoclinal nappe-stage folds. We’ve seen this in scattered 
thin section and Hussey (2012 and 1988) shows this relationship in outcrop photographs from this area. The outcrop 
of Oiacs has a nice set of meso-scale D3 folds exposed. 
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Metamorphism: These rocks are at staurolite-andalusite M3 grade, the lowest we’ve seen today and the lowest in the 
quadrangle. M3 staurolite and andalusite are found but as abundant as at STOP 4. Thin sections here did not reveal 
very good relict M2 porphyroblasts. 
 
Retrace the walking route back to vehicles. 
 
3.0  Drive about .1 miles west toward Hermit Island Campground and park (43.720033°, -69.851566°). Walk 
 .5 miles northwest along the dirt Hermit Island campground road to the Bathtub.  
 
 
STOP – 6 Phippsburg Shear Zone at the Bathtub: (43.724535°, -69.857311°; 1 hour) We will examine a variety 
of structures at the Bathtub. Please be mindful of the poison ivy! 
 
Stratigraphy: As we walk west we remain in either the Ocsss or the Ocsrs with similar lithologies to what we have 
seen at other STOPS. The Bathtub is in the Cape Small Silver Schist (Ocsss) all correlated to the Cape Elizabeth 
Formation. Note that the number of granitic intrusions and quartz veins has increased in this region. 
 
Structure: These outcrops should be in the “Structure Hall of Fame!” The D4 Phippsburg Shear Zone is 
exceptionally well exposed here and shows a protracted period of post-D3 ductile through brittle-ductile dextral 
shearing that transforms the structures we have seen earlier. The overall dip of bedding/foliation is incredibly 
uniform with average attitude 15-30°, 60-80°.  This discrete and mappable east dipping domain is a hallmark of the 
shear zone. D3 folds have been transformed into tight to isoclinal shapes and now have a weak S3 schistosity. A 
strong quartz rod lineation has also developed in the earliest quartz veins trending circa 200°, 20°. Some of these 
veins exhibit sheath-like fold forms where the plunge steepens sharply, indicating ductile conditions and high 
strains.  Intrusion of quartz veins continued after the quartz rod lineations formed as did intrusion of M3 quartz-
andalusite-silllimanite veins and coarse granites and pegmatites.  These likely intruded steeply oblique or orthogonal 
to the principal bedding/foliation and, as shearing progressed, became forward rotated boudins trains showing 
dextral motion. The boudin trains remain oblique by about 20° to the principal bedding/foliation.  Dextral kink 
bands that are similarly oblique to bedding/foliation are directly associated with these granitic boudins and have 
tourmaline mineralization on their flanks. Some of the granites, and less so the kink bands, are folded into S-shapes 
suggestive of sinistral shear.  Nevertheless, these likely formed in a dextral system as they initially rotated clockwise 
through the shortening field, became symmetrically folded, then subsequently had their limbs attenuated into the 
asymmetric S-shapes. In a few places late, brittle, left-handed bookshelf gliding style, brittle faults developed in the 
boudined granites yet still in an overall dextral shear environment.  Taken together these structures record a 
continuous and protracted period of ductile to brittle-ductile to brittle, dextral shearing as exhumation stripped off 
the overlying rocks during shearing and deformation conditions changed. 
 
We agree with the work done here by Mark Swanson (Swanson and Bampton, 2009) who suggested that the 
Phippsburg Shear Zone was caused by south-directed extrusion of the midcoastal Block due to transpression from 
the Casco Bay restraining bend along the Norumbega Fault.  We would modify this interpretation and propose a 
period of local extension that allowed for the intrusion of granite and metamorphic veins of quartz and 
aluminosilicates orthogonal to bedding/foliation. The overall dextral shear sense, the steep (but not vertical) east 
dips of bedding/foliation, and the gentle, south plunges of the quartz rod lineations suggest that the oblique 
component of dip slip here was normal. This suggests that the shear zone was of transtensional style.  
 
Metamorphism: The rocks here are at the same M3 staurolite-andalusite grade as we saw in STOPS 4 and 5. In 
addition, thin sections show excellent relict M2 assemblages, in particular M2 staurolite inclusions in M3 andalusite. 
Though not quite as spectacular as the coarse Singing Sands Schist exposures of STOP 4, these rocks make up for it 
with an incredible set of M3 quartz-andalusite-sillimanite veins. These are now boudined by D4 shearing in the 
Phippsburg Shear Zone and are found up to a meter in length and about 10-20 cm wide. Andalusite makes up the 
coarsest part of the assemblage, comprising the bulk of the veins, and giving them a nice pink color. Sillimanite and 
muscovite are interstitial to the andalusite. The boudins are surrounded by concentrations of tourmaline and biotite.  
 
Return to vehicles. END OF TRIP! Safe travels. 
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