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ABSTRACT

The Waldoboro Pluton Complex, Maine, formed by multiple intrusive episodes of Acadian-age granitoids in an
unassigned Proterozoic Z-Ordovician assemblage of migmatitic, peraluminous, calc-silicate gneisses and schists.
Seven granitoid units comprise the complex (area >378 km?®), part of which probably sutures the St. George thrust
fault. Field and petrological evidence very strongly suggests in-situ formation of these syntectonic granitoids, and
that the magmas, once formed, did not migrate far from the site of anatexis. Specific lines of evidence include: cryp-
tic, transitional, concordant margins; prolific metasedimentary enclaves; evidence for melting in the migmatitic en-
velope and metasedimentary enclaves; and the presence of abundant restitic clusters of garnet, sillimanite, and
biotite identical to that in the country rock. Lithologic variations among the granitoids reflect varying degrees of
melt-restite segregation. Gneissic granitoids and granodiorites contain abundant restitic material, whereas granites
and leucogranites more closely approximate melt compositions. The abundance of garnet and rarity of cordierite in
granitoid and country rock, together with the presence of primary, magmatic muscovite, indicate minimum pres-
sures of formation of 0.3-0.4 GPa. Magmatic features have been overprinted to varying degrees by solid-state defor-
mation resulting in protomylonites, mylonites, S-C foliations, mineral and enclave boudinage, imbrication, augen
rotation, and intrafolial folding. Foliations in the granitoids are continuous with those in the country rocks, and de-
formation was related to regional tectonic events rather than granite intrusion. Alleged exotic, greenschist-grade,
Avalon composite terranes may be juxtaposed against amphibolite proximal terranes along the westward-vergent
St. George fault in the vicinity of the Waldoboro Pluton Complex. The shift from earlier Acadian compressive,
cataclastic-induced fabrics to later shearing is recorded in the S-type granitoids. Extensive shearing, mylonitization,
and late vapor-fluid enrichment leading to tourmalinization and feldspar blastesis along the eastern margin of the
Waldoboro Pluton Complex mark the trace of the St. George fault in this area. Upper amphibolite-grade metamor-
phism and melting may be the result of crustal thickening along the St. George fault, but additional heat for
metamorphism and melting may have been provided by coeval intrusion of gabbroic and dioritic magmas in this
region.



W. C. Sidle and M. Barton

INTRODUCTION

Reconstructions of the geologic evolution of coastal Maine
are difficult because of the uncertain origin of voluminous silicic
plutonics. The latter hinder correlations based on stratigraphy or
metamorphic paragenesis and mask inferred boundaries be-
tween different lithotectonic elements. Furthermore, one diffi-
culty with terrane identification lies in recognition of the
basement. Studies of the widespread intrusions may reveal the
nature of the deeper source materials underlying exposed strati-
graphic sequences. Preliminary geochemical analyses of some
plutons across the Gander-Avalon terrane suture(s) (Andrew et
al., 1983; Ayuso et al., 1988) suggest different sources for
magmatism in each composite terrane. However, these recon-
naissance geochemical studies do not discriminate among the
many lithotectonic units that make up the composite terranes. It
should be emphasized that over reliance on source-classification
schemes for granitoids (eg. I vs S-types) (Pitcher, 1983), which
are useful for regional correlations, may obscure the true petro-
genetic relationships and history of specific plutons. The strate-
gic selection of plutons for detailed study, such as those which
suture major faults, provides a basis for integrating pluton char-
acteristics and tectonic development. Studies of the structure,
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petrology, geochemistry, and geochronology of plutons should
therefore provide important clues to the accretionary history of
the northern Appalachian orogen.

We have undertaken a comprehensive study of the
Waldoboro Pluton Complex, which surrounds Muscongus Bay
in central coastal Maine (Figs. 1 and 2). The Waldoboro Pluton
Complex was selected for study because: (a) reconnaissance
field work indicated a deeper level of emplacement than inferred
for other discordant plutons in the region, suggesting that evi-
dence for extensive magma-crust interaction (including
melt-restite relations) might be preserved; (b) the Waldoboro
Pluton Complex appears to suture different terranes (Osberg et
al., 1985; Keppie, 1985, 1989) and thus affords the opportunity
to study the relationship between granitoid genesis and terrane
accretion; (¢) petrologic and structural relationships in the coun-
try rocks, at the margins and within the complex, can be estab-
lished fairly easily because of the large outcrop area (>280 km®
according to Osberg et al., 1985), good exposure, and
accessibility.

In this paper we describe the field relationships, petrogra-
phy, and structure of the Waldoboro Pluton Complex. These data
provide the framework necessary for petrological and geochem-
ical studies which will be described in separate publications (Si-
dle and Barton, in prep.).

SUMMARY OF PREVIOUS WORK

The earliest descriptions of the Waldoboro pluton date
from Bastin (1908). Work by Hussey (1971), Newberg (1979)
and by Smith et al. (1982) defined the northern and eastern
boundary of the pluton and also revealed the presence of
migmatites in the region. Newberg (1979) described several
large metasedimentary inliers within the pluton as well as a
large-scale oblique slip fault at Havener Cove and suggested
multiple episodes of deformation in the area. Osberg et al. (1985)
compiled the results of previous workers and inferred the loca-
tions of the northern, southern, and southwestern margins. A
K/Ar muscovite date of 295 (9 Ma (Zartman et al., 1970) and a
fission track apatite date of 207 ( 21 Ma (Naeser and Brookins,
1975) were obtained on samples from the same locality. A
whole-rock Rb/Sr date of 367 ( 4 Ma was assigned to the
Waldoboro pluton by Knight and Gaudette (1987).

The first detailed mapping of the Waldoboro Pluton Com-
plex and surrounding areas was carried out by Sidle (1990a),
who identified seven major igneous units. Sidle’s maps, together
with geologic descriptions, were published by the Maine Geo-
logical Survey (Sidle, 1991). Preliminary descriptions of the
Waldoboro Pluton Complex and Meduncook-South Cushing
granitoids, together with some geochemical analyses, are given
by Sidle (1990a, 1991). The results reported in this publication
reveal a complex magmatic and tectonic history for the
Waldoboro Pluton Complex, which is now estimated to be ex-
posed over at least 378 km”.

REGIONAL GEOLOGY AND TECTONIC SETTING

There is much uncertainty in assigning the Waldoboro
Pluton Complex to a specific geologic and tectonic setting be-
cause of widely differing interpretations of the evolutionary his-
tory of the northern Appalachian orogen. In view of this, a brief
review of the regional geology and tectonics is given here.

Some regional tectonic maps show the Waldoboro Pluton
Complex located within the Gander, an amphibolite-grade, An-
dean-style composite terrane, and near to the Avalon, an Atlan-
tic-faunal, greenschist-grade, platformal composite terrane
(Figs. 1 and 2) which includes Proterozoic Z basement (Bradley,
1983; Rast and Skehan, 1983; Williams and Hatcher, 1983; Zen,
1983). However, Keppie (1985, 1989) emphasizes the collage
nature of lithotectonic or proximal terranes in the northern Ap-
palachian orogen and the difficulty of correlating suspect super
terranes along-strike. Certainly, tectonic models must accommo-
date a continental-scale shear fault, locally expressed as the
Norumbega fault zone in Maine (Fig. 2). Along the Norumbega
fault zone are juxtaposed an exotic array of diverse tectonic ele-
ments to a suspect sliver of gneissoid basement, presumably of
North American affinity, episodically from mid-Paleozoic
through Alleghenian times (Ludman, 1981, 1986; Zen, 1983;
Keppie, 1985).

The proliferation of proximal terrane assignments is evi-
dent from Figure 3 (Osberg, 1978; Zen, 1983; Hogan and Sinha,
1989). In general, the rocks west of the Waldoboro Pluton Com-
plex comprising the Falmouth-Brunswick, Saco-Harpswell,
Bucksport-Flume Ridge, and possibly Passagassawakeag se-
quences/terranes are Ordovician deep marine turbidites uncon-
formably overlain by Siluro-Devonian turbidites, which are
themselves unconformably overlain by Devono-Carboniferous
nonmarine sediments and volcanics. Keppie (1989) has included
these terranes in his Fredericton terrrane projected from the Ca-
nadian Maritimes. East of the Waldoboro Pluton Complex, the
rocks comprising the Penobscot-Cookson and Ellsworth-coastal
terranes (Fig. 3) mostly are Cambro-Ordovician euxinic sedi-
mentary rocks overlain by Siluro-Devonian bimodal,
within-plate, tholeiitic, rift volcanic rocks and shelf sedimentary
rocks. Keppie (1989) suggests that these terranes correlate with
the St. Stephen terrane. In fact, the probable correlative terrane
embodying the lithotectonic features surrounding the
Waldoboro Pluton Complex is the Nashoba terrane (Aleinikoff
etal., 1979; Hepburn et al., 1987; Hutchinson et al., 1989). The
migmatitic granitoids in the Nashoba terrane are strikingly simi-
lar to those in the Waldoboro Pluton Complex area. Projection of
the Nashoba terrane from southeastern New England offshore
and into mid-coastal Maine is suggested by seismic studies in the
Gulf of Maine (Stewart et al.,, 1986; Klitgord et al., 1988;
Hutchinson et al., 1989).

Many of these proximal terrane assignments are based on
the assumption that the lithotectonic bounding faults (Osberg,
1978; Osberg et al., 1985) are deep-seated, high-angle faults.
However, Klitgord et al. (1988), Hutchinson et al. (1989), and
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Figure 3. Regional lithotectonic sequences/terranes in coastal Maine
and location of the Waldoboro Pluton Complex and various other
intrusives. 1 - Waldoboro Pluton Complex; 2 - Raccoon intrusions; 3 -
Spruce Head; 4 - Port Clyde; 5 - Monhegan. SGF = St. George fault; TH
= Turtle Head fault.

Stewart et al. (1986) indicate that the major boundaries are listric
faults, implying major westward-directed thrusting. Seismic
data suggest that the crust beneath the Gulf of Maine thins to
about 34 km without anomalous variations indicative of high an-
gle discontinuities or faults.

One of these thrusts, the St. George fault (Fig. 3), may have
juxtaposed Avalonian-type terrane onto Gander-type terrane (lo-
cally Nashoba?). Sidle and Barton (1990) suggest that the
Waldoboro Pluton Complex sutures this regional fault (see also
Hussey, 1971, 1986; Osberg et al., 1985). West of the St. George
fault is an unassigned collage of generally upper amphibolite fa-
cies migmatitic and volcanogenic units. The Waldoboro Pluton
Complex appears to partly intrude the Saco-Harpswell
lithotectonic sequence of Hussey (1989) (Fig. 3), but the correla-
tion of this lithology with those of the Bucksport-Flume Ridge
sequence is unknown. Bucksport-type volcanogenic rocks are
shown by Osberg et al. (1985) to border the northern and western
parts of the Waldoboro Pluton Complex, but Hussey (pers.

commun., 1989) suggests that those rocks west of the
Waldoboro Pluton Complex belong to the Sebascodegan Forma-
tion. In any case, they are predominantly calc-silicate
paragneisses and schists (cf. Bucksport Formation) of presumed
Proterozoic Z to Ordovician age.

The rocks comprising the upper plate of the St. George
fault consist of Ordovician quartzites and amphibolites (Benner
Hill Formation) and gneisses (Penobscot Formation) (Guidotti,
1979; Osberg et al., 1985). Structural relationships suggest that
the western border of the Maine Avalon segment is close to the
trace of the St. George fault (Hussey, 1971; Guidotti, 1979;
Osberg et al., 1985; Keppie, 1989). The distribution of Atlantic
fauna just east of the St. George fault in low amphibolite facies
rocks (Boucot et al., 1972) lends credence to this proposal. Ac-
cordingly, the Waldoboro Pluton Complex may suture the west-
ern margin of the Maine Avalon composite terrane. Hutchinson
et al. (1989) argue, however, that the Turtle Head fault (Fig. 3)
marks the western boundary of the Maine Avalon segment.

PETROGRAPHY

The Waldoboro Pluton Complex (Figs. 4 and 5) is exposed
over approximately 378 km?”. Only detailed descriptions of the
granitoids are given here. Full descriptions of the pegmatites,
migmatites, other metamorphic rocks, and basaltic/diabasic
dikes appear in Sidle (1990a).

Seven major igneous units are recognized in the
Waldoboro Pluton Complex. Modal data are plotted in the QAP
diagram of Streckeisen (1976) (Fig. 6) and are listed for repre-
sentative samples in Tables 1 and 2. Granitoids of the Waldoboro
Pluton Complex appear to define two clusters. One includes the
Waldoboro granite (Wg), Medomak granite/granodiorite
(Wgn), leucogranite (Wgl), Willet Hill granite (Wgt), and Cran-
berry Island granite (Wga). The other is dominated by the Water-
man Creek unit (Wqd) and includes tonalites and
quartz-diorites. The overall trend is similar to the high-K,
calc-alkaline monzonitic series (Lameyre and Bowden, 1982).
However, field relations suggest that Wqd intruded before the
main Waldoboro Pluton Complex granitoid phases, and Wqd is
similar petrologically to numerous dioritic/gabbroic lenses in
the country rocks and other smaller intrusions in the area (Sidle,
1990a, 1991, in prep.). Lithologically, the South Pond unit
(Wgp) is very coarse-grained and variable in modal composition
and is not plotted on Figure 6. This unit contains pervasive al-
kali-feldspar megacrysts and thus is easily distinguished in the
field.

Waldoboro Phase (Wg)

The Waldoboro Phase is an equigranular, medium-grained,
weakly foliated, two-mica granite. It is muscovite-rich,
schlieren-free, and includes most of the more massive, quarried
granites of the complex. Low biotite/muscovite ratios and low
An/(An+Ab) ratios (<0.20) characterize this phase. Very
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Figure 4. Simplified geologic map of the Waldoboro Pluton Complex
showing the distribution of the major lithologic units. Wg - Waldoboro;
Wegn - Medomak; Wqd - Waterman Brook; Wgp - South Pond; Wgt -
Willet Hill; Wga - Cranberry Island; Wgl - lecogranites.

coarse-grained to porphyritic sheets are common and blanket
more massive medium-grained granites.

Wg has been recrystallized and deformed, but to a lesser
extent than other phases of the Waldoboro Pluton Complex.
Quartz shows undulose extinction and is fractured; grain bound-
aries are annealed with occasional consertal and mortar textures.
Plagioclase (average - An;s) exhibits occasional kinked albite
twin lamellae, synneusis twinning, and weak normal zoning.
Microcline is common and in the eastern part of Wg, a second set
of perthite lamellae penetrate earlier microclines. Myrmekite is
more common and occurs as rims bordering granular plagioclase
and as intergranular blebs between adjacent microperthitic feld-
spars. Micas are euhedral, bent, and butt-ended (Zen, 1983).
Muscovite crystals are frequently the largest grains in the rock.
Biotite is metamict with zircon and apatite, and is clearly less
abundant than other phases. Apatite is prismatic and evenly dis-

tributed throughout the granite. Trace amounts of garnet, tour-
maline, sillimanite, and anhedral magnetite occur. Rare fractures
are filled with sericite and some biotite is replaced by chlorite,
but generally the rocks are fresh.

Willet Hill Phase (Wgt)

This is a medium to coarse-grained, tourmaline-bearing,
non-foliated granite exposed in the center of Wg. Muscovite is
more abundant than biotite, and prismatic schorl, which cuts
cuhedral butt-ended muscovite, occurs in coarse-grained variet-
ies. Spectacular segregations of black tourmaline up to 23 cm
long occur in coarse-grained lenses which exhibit local
autobrecciation. Color zoning in schorl is common and blue
indicolite occurs. The fabric is similar to that of Wg, but
alteration is more extensive.

Medomak Phase (Wgn)

This is the largest phase of the Waldoboro Pluton Complex
and mostly consists of foliated, gneissic granites and
granodiorites. Ubiquitous schlieren, boudinaged enclaves,
inliers of convoluted metasedimentary lithologies, and common
garnet characterize this phase.

Foliated varieties are medium to very coarse-grained, com-
monly garnet-bearing, and are interlayered with porphyritic va-
rieties. Massive, medium-grained varieties are much less
common.

Gneissic granites and granodiorites occur especially in the
southwestern areas of Wgn. Banding ranges from 0.6 m to fine
striping, and discontinuous streaking is common. Textures are
gradational between true-igneous and gneissic varieties (Fig. 7)
exhibiting original S¢/S; banded granofels structures which pro-
ject along strike into intermixed calc-silicate gneisses of the
Bucksport Formation. These gradational granitoids are as much
as 70% schlieren and grade into nebulitic migmatites. Gar-
net-bearing paragneisses and schists are usually admixed with
granitic layers. Locally, porphyroblastic granitoids with serrated
subrounded feldspars up to 15 cm in diameter occur. Prolate, de-
formed, feldspathic porphyroblasts commonly transect margins
with the country rocks (Sidle, 1990b). In outcrop, the gneissic
granitoids are frequently indistinguishable from the biotite-rich
paragneisses and schists of the Bucksport Formation (Sidle and
Barton, 1990).

Wgn appears to represent a transitional phase between the
country rock and the more homogeneous granitic phases of the
Waldoboro Pluton Complex. Recrystallization and deformation
are pronounced. Evidence of dynamic recrystallization is wide-
spread in the microfabric and ranges from kinked foliations and
subgrain polygonization to fluxion textures in protomylonites.
Quartz commonly is annealed with feldspar subgrains. Quartz
ribbons and neocrystallization appear in fringes and pressure
shadows of feldspar augens. Quartz droplets are also associated
with poikiloblastic, fractured garnets. Seriate plagioclases may
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Figure 5. Schematic scaled cross sections of the Waldoboro Pluton Complex. Location of sections given on Figure 4. Labeling of ma-

jor lithologic units from Figure 4 except: Bgs - Bucksport Formation;

+ Wgl
A Wagt

Figure 6. Modal and normative compositions of Waldoboro Pluton
Complex granitoids plotted in the Quartz-Alkali feldspar-Plagioclase
feldspar diagram of Streckeisen (1976).

BHq - Benner Hill Formation; M - basalt and diabase dikes.

show idioblastic cores and xenoblastic rims in transitional
granitoids associated with possible shearing. Broken plagioclase
crystals frequently have deformation lamellae which show thin-
ning due to stretching. Zoning is patchy and weak or absent. An-
orthite contents are Anjo4 (average - Anjy) in transitional
granitoid types and Any; in granites. These values are higher
than those in the Wg phase. Plagioclase inclusions in alkali feld-
spars are randomly oriented, clustered, or occur in sericitized
cores. No crystallographic control is apparent for the inclusions
or for patchy zoning developed in larger plagioclase grains.

Microclines occasionally form augens in transitional
granitoids. Lobate, bulbous masses of myrmekite occur as man-
tles of microcline augens and ovoid alkali-feldspar
porphyroclasts, but myrmekite is not restricted to pressure shad-
ows. Rare intergranular myrmekite occurs between perthitic
feldspars. Some alkali feldspars form porphyroblasts and do not
have myrmekite mantles. Some areas of cataclasis contain
poikiloblastic alkali feldspars and quartz penetrated by fractures
filled with perthite (*sericite. Late formation of alkali feldspar is
also indicated by interpenetration perthites and rare flame
perthites.

Biotite predominates over muscovite, and is ubiquitously
metamict around zircons up to 0.3 mm. Biotite also occurs with
sillimanite in clusters and ribbons that have been deformed into
microfolds. Muscovite crystals are smaller than in the Wg phase.
Micas in the transitional granitoids define foliations parallel to
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TABLE 1: REPRESENTATIVE MODAL ANALYSES OF THE WALDOBORO PLUTON COMPLEX

Wg Wg Wg Wg Wgn Wgn Wgn Wgn Wgn Wgn Wgn Wgt Wgl Wqd Wqd Wqd Wgp Wgp Wgp
QTZ 339 319 354 34 242 256 289 363 31.8 356 381 284 381 143 83 26.1 181 124 215
KSP 352 289 40.1 396 185 239 232 303 343 147 287 36.1 412 - 6.6 185 429 185 276
PLG 219 303 17.8 11.4 358 31.8 409 213 179 36.1 284 235 157 461 48 36.6  20.6 612 277
BIO 3 26 25 33 165 143 5.7 9.8 3.5 87 22 08 23 105 12 107 22 7.1 3.7
HBL - - - - - - - - - - - - - 24 339 7.7 159 - 18.6
MSV 54 54 36 56 12 21 1.1 0.8 78 25 2.1 5 2.1 - - - - - -
GNT 0.2 - - tr 2.6 1.7 - 12 21 1.8 02 - 0.2 - - - 0.2 - -
SIL - 0.8 - - 03 - - - 2.1 - - - - - - - - - -
MNT tr 0.1 02 tr 03 tr 0.1 tr tr 02 tr tr tr 2.4 1.7 03 0.1 09 0.1
HEM - - - - - - - tr - tr - - - - - - - - -
ILM 0.1 tr - 02 0.6 - tr 0.1 - tr tr - - 1.1 0.1 - tr - 0.2
APT 03 tr 04 tr tr tr tr 02 tr tr 0.1 1.1 0.2 0.1 02 tr tr tr tr
SPH - - - - - - - - - - - - - 09 tr 0.1 tr tr 0.6
TRM - - - - - - - - - - - 5.1 - - - - - - -
ZIR tr tr tr tr tr tr tr tr tr tr tr tr tr tr tr tr tr tr tr

TABLE 2: REPRESENTATIVE MODAL ANALYSES OF THE

COUNTRY ROCKS

Bgs Bgs Bgs Bgs Bgs Bgs Bgs
QTZ 6.1 8.7 9 26.1 18 9.6 20.9
KSP - 4.1 6.1 10.6 32 252 4.1
PLG 39.4 59 56 41.5 61.1 45.4 29.9
BIO 4.6 5.8 - 20.2 15.6 18.2 3
HBL 38.6 222 28.2 - 2 - -
MSV - - - tr tr tr 30.8
GNT - - - 1.2 1.6 - -
SIL 7.4 - - tr tr tr tr
MNT 1.4 tr tr tr tr 0.1 -
HEM - - - - - tr 0.1
ILM 0.6 - tr - - tr -
APT tr - 0.1 tr tr tr -
SPH - 0.2 0.6 - tr - -
TRM - - - - - - 11.2
ZIR tr tr tr tr tr tr tr

those in adjacent metasedimentary lithologies. S; and S, folia-
tion planes are developed on the original mica ribbon surfaces.
Oblique foliations of recrystallized quartz aggregates and mica
fish (Fig. 8) occur on type II S surfaces.

Garnet interpreted to be restitic is more common than mag-
matic garnet as substantiated by mineral chemical data (Sidle
and Barton, in prep.). Restitic garnets are subrounded to rounded
(0.3 to 1.1 mm) and may form trains or clusters with sillimanite
or fibrolite (Fig. 9). Many of them have fractures filled with seri-
cite and polygonal quartz, and are partly or completely sur-
rounded by sheaths of biotite and quartz-feldspar aggregates.
Rotation of garnet porphyroblasts is indicated by o structures
(Passchier and Simpson, 1986) which suggests low shear strains
and recrystallization rates higher than rotation rates. Isolated
subhedral garnets occur which are not associated with restitic
clots or deformation textures. They appear to have formed late
and probably continued to grow on earlier phenocrystic or
restitic garnets during cooling (Sidle and Barton, in prep.). No
euhedral garnets were observed in Wgn.

Prismatic schorl is scattered throughout Wgn. Cordierite
was identified in one sample, and amphibole, with inclusions of
subrounded to subhedral zircon, is rare. Free zircon (ie. not as in-
clusions in biotite or amphibole) is often embayed. Apatite oc-
curs most commonly as stubby prisms, but needles of this
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Figure 7. Incompletely digested metasediments within a granitoid ex-
hibiting pronounced attentuation and banding; note quartz-feldspar
parallel injections. Southwestern Cow Island.

Figure 9. Restitic cluster of fractured almandine garnet with biotite, and
sillimanite in pressure shadow, in granodiorite, southwestern Hungry
Island (80x plane polarized).

mineral are also present. Apatite is predominantly included in
biotites. Ilmenite and titaniferous magnetite occur as needles or
anhedral masses. Traces of sphene are present.

Leucogranites (Wgl)

The leucogranites are fine- to medium-grained, weakly fo-
liated, and grade into granite. The weak foliation undoubtedly
reflects the paucity of ferromagnesian minerals. Leucogranitic
lenses a few meters wide or long pervade Wgn and probably ex-
tend beyond the mapped western margin of the Waldoboro
Pluton Complex. They are in some cases identical to leucosomes

Figure 8. Sigmoidal, metamict biotite mica fish in type II S-C mylonitic
granitoid, western Hall Island (80x cross polarized).

in migmatites within and surrounding the Waldoboro Pluton
Complex. Microfabrics are similar to those of the Wgn granites.

Waterman Brook Unit (Wqd)

The Waterman Brook unit consists of equigranular to
recrystallized quartz diorite and tonalite. Massive varieties are
coarse-grained. Weakly foliated to strongly lineated, medium to
coarse-grained varieties form an arcuate outcrop pattern near the
east margin of the Waldoboro Pluton Complex (Fig. 4). Abun-
dant diffuse autolithic enclaves, rare angular metasedimentary
xenoliths, and rare xenocrystal garnets occur in the quartz
diorites.

Locally, quartz and feldspar augens (<1.5 cm) occur.
Plagioclase ranges from Anse4s (average Angs), although
porphyroclastic areas contain rare albite. Alkali feldspars are re-
stricted to poikilitic perthites. Decussate amphiboles are com-
monly microboudinaged and zoned unlike those that occur in
Wqd-like bodies scattered throughout Wgn. Clinopyroxene is
extremely rare, whereas biotite is streaked with chlorite plus
other unidentified minerals. Euhedral, late indicolite occurs in
biotite. Euhedral sphene up to 3.0 mm (0.9 vol%) and stubby
prisms of apatite are ubiquitous minor constituents.

Microveining with shearing is pronounced in the south-
eastern part of Wqd. These protomylonitic textures include late
sericite-filled fractures crosscutting anhedral amphibole pheno-
crysts and earlier areas of neocrystallization. Veinlets with radi-
ating tourmaline and blebs of secondary pyrite and arsenopyrite
occur next to amphibolites and amphibolite schists (see below).
Also, fluxion textures and alteration increase southeastward to-
ward Wgp and the eastern Waldoboro Pluton Complex
boundary.
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Recrystallized amphibolites and schists that cannot be eas-
ily distinguished from quartz diorites/tonalites occur in the
southern part of Wqd and in small lenses and irregular bodies
within Wgn. Some ofthese Wqd-like bodies are gradational with
metasediments. For example, xenocrystal garnets occur in the
quartz diorites. Shear pods of coarse-grained uralitized gabbro
and dioritic lenses (<0.3 m) occur in calc-silicate gneisses and
amphibolite schists. Much of Wqd may actually represent
recrystallized metasediment as is inferred for rocks east of the
Waldoboro Pluton Complex near the Raccoon mafic intrusion
(Sidle, 1990a, 1991).

South Pond Unit (Wgp)

This is a megacrystic granite porphyry which forms a more
massive body in the north and a protomylonitic to mylonitic mar-
gin between Wqd and Wgn and the country rocks in the south-
east. Non-orientated microcline megacrysts (up to 7 cm) and
quartz occur in porphyritic sheets and irregular pegmatitic bod-
ies. These sheets are intercalated with finer-grained varieties.
Thin (<0.5 m), poorly-defined lenses of greisen are frequent in
the eastern Waldoboro Pluton Complex and consist of quartz,
muscovite, biotite, [ zinwaldite(?) [ tourmaline.

In the south, the whole of Wgp is a sheared feldspathic
meta-granite porphyry. Protomylonite and porphyroclastic
mylonites, and intrafolial blastomylonites are clearly visible.
Strongly lineated quartz and feldspar augens up to 11 cm have
serrated margins. Pressure shadows filled with fine-grained min-
eral aggregates exhibiting &-structures are present in the type I1
S-C mylonites. Numerous displaced crystals and bookshelf slid-
ing of feldspar megacrysts also occur.

In some mylonitic varieties, intense recrystallization is as-
sociated with a blastomylonitic fabric. Elsewhere, the alkali
feldspar megacrysts are mantled with bulbous myrmekite which
corresponds to the serrated feldspar margins observed in pres-
sure shadows suggesting growth from the resistant feldspar crys-
tals outward. Augens occur in swarms of megacrystic bands (10
cm to several meters) that are intercalated with boudinaged
metasedimentary enclaves several tens of meters long (Fig. 10).
Individual megacrysts often cut the contact with metasediments.
The size of the megacrysts decreases westward toward the Wgn
phase. Two generations of alkali feldspar occur in Wgn as noted
above. In Wgp, a late blastic(?) perthitic feldspar may envelop
earlier microclines. Plagioclases (Anjs.4;) are smaller, often
strongly sericitized, and less abundant than the alkali feldspars.

Biotite ribbons and type II S fish are commonly altered to
chlorite, and sericite-filled fractures are common in biotite. Am-
phibole and sphene, like biotite, are variable in abundance and
this reflects the mixing of granitoids and Bucksport-type
lithologies. Sporadic garnet, sillimanite, and tourmaline occur,
whereas cordierite has been identified in the extreme southeast
Wep. Its presence may be related to local thermal perturbations
accompanying strain in this area of Wgp (cf. Clemens and Wall,
1981).

Figure 10. Strongly, attenuated, intercalated amphibole-biotite gneiss
of Bucksport Formation with megacrystic-rich South Pond porphyry,
amidst shear zones. Note sinistral offsets of a quartzo-feldspathic vein
(hammer length is 55 cm). North central Friendship Long Island.

Cranberry Island Phase (Wga)

This phase is a fine- to medium-grained aplitic granite. It is
weak to moderately foliated with occasional garnet and, in con-
trast to Wgn, contains few angular xenoliths. Rhythmic, gar-
net-banded aplites associated with pegmatite-aplite complexes
(Sidle, 1990a) may be related to the Wga phase. Biotite is absent
and Fe-Ti oxides are rare. Weakly zoned plagioclase (average -
Any,), scarce subhedral garnet (<1.3 mm) and ragged, subhedral
muscovite also occur.

Metamorphic Rocks

Rocks surrounding and intermixed with the main
Waldoboro Pluton Complex granitoid phases belong mostly ei-
ther to the Proterozoic Z to Ordovician Bucksport Formation or
Sebascodegan Formation (Bgs) (see earlier discussion), and are
exposed in the underplate of the St. George fault. The protoliths
may be proximal volcanogenic graywackes and shales (Hussey,
1989). The dominant lithologies are calc-silicate and biotite
granofels and paragneisses with banding up to 17 cm wide. Typi-
cally, the gneisses are foliated, variably strained, and
granoblastic. Plagioclase/K-feldspar ratios are quite variable, re-
flecting the range of lithologies, and gneisses close to the transi-
tional granitoids exhibit some form of blastesis. These include
pearl gneisses, flecky-types (Mehnert, 1968), and show all
stages of megacrystic growth with incipient blastesis grading
into swarms of porphyroblasts in Bgs. Garnet-bearing gneisses
are sporadic west of the Waldoboro Pluton Complex margin and
in inliers. In contrast, porphryoblastic garnets in gneisses along
the eastern Waldoboro Pluton Complex margin are up to 3 cm in
diameter. Garnet rotations are due to ductile shear and are not an
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Figure 11. (a) Biotite/amphibole ratios in Bucksport-type lithologies in the Waldoboro Pluton Complex. (b) Biotite/amphibole ratios
projected onto cross-sections A and B from Figure 11a. WPC = Waldoboro Pluton Complex.

artifact of successively overprinted foliations (Bell and Johnson,
1989). Those measured have dextral shear sense which contrasts
with the predominant sinistral motion measured in the granitoids
(Fig.13) discussed later. Volumetrically minor lithologies in-
clude biotite-muscovite schists ( garnet ( cordierite ( sillimanite,
amphibolite schists [ garnet, sulfide-bearing mica schists, and
tourmaline schists.

Biotite/amphibole ratios increase toward the contacts with
the Waldoboro Pluton Complex (Fig. 11). Evidently, the
Waldoboro Pluton Complex is situated in a biotite-rich part of
Bgs. Comparison of the Bgs country rocks with the enclaves and
metasedimentary inliers suggests that the latter are more refrac-
tory lithologies (Sidle, 1990a).

Quartzites of the Ordovician Benner Hill Formation
(Guidotti, 1979) occur on the St. George fault upper plate close

10

to the eastern boundary of the Waldoboro Pluton Complex. The
steeply dipping, northeast-striking units locally consist of
thin-bedded, biotite-laminated (<2 mm) quartzite with interca-
lations of quartz-mica schist and amphibolite. A distinctive
mylonitic zone containing rotated blocks of quartzite occurs ad-
jacent to the Wgp phase. The lateral extent of mylonitization is
estimated at less than 20 m (Sidle, 1990a).

Other units of the country rocks include garnet-sillimanite
gneisses of the Penobscot Formation or its equivalents (Osberg
etal., 1985) along the northeast margin and gneisses of the Cross
River Formation (Hussey, 1986) along the southwest margin.
The country rocks along the southeast margin are clearly
Bucksport-type lithologies and do not belong to the Penobscot or
Benner Hill formations as inferred by Osberg et al. (1985) and
Hussey (1986, 1989).
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Finally, mafic dikes occur in the Waldoboro Pluton Com-
plex and may be Early Triassic to Early Jurassic age (cf Mchone
and Trygstad, 1982). Twenty eight dikes wider than 1 m were
mapped (Sidle, 1990a, 1991). Most are relatively fresh aphanitic
olivine basalts or diabases.

FIELD RELATIONS AND STRUCTURE
Contacts

The western, northern and southern margins of the
Waldoboro Pluton Complex are predominantly gradational with
the Bucksport-type country rocks. A few unambiguous intru-
sive-style contacts probably reflect late autointruded melt-rich
phases within Wgn. The western margin of the Waldoboro
Pluton Complex is mapped as the onset of more sharply defined
disharmonic folded migmatites. East of this margin concordant
transitional granitoids occur amidst nebulitic-type migmatites,
permeate biotite-rich paragneisses, and contain swarms of
restitic metasedimentary enclaves. Along the southwestern mar-
gin, the complete transition from country rocks into granite is
preserved. Disintegration of country rock into relict enclaves
(Vernon, 1983) (Fig. 12), segregations of recrystallized en-
claves, ghost stratigraphies of former paragneisses exhibiting
outlines of D, tight to isoclinal folding, and gradation from
gneiss through granodiorite to granite is observed or inferred.
The eastern margin of the Waldoboro Pluton Complex is often
sheared, mylonitic, and associated with a narrow field of
diktyonitic migmatites. Contacts between inliers of
Bucksport-type rocks and the Waldoboro Pluton Complex are
also gradational, particularly in the restite-rich Wgn phase.

Temporal relationships are summarized in Table 3. The two
most voluminous granitoids, Wgn and Wg, were emplaced at
about the same time, but the Wg phase was emplaced structurally
above the Wgn phase. All contacts between the main Waldoboro
Pluton Complex granitoids are gradational although crenulated
contacts separate some granodioritic and granitic phases within
Wen.

Wg cuts Wqd in the northeast, whereas Wgn and Wqd are
separated locally by jointed amphibolite schist. The eastern con-
tact between Wqd and Wgp is discordant and coplanar, and an-
gular xenoliths of quartz diorite occur in Wgp. Several quartz
dioritic to dioritic lenses in Wgn and Wgp have gradational con-
tacts with amphibolites and amphibolite schists. Other dioritic
bodies are sharply defined in shear zones within Wgp. Wqd has
striking similarities to quartz diorite and diorite bodies associ-
ated with the Raccoon intrusions just east of the Waldoboro
Pluton Complex (Sidle, 1990a, 1991). Field relations suggest
that Wgn is older than Wgp. Wgp is intercalated with
Bucksport-type rocks; contacts are flattened and attenuated into
concordant bands and streaks. Wga was probably intruded last
as it cuts Wgp, contains angular xenoliths of Wgp at least 28 m
from inferred contacts, and displays a 5-16 cm aplite contact

Figure 12. Transition from relict metasedimentary-enclave swarms
into isolated strongly attenuated ML, enclaves orientated N 23 E (ham-
mer length is 55 cm). Southwestern Bremen Long Island.

TABLE 3: SUMMARY OF DEFORMATION AND EMPLACEMENT
HISTORY OF THE WALDOBORO PLUTON COMPLEX

D1:F1:  Tight-isoclinal; gently inclined; recumbent

S0/S1: compositional banding

S1: schistosity

MLI1: boudinaged enclave; mineral lineation; pegmatoid boudins
Emplacement: Wqd(?)

D2:F2:  Close; steeply inclined; F1+F2 non-coaxial sheaths

S2: schistosity

L2: rodding; bedding/cleavage intersection; crenulations

ML2: mineral lineation; boudinaged enclave; pegmatoid boudins
D1-D2:  Amphibolite facies metamorphism
Migmatization-anatexis
Emplacement: Wgn, Wgl, Wg, Wgt

D3: S3: mylonitization; type II S; schistosity
ML3: mineral lineation; boudinaged enclave; banding
Northeast shear faulting
Emplacement: Wgp, Wga

D4: MLA4 (?): mineral lineation
Northwest brittle faulting

Retrograde metamorphism

Ds: Emplacement: basaltic dikes

zone. Wga intrudes Wgn although the contacts are cryptic,
especially between leucocratic varieties.

Foliations and Lineations
Foliations are summarized in Figure 13. Foliations in Wg

do not reveal zonal patterns while many steeply inclined
foliations are evident in other phases or units. Magmatic folia-
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Figure 13. Summary of foliations in the Waldoboro Pluton Complex.

tion is most easily recognized in Wg and consists of flow lines
with discoidal schlieren and platy laminations.

Many foliations in other units result from tectonic over-
printing, and have a similar attitude (~N20°E) to S¢/S; surfaces
in the Bucksport Formation. Sometimes they grade along strike
into the Bucksport Formation. Original bedding surfaces in the
latter cannot be distinguished from metamorphic banding
(Hussey, 1989), and the S¢/S; surfaces represent either metamor-
phic foliation or compositional banding. Gneissic foliation es-
sentially parallels the banding. S, banding has resulted from the
transposition of tight to isoclinal microfolds (Fig. 14) during the
development of recumbent F; folds, possibly accentuated by
metamorphic differentiation. Many leucosomes are injected par-
allel to S¢/S;, resulting in stromatic-type migmatites with a
northeast-trending fabric (Fig. 15). ML, mineral alignment is
ubiquitous.
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S, foliations are most pronounced on the steep limbs of par-
asitic F, folds. Refolded magmatic foliations observed in thin
section are interpreted to be coeval with S, foliations in the coun-
try rock. Continuous cleavage surfaces in a few inliers of
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Figure 14. Arrested transposition of S¢/S; leucocratic bands. North
Round Pond.

Figure 15. Compositional S¢/S; banding in Bucksport Formation gneiss
exhibiting boudinage of stromatic-type migmatites (hammer length is
55 cm). Eastern Hog. Island.

Figure 16. Well-developed northeast trending S, schistosity and shal-
low plunging ML, rodding frequently observed on steeply inclined F,
folds in migmatitic gneisses of Bucksport Formation. Northwest
Muscongus Harbor.

Bucksport metapelite have a strong microlithon alignment. Ax-
ial plane foliations on F, fold hinges suggest continued strain af-
ter the main episode of S, folding. S, surfaces predominantly
strike N25°E. ML, lineations include fold axes, mineral align-
ments, and boudinaged enclaves, leucosomes, or early
pegmatoids. ML, rodding lineations are very common on weath-
ered, tight, upright fold hinges (Fig. 16). They usually parallel
axial surfaces of parasitic folds, predominantly trend N15-25°E,
and plunge gently to the north.

S; penetrative foliations and ML; lineations cut earlier
foliations as well as ML, lineations in the country rock. In thin
section, this is represented by micas cutting across the earlier
rock fabric. Type II C surfaces in mylonites are occasionally de-

Figure 17. Megacrystic feldspar swarm protruding into Bucksport For-
mation.

veloped, but S surfaces are visible only in thin section (Fig. 8).
The ubiquitous ML; swarms of {010} aligned tabular feldspar
megacrysts, each up to 11cm, occur in near-vertical S; foliation
planes. Megacryst swarms cut boudinaged enclaves and beds of
Bucksport-type lithology (Fig. 17). S; foliations predominantly
strike NO-15°E, and are most pronounced in the Wgp and Wgn
phases, and in mylonitic zones along the eastern sheared margin.
A general sigmoidal pattern of foliations is present near the east-
ern Waldoboro Pluton Complex margin. The near vertical
foliations swing to the northeast beyond Friendship Long Island
and to the north towards South Pond. This areal pattern may re-
flect resistance to folding in the vicinity of the Benner Hill
quartzites. Given evidence for shearing in Wgp, this sigmoidal

13
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pattern has a sinistral sense. Common sympathetic shears (Fig.
10) also document the sinistral slip.

A few lineations of quartz and mica aggregates in Wgn are
tentatively assigned to ML, (Table 3) and have a northwest bear-
ing. These are not related to a later period of folding and may rep-
resent local swirls or areas of turbulent flow lines which are
evident elsewhere.

Folds

At least two major folding episodes have affected the
Waldoboro Pluton Complex. The folding was synchronous with
amphibolite-grade anatexis of Bucksport-type protoliths. Re-
cumbent to gently inclined axial F, fold surfaces are traceable
from large-scale folds in the region (Hussey, 1986, 1989).
Leucosome lenses and pegmatoid dikes/lenses are boudinaged
and attenuated due to shortening on near-isoclinal limbs of F,
folds, which also folded felsic dikes intruded during early
anatexis. Biotite and amphibole gneisses/granofels display
disharmonic-style folding and cuspate folds. F; parasitic fold
axes consistently strike northeast (average - N20°E) and plunge
northeast. The second folding episode, F,, generated mostly
close folds which strike N20-25°E and plunge up to 10-30
degrees towards the north and northeast.

Exceptional near-cylindrical(?) F, folds in the Muscongus
Harbor-Hog Island area allow accurate attitude determination.
Approximately 120 measurements of S, schistosity and cleavage
define a northeast-trending fold axis and steep easterly dipping
axial plane which is consistent with a major overturned F,
syncline trending ~N30°E mapped by Newberg (1979) east of
the Waldoboro Pluton Complex in the Benner Hill Formation.
Newberg (1979) suggests multiple folding during D, deforma-
tion. However, only two asymmetric populations, representing
two nearly coaxial F, folds, is suggested by the = plot in Figure
18, and it is possible that the spread of the = girdle reflects simply
heterogeneous strain and/or reorientation of S, by later F3(?)
folding. Westward vergence is indicated by the © plot, by re-
gional fold trends (Fig. 5), and by Z-type parasitic folds. How-
ever, fold interference prevents the universal determination of
vergence. Fold interference results in culminations, saddles and
rare eye folds.

Intense disharmonic folding occurs along the eastern
Waldoboro Pluton Complex margin. Redundant and conver-
gent-divergent patterns in folds are associated with a narrow
migmatite belt along this margin (Fig. 19). Ptygmatic folds are
common and a few intrafolial folds occur. Strong elongation has
caused detached noses of folds. These folds appear to be coinci-
dental with marked S;/L; development and mylonitization (Fig.
20).

Enclaves

Enclave types, in decreasing order of abundance are:
metasedimentary enclaves, microgranitoid enclaves (Didier,
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Figure 18. Stereographic projections of structural attitudes in

Muscongus Harbor-Hog Island area.
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Figure 19. Diktyonitic migmatites with attendant fold hinge separation.
Northeastern Friendship Long Island.
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A

Figure 20. Sheared migmatite, exhibiting quartzo-feldspathic augens,
on eastern Waldoboro Pluton Complex margin. Southeastern South
Pond.

1973; Vernon et al., 1988), xenoliths, and rare mingled-type
tonalitic enclaves (Vernon et al., 1988). Enclave density ap-
proaches 40% of some outcrops, especially near the western
margin. They are recrystallized and most parallel the foliations.

Metasedimentary enclaves are abundant in Wgn and Wgp.
They are Bucksport-type rocks and are up to several tens of me-
ters long, angular and/or convoluted, and retain original macro-
scopic structures. The transition to enclave swarms and
eventually to more isolated lenticular enclaves (Fig. 12) is ob-
served. Some relict enclaves may be screens due to partial
granitoid injection while most grade into melanosomes and are
admixed with leucosomes. Many of the relict enclaves have been
boudinaged, flattened parallel to S,/S; foliation planes in the
granitoids (Fig. 21), and are occasionally rotated, reflecting
northeastward elongation. Differences of competency in the lay-
ered gneisses resulted in severe pinch and swell structures and
complete separation of boudins of these enclaves. Many of the
relict enclaves have been partially melted with variable stages of
anatexis preserved. Typically, the more refractory gneissic en-
claves have biotite rims and are fine-grained. The leucosomes
are coarser-grained while both are recrystallized. Eventually,
only faint skialiths are observed in outcrop. Schlieren and
igneous-flow foliations are not deflected around the enclaves.

Extensive relict enclave swarms and attenuated
megacrystic bands are coeval with shearing in Wgp. These en-
claves are amphibolite-rich gneisses. Dioritic pods and lenses
occur within, crosscut, and form shear pods in amphibolite
schists intercalated with Wgp.

Microgranitoid or autolithic (Didier, 1973) enclaves are
common only in Wqd. The majority are fusiform and ovoid, and
usually are oriented with the long axis trending toward the north-
east. Aspect ratios of the autoliths average 4:1 and the margins
become diffuse in the more massive areas of Wqd. Similar fea-
tures are observed in smaller quartz dioritic and dioritic bodies in

Figure 21. Relict, attenuated, gneissic enclaves, flattened parallel to

S,/S; foliation planes in a megacrystic Medomak granodiorite (hammer
length is 55 cm). Southern Friendship Long Island.

s
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Wgen. Attenuated and mingled-type (Vernon et al., 1988)
tonalitic enclaves are rarely observed.

An estimate of the strain ellipsoid variability amongst prin-
cipal granitoid phases was obtained by measuring enclave shape
ratios (Elliot, 1970; Hutton, 1982). The irrotational deformation
varies systematically across the Waldoboro Pluton Complex
(Fig. 22). The X/Y shape ratios in Wgn are variable, are consis-
tently 2 to 3 in Wqd, whereas Wgp enclaves display the largest
elongation with a maximum shape ratio of 42. These highly at-
tenuated enclaves are uniaxially prolate (K>1) and have R, ex-
ceeding 5, F values <90 and R¢/¢ probably closed. All long X
axes in Wgp are arrayed subhorizontally.

Angular xenoliths include quartzites, less than 0.2 m,
northwest of Warren Station (Fig. 4) which are presumably from
the Benner Hill Formation. Elsewhere, several quartzites less
than 0.4 m also occur in a local mylonitic zone associated with
the eastern Waldoboro Pluton Complex margin, and angular xe-
noliths less than 1.6 m of Wgp granite porphyry are rafted in
Wga.

Joints, Faults, and Shear Zones

Joint types in the granitoids are, in order of frequency, pri-
mary flat-lying or parallel, near-vertical longitudinal, and hkl
joints. Evenly-spaced, planar, parallel near-vertical joints are es-
pecially common in true granitic phases in Wgn and Wg. Many
of the largest pegmatite dikes follow these northeast-trending
planar joint sets which persist into the country rock. Bed-
ding-type joints are numerous and follow the steeply-dipping
S¢/S; bedding or banding in the Bucksport Formation. These
may be continuous with faulting (eg. Biscay Pond fault).

A distinctive set of closely spaced hkl joints(?) strike con-
sistently northwestward, cutting enclave swarms, and are linked
to a D, brittle deformation event. These joints extend beyond the
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Figure 22. Enclave shape ratio profile of the southern Waldoboro Pluton Complex.

eastern Waldoboro Pluton Complex margin and are associated
with very fine fractures normal to type II S surfaces. The relation
between the northwest joint sets and the northwest MLy
lineations is not known. Rare pinnate joints exhibit rakes less
than 25 degrees and have 8-15 cm wavelengths. This demon-
strates reactivation of some joints during D, (?) deformation.
87 faults were mapped in the country rock and the
granitoids (Sidle, 1990a, 1991) and are summarized in Figure
23. A northeast-trending set is predominant and is cut by several
northwest-trending faults. Two types of faults occur: a
cataclastite-fault breccia type and a shear-mylonite type. The
cataclastite-fault breccia zones occur throughout the Waldoboro
Pluton Complex and have northeast and northwest strikes. They
cut all structures except late basalt/diabase dikes and cut all
granitoid phases, so that they are clearly postmagmatic. Minor
kink faults are also observed in metapelites with tight upright F,
folds. These brittle faults have a low angle of normal slip and ei-
ther dextral or sinistral movement. Small-scale brittle faults are
observed at a wide angle to northward-striking shear faults.
Numerous shears [ mylonite (not shown on Fig. 23) occur
in the eastern part of the Waldoboro Pluton Complex (Wgn,
Wgp, and Wqd). All major shear-mylonite faults strike north to
northeast and have sinistral slip as determined from the offset of
quartz veining, garnet and dioritic pod rotations, and mineral
imbrication. D5 shearing is most intense along the easternmost
margin of the Waldoboro Pluton Complex across the trace of the
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St. George fault. Many shears were probably coeval with Wgp
emplacement and formed in response to increased oblique-slip
transcurrent fault strain in the region (Ludman, 1981; Keppie,
1989). Within the granitoids, narrow shear faults are also recog-
nized from type II S structures, narrow channels of extremely at-
tenuated, enclave-rich granitoids, and stair-step leucocratric
veins.

DISCUSSION

The Waldoboro Pluton Complex is an Acadian-age,
syntectonic migmatitic igneous body which can be divided into
several granitoid phases (Wgn, Wgl, Wg, Wgt, and Wga), a
protomylonitic unit (Wgp), and an earlier intrusive body (Wqd).
The granitoids were formed by melting of metasedimentary
protoliths representing distal volcanic-sedimentary deposits in a
Nashoba-type terrane. The gradational nature of the contacts
with the country rocks provides compelling evidence for in-situ
formation by melting predominantly of Bucksport-type
metasedimentary rocks and for restricted migration of the melts
from the site of melting. Indeed, the contacts display typical
“granitization” features (Mehnert, 1987), but the presence of
migmatites and upper amphibolite-facies metamorphic assem-
blages in the envelope surrounding the Waldoboro Pluton Com-
plex, and evidence for melting in metasedimentary enclaves,
leaves no doubt of the igneous origin of the granitoids. Neverthe-
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Figure 23. Summary of fracture distribution in the Waldoboro Pluton
complex.

less, solid-state processes were responsible for recrystallization,
metamorphic differentiation or transposition (ie. tectonic layer-
ing), and subsolidus differentiation induced by melting and are
superimposed on the original igneous textures and mineralogy
(see below). The absence of contact metamorphic aureoles also
suggests limited segregation and ascent of the magmas. In fact,
the lithologic variability of the granitoids is related to the extent
of segregation of melt and host migmatitic metasediments. The
gneissic granites and granodiorites (Wgn) contain abundant
restitic material (limited phase separation), whereas the granites,
leucogranites, and aplitic granites (Wg, Wgl, and Wga
respectively) contain less restitic material and more closely
approximate melt compositions.

The granitoids contain restitic minerals which are identical
to those in the country rocks. Xenocrystic garnet (" sillimanite are
the most obvious examples. Garnets do not exhibit regular size
variations as do other mineral phases and form trains that
transect contacts between paragneisses and gneissic granitoids
of Wgn. Clusters of folded sillimanite and biotite ( garnet are
also interpreted as restitic phases and the preferential occurrence

of apatite in biotite may also reflect incomplete dissolution (Wall
et al., 1987). The simple albite twinning and patchy (but not
complex) zoning of plagioclase may indicate that this phase be-
longs to the residual assemblage (Chappell et al., 1987; Wall et
al., 1987). However, Ca-rich cores in plagioclase, one of the cri-
teria used by the workers listed above to identify residual assem-
blages, do not occur in the Waldoboro Pluton Complex (Sidle
and Barton, in prep.).

The mineralogy of the granitoids and country rocks allows
rough estimates to be made of the minimum pressure of magma
genesis. Cordierite is rare in the Bucksport Formation and is ex-
tremely rare in the Waldoboro Pluton Complex, whereas garnet
is abundant in some granitoids (eg. Wgn), and in biotite gneisses,
amphibolite schists, and metapelites. The presence or absence of
cordierite in S-type magmas (White et al., 1986) constrains the
P-T conditions of the source. The dehydration reaction:

4Bio+3 Crd +3 Qtz=6 Gnt+4 Ksp +4 HyO------------ (1)

(Holdaway and Lee, 1977), has a steep, negative dP/dT slope so
that at fixed pressure and bulk composition, garnet is stable at
higher temperatures and lower water contents. However, the
presence of sillimanite in the Waldoboro Pluton Complex sug-
gests that the reaction:

3Crd=2Gnt+4Sill +5Qtz )

(Holdaway and Lee, 1977) also controls the stabilty of garnet.
This reaction has a gentle negative dP/dT slope and shifts to
higher pressure with increased Mg/(Mg+Fe)(Clemens and Wall,
1988). In the peraluminous Waldoboro Pluton Complex melts,
Al,O5 activity may have been buffered by reactions involving
sillimanite and quartz, indicating that pressure was the major
factor stabilizing garnet. Comparison of the data of Holdaway
and Lee (1977) and Currie (1971) with minimum melting tem-
peratures (PH,O=PT) for granite (Clemens and Wall, 1988) sug-
gests pressures of at least 0.3-0.4 GPa for formation of the
Waldoboro Pluton Complex. The presence of sillimanite and
lack of kyanite in the area indicates pressures below about 0.8
GPa.

Primary magmatic muscovite is present in the Wg phase.
The occurrence of large butt-ended crystals of cleanly termi-
nated muscovite is evidence against a subsolidus origin (Zen,
1988). Two-mica granites may be typical of deeper levels of em-
placement (White et al., 1986). Muscovite stability is favored by
both high H,O and Kspar activity according to the reaction:

Msv + Bio + Qtz= Crd/Gnt + Ksp + HyO-------m-m-mmem - (3)

(Clemens and Wall, 1988). Garnet ( cordierite may have devel-
oped during the early cooling history, but primary muscovite
crystallized late when the temperature was lower and H,O activ-
ity was higher. According to Zen (1988), primary muscovite in-
dicates pressures 0.3 GPa in agreement with inferences based on
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the presence of garnet. Field evidence suggests limited migra-
tion of the Wg melt phase which was emplaced structurally
above the other anatectic phases in the Waldoboro Pluton Com-
plex implying that the latter were also emplaced at P>0.3 GPa.

Solid-state deformation has overprinted much of the mag-
matic foliation in the Waldoboro Pluton Complex, especially in
the Wgn, Wqd, and Wgp phases, and has resulted in
protomylonites, mylonites, S-C foliations, mineral and enclave
boudinage, mineral imbrication, augen rotation, intrafolial fold-
ing, and variable fluxion textures. Grain size reduction and elon-
gation of finer mineral aggregates is reflected in the microfabric
(mica ribbons, mica fish, polygonal quartz-feldspar trains,
recrystallization of enclaves, S;/S, foliations of micas, and
paracrystalline microboudinage). The superposition of tectonic
foliations on magmatic foliations could concievably have oc-
curred while some melt was present. Hibbard (1986) suggests
that this “dynamic crystallization” is indicated by fluid reloca-
tion textures. In the Waldoboro Pluton Complex, pressure shad-
ows are filled with quartz and feldspar neograins or
“microaplite,” and myrmekite. But Simpson (1985) and La Tour
(1987) argue that ductile flow processes can account for
neocrystallization in pressure shadows and fringes. Further-
more, the polydeformational history of the granitoids under am-
phibolite facies conditions plus widespread porphyroblastesis
argue against the continued presence of melt during
deformation.

Solid-state processes were most intense along the eastern
part of the Waldoboro Pluton Complex margin and produced
ductile shear zones, mylonites, local ptygmatic-style folds, type
II S foliations, synkinematic garnet growth, very acute angles
between S; and S, in transitional granitoids, high aspect ratios of
boudinaged enclaves, and extreme attenuation of banding and
mineral lineations. These features, together with evidence of
subsolidus plastic deformation, indicate high temperature,
solid-state flow processes (Paterson et al., 1989). Syntectonic
emplacement is strongly suggested by subparallel to parallel su-
perposition of solid-state foliations and magmatic foliations.
The solid-state foliations are continuous with country rocks.
Mutual cross-cutting relationships between granitoid bodies and
folds with ghosts of axial plane schistosity surfaces are espe-
cially important in suggesting syntectonic emplacement.
Solid-state deformation was due largely to regional tectonic epi-
sodes rather than granite emplacement, based upon the above
observations.

Feldspathization or alkali enrichment reflecting late vapor
transport is apparent in the Wgn and Wgp phases. Feldspar
megacryst swarms cut enclaves and country rocks several meters
from granitoid contacts. Possible origins include: relict augens
(Vernon, 1986); growth in partially crystallized dikes leading to
interlocking unfractured crystals (Hibbard, 1986); filter pressing
(Hibbard and Waters, 1984) whereby megacrysts concentrate
between more competent rafts or bands; and undercooling
(Swanson, 1977). These megacrysts, up to 11 cm, may be simply
attributed to undercooling, resulting in low nucleation density
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and high growth rates. However, none of these mechanisms can
explain all observations, especially the uninterrupted trains of
megacrysts from granitoid into country rock. Also, near the east-
ern Waldoboro Pluton Complex margin, second generation
perthites poikilitic after microcline, interpenetration perthites,
late microveining, sericite-filled microshears, tension gashes
filled with perthite, secondary albite, and tourmaline veins pro-
vide evidence for late replacement processes in the granitoids.
Evidently, this porphyroblastesis began during ductile deforma-
tion which peaked during D5 and continued when post-mag-
matic hydrothermal fluids were injected during thermal
contraction or later D, cataclasis.

SUMMARY OF INTRUSIVE AND
GEOLOGIC HISTORY

High-grade, amphibolite-facies metamorphism produced
sillimanite-K-feldspar-garnet assemblages and was accompa-
nied by two phases of deformation, D; and D,. D; produced
dominantly tight, near-recumbent F1 folds trending northeast-
ward, whereas D, largely produced close, steeply-inclined F,
folds, trending north to northeast, resulting in a pronounced
northeast-southwest fabric. Anatexis was initiated with wide-
spread migmatization throughout the area. Extensive melting
occurred in biotite-rich lithologies. Partial melting may have oc-
curred in response to crustal thickening along the St. George
thrust fault, but emplacement of gabbroic and dioritic magmas
could have provided additional heat in this westward vergent,
overthickened underplate. The Wqd phase of the Waldoboro
Pluton Complex was probably emplaced early, coeval with the
Raccoon gabbroic and dioritic intrusions east of the Waldoboro
Pluton Complex. The main syntectonic emplacement of
granitoids Wgn, Wg, Wgl, and Wgt progressed as metamor-
phism peaked before completion of D, deformation. The early
anatectic, leucocratic granitoid phase is represented by Wgl and
other smaller bodies throughout the Waldoboro Pluton Com-
plex. Wg was emplaced farthest from the site of melting follow-
ing an extended period of melt-restite phase separation. Wgt was
the last phase to crystallize within Wg.

Much of the solidification of the Waldoboro Pluton Com-
plex was completed prior to the onset of transcurrent faulting in
the region, although some aplitic melts persisted during the time
that the Acadian regional stresses departed from a dominant or-
thogonal compressional regime. Intense ductile deformation cli-
maxed during D; deformation. Sinistral transcurrent motions
may have predominated along the upper thrust-plate of the St.
George fault, which contained refractory lithologies. The chang-
ing stress regime is recorded by extensive shearing developed
between megacrystic granitoid and the refractory country rocks
along the eastern Waldoboro Pluton Complex margin.
Mylonitization, convoluted migmatization, and blastesis sig-
naled the development of these transcurrent accretionary tecton-
ics which locally strongly overprint the Waldoboro Pluton
Complex granitoids. During the later development of the
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protomylonitic border, fluid transport resulted in late-stage
tourmalinization and alkali-enrichment. The protomylonitic
border sutures part of the St. George fault. Finally, granitic melts
represented by Wga were emplaced and volatile-rich residual
melts crystallized throughout the area as pegmatites, which are
abundant (Sidle, 1990a).

A post-magmatic episode of brittle faulting developed dur-
ing Dy. The regional stress regime shifted to produce north-
west-trending structures. However, this period of cataclasis or
brittle deformation was weak compared to previous deformation
events. Minor retrograde metamorphism (eg. chlorite after gar-
net and biotite, sericitization of plagioclase) probably occurred
during this period of tectonic unloading(?). Fluids entered along
the eastern margin of the Waldoboro Pluton Complex where in-
tense alteration occurs locally along shear zones. Fluid transport
pathways are suggested by microfractures cutting earlier
neocrystallization areas and resistant phenocrysts, fine fractures
cutting type II S structures, and tourmaline veining.
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