Section 11 Wetland and Stream Report

11.0 WETLAND AND STREAMS

Highland Wind LLC (Highland) has proposed to construct a 128.6-megawatt (MW) wind energy project located in Highland Plantation and Pleasant Ridge Plantation, Somerset County, Maine (Figure 1). The Highland Wind Project (Project) includes 48 turbines, a 34.5-kilovolt (kV) electrical collector system, an electrical collection substation, a 115-kV generator lead, an Operations and Maintenance (O&M) building, and four permanent 80-meter meteorological towers.

As currently designed, the Project proposes to construct up to 48 wind turbines on two distinct ridgelines. The western string will include 26 turbines located on the ridgeline that connects Stewart Mountain, Witham Mountain, and Bald Mountain. The meteorological data collected on this ridgeline suggests that weather conditions can be extreme, and that the wind resource is excellent. These conditions can support the use of a "Class I turbine" that can generate significant amounts of renewable energy in these high powered winds. The wind regime found on the eastern ridge, on which 22 turbines are proposed, is more moderate. A single, continuous access road will allow construction and maintenance access to both ridgelines.

The 34.5-kV electrical collector system will transfer power from the turbines to the proposed collector substation located north of Witham Mountain. These collector lines will be located underground along the ridgeline to reduce the project footprint and to reduce potential line maintenance costs along the exposed ridges. The approximately 11-mile long, 115-kV generator lead will connect the on-site collector station to the existing Wyman Dam substation located in Moscow, Maine, where power will be transferred to the Central Maine Power Company (CMP) system and ultimately distributed to the New England grid.

The ridgeline area, including the location of the turbine arrays, O&M building, and collector substation, is owned by Bayroot, LLC and managed by Wagner Forest Management Ltd. This land is used primarily for commercial timber production and much of the land has been harvested within the past 10 years or is currently being harvested. An extensive road system and clearings occur throughout the Project area as a result of these timber management activities. To the extent practicable, existing roads and clearings will be used for the proposed Project. Existing roads will need to be widened or in some locations realigned to meet minimum road widths and maximum slope requirements.

In advance of permitting activities for the Project, the following ecological field surveys were conducted:

- two seasons of nocturnal radar surveys;
- two seasons of raptor migration surveys;
- two seasons of acoustic bat surveys;
- one season of breeding bird surveys;
- one season of vernal pool surveys;
- wetland delineations;
- rare, threatened, and endangered (RTE) species surveys specifically targeting the northern spring salamander (*Gyrinophilus porphyriticus*), northern bog lemming (*Synaptomys borealis*), and Roaring Brook mayfly (*Epeorus frisoni*); and
- rare plant and natural community surveys, conducted in conjunction with wetland delineation and vernal pool surveys.

These targeted surveys provided data to help assess the Project's potential to impact birds and bats, RTE plants and animals, breeding amphibians, and wetlands. The scope of the surveys was based on evolving standard pre-construction survey methods within the wind power industry (i.e., guidelines outlined by U.S. Fish and Wildlife Service [USFWS] and Maine Department of Inland Fisheries and Wildlife [MDIFW]), and is consistent with other studies conducted recently in the state and the northeast. Stantec Consulting (Stantec) met with MDIFW biologists on March 3, 2009 to discuss the work scope and methods for conducting Project surveys and subsequently submitted a finalized work plan on April 17, 2009. Stantec also conducted an on-site meeting with MDIFW biologists in September of 2009 to review some of the initial survey findings.

Following is a brief review of the methods used to conduct wetland delineation and vernal pool surveys, the results of those surveys, and a discussion of potential impacts to the identified resources based on the proposed Project design. Similar discussion for wildlife resources and unusual natural areas can be found in Sections 12 and 13, respectively, of this permit application.

11.1 WETLANDS AND WATERCOURSES

Wetlands have the potential to provide numerous functions and values such as floodwater alteration, water quality protection, wildlife habitat, and recreational opportunities. Each individual wetland's capacity to provide these functions and values is dependent upon a variety of physical characteristics including, but not limited to, size, configuration, connectivity, topography, and landscape position. In addition, the proximity to development and level of anthropogenic disturbance within and surrounding a wetland affect this capacity. The Project area includes numerous small, isolated wetlands, most of which have limited functional capacity because of their size and isolated nature. The few larger wetlands, particularly those associated with watercourses, have the capacity and the potential to provide more functions and values. Many of the wetlands in the Project area have been altered by anthropogenic activities, primarily timber harvesting operations. Such changes in the natural character of a wetland often reduce its capacity to provide many functions. Within the ridgeline portion of the Project area, the majority of the palustrine (i.e., freshwater) wetland communities are forested, although many of these wetlands have undergone some level of timber harvesting and are currently characterized as either scrub-shrub or emergent wetlands based upon the dominant type of vegetation (Cowardin et. al 1979). Similarly, along the proposed generator lead, many of the wetlands are forested, but the canopy of these wetlands was removed either during timber harvesting or construction of the existing CMP transmission line. However, the canopy has been removed either during timber harvesting or construction of the transmission line. The Project area does include some naturally occurring scrub-shrub wetlands, particularly in association with watercourses such as Sandy Stream and Houston Brook. Naturally occurring areas of emergent wetland are limited, typically occurring as small inclusions within wetlands dominated by woody vegetation. Similarly, open water wetlands are limited within the Project area. Open water areas include a small beaver (Castor canadensis) impoundment located between Stewart and Witham mountains and two man-made impounds that occur along the edge of existing roads. The following provides general characterization of wetlands within the Project area. A detailed water resources report, including a discussion of resource functions and values, and associated resource maps are included in Appendices 11-1 and 11-2.

Forested

Forested wetland communities occur throughout the Project area, often in combination with scrub-shrub or emergent communities. Prior to timber harvesting activities, this would have been the most common wetland community, but many of these resources are now in some stage of regeneration and are either characterized as scrub-shrub or emergent wetlands. Tree species common to these wetlands include yellow birch (*Betula. alleghaniensis*), red maple (*Acer rubrum*), balsam fir (*Abies balsamea*), red spruce (*Picea rubens*), green ash (*Fraxinus pennsylvanica*), black ash (*Fraxinus nigra*), and northern white-cedar (*Thuja occidentalis*). The shrub layer includes these same tree species and shrub species such as hobblebush (*Viburnum lantanoides*), speckled alder (*Alnus incana*) and witch-hazel (*Hamamelis virginiana*). Commonly occurring herbaceous species include cinnamon fern (*Osmunda cinnamomea*), sensitive fern (*Onoclea sensibilis*), northeastern mannagrass (*Glyceria melicaria*), fowl mannagrass (*Glyceria striata*), Canada reed grass (*Calamagrostis canadensis*), fringed sedge (*Carex crinita*), and three-seeded sedge (*Carex trisperma*). These wetlands are typically characterized by pit and mound micro-topography, are seasonally inundated, and have soils that remain saturated at or near the surface for much of the year. Representative examples of this community type include wetlands W148, W273, and W419.

Scrub-shrub

Scrub-shrub wetlands are present throughout the Project area and often appear in conjunction with either forested or emergent wetland communities. Scrub-shrub wetlands, particularly on the ridgelines, are typically regenerating forested wetlands that have undergone timber harvesting. Naturally occurring scrub-shrub communities more commonly are found in association with the larger watercourses. In those regenerating forested wetlands, the shrub layer is dominated by tree species such as balsam fir, red spruce, red maple and yellow birch. Red raspberry (*Rubus idaeus*), a common early successional species, is also present in many of these wetlands. The herbaceous layer includes species such as sensitive fern, cinnamon fern, rough-stemmed goldenrod (*Solidago rugosa*), tall white-aster (*Doellingeria umbellata*), fowl mannagrass, northeastern mannagrass and Canada reed grass. In the naturally occurring scrub-shrub communities, the shrub layer is typically dominated by speckled alder mixed with tree species such as red spruce, northern white-cedar, and yellow birch. Species that occur within the herbaceous layer are similar to those identified in the regenerating forested wetlands. These wetlands have soils that remain saturated at or near the surface for much of the year and may experience at least periodic inundation. Representative examples of this community type include wetlands W018, W197, W173, and W447.

Emergent

Emergent wetlands are common throughout the Project area, often in areas that have been altered by timber harvesting activities or within the maintained transmission line. These types of emergent wetlands are typically referred to as wet meadows. Wet meadows are dominated by herbaceous species that are adapted to saturated soil conditions, but that are not adapted to long periods of inundations as would be common in marsh habitats. The emergent wetlands within the Project area are typically dominated by herbaceous species such common woolsedge (*Scirpus cyperinus*), fowl mannagrass, Canada reed grass, fringed sedge, eastern rough sedge (*Carex scabrata*), awl-fruited sedge (*Carex stipata*), barber-pole bulrush (*Scirpus microcarpus*), dwarf raspberry (*Rubus pubescens*), and spotted-touch-me-not (*Impatiens capensis*). These wetlands also support red raspberry, rosy meadowsweet (*Spiraea tomentosa*), white meadowsweet (*Spiraea alba* var. *latifolia*), and seedlings of the tree species mentioned in the preceding sections. These wetlands have soils that remain saturated at or near the surface for much of the year and may experience at least periodic inundation. Representative examples of this community type include wetlands W041, W306, and W409.

Open Water

Open water wetland communities only occur in three locations within the Project area. One of these communities is a naturally occurring beaver pond, and the other two are man-made excavations adjacent to gravel access roads. These occur in wetlands W163, W336, and W392.

Streams

The Project area includes numerous intermittent streams and several upper perennial streams, including Stony Brook. There are also a few larger lower perennial streams, including Little Michael River, Sandy Stream, Churchill Brook and Houston Brook, which occur in the lower valley areas, and the Kennebec River, which occurs at the eastern extent of the generator lead. Both intermittent and perennial streams consist of a channel occurring between defined banks and created by the action of surface water. In addition, these channels may have a mineral substrate, are generally devoid of terrestrial vegetation, and may support aquatic flora and fauna. Some of these streams occur in association with wetland communities, and others occur only as watercourses. Intermittent streams contain flowing water for part of the year, but there may be no surface water present or water may occur only in isolated pools during the remainder of the year. Within the ridgeline area, the perennial streams are typically high gradient and relatively fast moving streams where water flows throughout the year, except under conditions such as severe drought.

Land Use Regulation Commission Protection Subdistricts

Three protection subdistricts occur within the Project area: Wetland Protection (P-WL), Shoreland Protection (P-SL), and Flood Prone Area Protection (P-FP). Based upon the available Land Use Regulation Commission (LURC) Land Use Guidance Map for Highland Plantation, the LURC Land Use Guidance Map for Pleasant Ridge Plantation, and fieldwork conducted by Stantec, the Project area

includes P-WL1, P-WL2, and P-WL3 wetlands. Stantec identified 110 *Wetlands of Special Significance* within the Project area. Of these *Wetlands of Special Significance*, 56 wetlands occur solely within the P-WL1 subdistrict, and 54 wetlands include the P-WL1 subdistrict in conjunction with one or both of the other wetland subdistricts. In addition, the 224 identified streams would be considered *Wetlands of Special Significance* and occur within the P-WL1 subdistrict. The remaining 368 wetlands identified within the Project area occur within either the P-WL2 or P-WL3 subdistrict or within some combination of these two subdistricts. Many of the wetlands treated as occurring within the P-WL2 subdistrict are previously forested wetlands that are in some stage of regeneration following timber harvesting. They are currently dominated by either shrub-size woody vegetation or herbaceous vegetation.

Within the Project area, only the Kennebec River has an associated 250-foot P-SL1. The wetlands identified within the Project area would have an associated 75-foot P-SL2, and 14 of the larger watercourses would have an associated 75-foot P-SL2. These larger watercourses include Little Michael River, Stony Brook, Sandy Stream, Churchill Brook, and Houston Brook.

Within the Project area, the P-FP subdistrict is limited to the floodplains along Sandy Stream and Houston Brook. This encompasses 18 delineated wetlands located primarily within the generator lead corridor.

11.2 VERNAL POOLS

The definition of a vernal pool varies among states and regulatory agencies; however, these definitions typically share several common points. Vernal pools are generally ephemeral, which means that the pools dry at some point during a typical year. In addition, vernal pools do not support established populations of fish. Finally, these habitats offer essential breeding habitat for several species of amphibians, as well as provide habitat for unique invertebrates such as fairy shrimp (*Eubranchipus* spp.) and some rare species of wildlife. In Maine, presence of a very specific subset of wildlife species is used to identify a vernal pool. This subset includes:

- Demonstrated breeding activity by wood frogs (*Rana sylvatica*), spotted salamanders (*Ambystoma maculatum*), or blue spotted salamanders (*Ambystoma laterale*);
- Presence of fairy shrimp (*Eubranchipus* spp.);
- Presence of state-listed threatened or endangered species that are considered vernal pool dependent such as Blanding's turtle (*Emydoidea blandingii*), spotted turtle (*Clemmys guttata*), or ringed boghaunter dragonfly (*Williamsonia lintneri*); or
- Presence of these state-listed species of special concern: ribbon snake (*Thamnophis sauritus*), wood turtle (*Clemmys insculpta*), swamp darner dragonfly (*Epiaeschna heros*), or comet darner dragonfly (*Anax longipes*).

Refer to Appendix 11-1 for further information on state and federal regulatory definitions of vernal pools and for specific details on vernal pool surveys conducted by Stantec. Stantec conducted seasonally appropriate vernal pool surveys in May 2009. In total, Stantec identified 46 vernal pools within the ridgeline portion of the Project area and 12 along the proposed generator lead corridor. Of these pools, 43 were man-made and occurred within either a roadside ditch/excavation or a rut created by heavy equipment. The remaining 15 pools were naturally occurring and supported breeding activity by wood frogs and/or spotted salamanders. Three pools met the criteria to be considered Significant Vernal Pools based upon the level of amphibian breeding activity. Thirty-eight additional potential vernal pools were surveyed, but no breeding activity or vernal pool-associated species were observed at these locations.

In September and November 2009, approximately 2.6 miles of the generator lead corridor were realigned. Although seasonally appropriate delineations could be completed, the presence of vernal pools could not be confirmed. Stantec identified 13 potential vernal pools within this realigned corridor. Of these potential vernal pools, ten were determined to be man-made and three to be naturally occurring. For the purposes of this permit application, the three naturally occurring potential vernal pools will be treated as Significant Vernal Pools until seasonally appropriate surveys can be conducted to determine their actual status.

11.3 WETLAND RESOURCE IMPACTS

In order to avoid wetland impacts, a large area was delineated so that to the extent practicable, the Project could be designed around existing resources. As a result, of the 478 identified wetlands, only 78 will be impacted by the proposed Project (Table 11-1). Of these 78 wetlands, 39 will be partially or completely filled. The total area of permanent wetland fill is approximately 19,706.64 square feet. These impacts include scattered fills associated with the access roads and fills associated with eight turbines and the O&M building. No permanent wetland fill will occur at the location of the collector substation or permanent met towers. Impacts will occur as a result of upgrades to the existing access roads, as well as construction of new access roads. The selected alternative for the road alignments utilize existing road where practicable. Where new roads were necessary, the design avoided large, higher functioning wetlands where possible. The unavoidable impacts generally affect isolated and relatively small wetlands, which each having a total area of less than 5,000 square feet. Because of their small size and isolated nature, and because many of these wetlands have been altered by historic timber harvesting activities, these are relatively low-functioning resources. With few exceptions, impacts to larger and generally higher functioning wetlands occur as a result of upgrades to existing roads. These impacts were minimized by adjusting road side slopes and individual impacts range from approximately 150 square feet to 950 square feet. Impacts to larger wetlands as a result of new road construction (ex. W124 and W125) occur where individual wetlands are scattered across the summit and could not be completely avoided. To help reduce wetland impacts from roads, rock sandwiches will be used in some locations to help maintain natural subsurface flow of water between wetlands. For example, this method of minimization will be used where the access road threads between wetlands W148 and W149.

Of the 10 separate wetlands that will be filled or partially filled as a result of turbine construction, eight are small, isolated and/or relatively low functioning. Many of these wetlands also have been altered by timber harvesting activity that has further reduced their functional capacity. Two of the wetlands, W263 and W312, which will be impacted by turbine construction, are large, intact and relatively high functioning. There will be some reduction in the functional capacity of these wetlands and some landscape level change in wetland functions and values as a result of these various fills. For a more detailed discussion of wetland functions and values, refer to Appendix 11-2.

Impacts to wetlands along the proposed aboveground portion of the collector line and generator lead will consist primarily of a change in cover type. Approximately 281,213.24 square feet (6.46 acres) of vegetation clearing will occur within forested wetlands. In time, these forested wetlands will convert to early successional scrub-shrub or wet meadow communities. This cover type change will not significantly alter the overall functions and values of the impacted wetlands, with the exception of a change in wildlife habitat. Other wetlands that will be crossed by the collector lines and generator lead are either previously cut forested wetlands, scrub-shrub, emergent, or open water, so there should be no additional change in cover type. In addition to this change in cover, there will be one H-frame structure placed within a wetland resulting in approximately 20 square feet of permanent fill. In general, there should be only limited change in the functions provided by the wetlands altered by the electrical component of the Project.

Of the approximately 140 streams identified within the ridgeline portion of the Project area, 21perennial streams and 33 intermittent streams will be crossed by roads or directly impacted by some component of the Project. Forty-six of the crossings will involve culverts and eight, including the crossing of Sandy Stream, will be bridged.¹ This includes a single stream crossing to access the proposed met tower located at the north end of Burnt Hill. One small stream segment, approximately 20 feet in length, will be filled to construct Turbine E-29, and a second stream segment approximately 30 feet in length will be filled to construct the crane path between Turbines W25 and W26. The other streams within the Project area were avoided in an effort to minimize impacts.

¹ One of the perennial streams will have two separate bridge crossings. In addition, some of the streams will have a road crossing and be crossed by one of the aboveground electrical lines.

Impacts to streams along the proposed aboveground portion of the collector lines and generator lead generally will be minimal. These lines will cross 43 intermittent streams and 27 perennial streams, and as a result, there will be clearing of vegetation at these points. Where safety standards will allow, clearing limits at stream crossings will be reduced. These reduced clearing limits will be employed along all of the aboveground collector lines and along the portion of the generator lead with single pole construction. For these components, beginning within 100 feet of each stream the clearing limits will be reduced from 80 feet to either 40 or 50 feet depending upon whether poles are carrying one or two wires. Because the remainder of the generator lead will be constructed with H-frame structures the clearing limits cannot safely be reduced beyond the minimum required 100 feet. Along much of the generator lead, clearing activities will be an extension of clearing associated with the existing CMP transmission line. The clearing, however, should not impact the overall character of the streams. See Section 10 of this permit application for a discussion of vegetation management techniques at stream crossings intended to minimize impacts to wildlife and fisheries.

In addition to the permanent fill impacts there will be some temporary fill impacts of both wetlands and streams associated with construction of the aboveground collector line and the generator lead. These temporary fill impacts occur within the proposed clearing limits. Temporary wetland fill will be approximately 19,695.45 square feet and temporary stream impacts will be approximately 752 square feet. Following Best Management Practices, there should be no long term change in the functions and values of these resources as a result of these temporary fill impacts.

11.4 VERNAL POOL IMPACTS

The Project will not directly impact the vernal pool envelopes of the three identified Significant Vernal Pools (SVP). Road alignments will impact the critical terrestrial habitat of two of these SVPs. One of the pools, 04AA, has two existing gravel roads, Sandy Stream Valley Road and an access segment to Sandy Stream, within its critical terrestrial habitat. The proposed road design would discontinue that portion of Sandy Stream Valley Road within the critical terrestrial habitat and allow it to naturally revegetate, restoring approximately 2 percent of this habitat. The new Project road would be placed at the very outer edge of the critical terrestrial habitat and would replace the discontinued portion of Sandy Stream Valley Road. The second existing gravel road that currently provides access to Sandy Stream would be incorporated into the proposed Project access road. Based upon existing and proposed condition, approximately 28 percent of the critical terrestrial habitat would be altered. At the second SVP, 08ED, existing clearing as a result of timber harvesting activities is approximately 44 percent of the critical terrestrial habitat and the Project has been designed to restrict development to the previously disturbed areas without adding additional clearing. An existing skidder trail within this area of clearing will be converted into a gravel road to provide access to turbines 47 and 48. The Turbine E44 will be located within the critical terrestrial habitat of vernal pool 05ED. Approximately 35 percent of the critical terrestrial habitat of this pool has already been cleared by activities related to timber harvesting and the placement of this turbine will alter an additional 19 percent of this habitat. Although road traffic can be a significant source of amphibian mortality, logging roads typically do not carry enough traffic to pose a high level of direct mortality (deMaynadier and Hunter 2000)². They can, however, pose a barrier to amphibian movement, particularly to salamanders. Amphibians currently cross the existing Sandy Stream Valley Road and should cross the newly proposed road. The new access road near SVP 08ED will be approximately 25 feet wide with additional grading as needed. At this width, the road should not pose a barrier to movement of frogs and toads and only a limited barrier to salamanders (deMaynadier and Hunter 2000).

Two small man-made vernal pools will be directly impacted by the proposed Project. One vernal pool, 29KW, is located adjacent to the existing access road from Long Falls Dam Road. The pool occurs in what appears to be a roadside excavation, possibly a borrow site, at the inlet of an improperly set culvert. It will be filled to up-grade the existing road. The second vernal pool, 03ED, is located in a skidder rut near the existing access road on Briggs Hill. The vernal pool, its associated wetland and the adjacent

² deMaynadier, P.G. and M.L. Hunter, Jr. 2000. Road effects on amphibians movements in a forested landscape. Natural Areas Journal. 20:56-56.

uplands have been altered by timber harvesting activities and installation of the nearby meteorological tower. The pool will be filled to construct the pad for turbine E40. These vernal pools are both relatively shallow and the chance of amphibian larvae successfully developing to emergence appears low. In early May of 2009, vernal pool 29KW had a water depth of approximately 6 to 10 inches and vernal pool 03ED had a water depth of approximately 8 inches. The culvert at the outlet of vernal pool 29KW limits the maximum water depth to the bottom of the culvert. Because 03ED occurs within a skidder rut, it is both relatively small (approximately 48 square feet) and shallow. Within the generator lead, there will be vegetation clearing in uplands near several man-made vernal pools. These pools occur in locations that are currently partially developed or otherwise altered. For example, vernal pool 16KW, which is a highly productive pool based upon egg mass counts, occurs adjacent to a gravel access road within a log yard. Other pools including 05AA and 11ED occur adjacent to existing gravel roads and pool 45KW occurs within an existing transmission corridor. Vegetation clearing will have some effect on the micro-habitats where the adult amphibians spend much of their time. Provided that low shrubs allowed to grow within the electrical corridors to provide shade and some woody debris is left on the ground to provide refuge to migrating amphibians effects of vegetation clearing can be reduced.

11.5 WETLAND COMPENSATION

The applicant expects that wetland compensation will be required to mitigate for wetland functions and values lost as a result of this Project. Details related to wetland compensation will be discussed and developed after regulatory and other reviewing agencies have an opportunity to review this permit application.

 Table 11-1: Summary of wetland and water resource impacts. Table lists wetland impacts first followed by direct stream impacts (i.e., culvert crossings) and then stream clearing impacts. These categories are separated in the table by a **bold** line. Several streams have separate direct impacts and clearing impacts. In these instances, the fill impact is listed first in the cell and the clearing impact second.

Plan & Profile Sheet No. or Electrical Plan No.	Resource ID	Resource Classification	Stream Impact (I. f.)	Permanent Wetland Fill (sq. ft.)	Wetland Clearing (sq. ft.)	Temporary Wetland Fill (sq. ft.)	Temporary Stream Fill (I. f.)
C-207	W014	Forested		1380.85			
C-102	W082	Scrub-shrub/Wet meadow		169.21			
C-101	W079	Wet meadow		493.08			
C-101	W325	Forested		1747.49			
C-211	W099	Wet meadow		439.10			
C-213	W119	Wet meadow		221.31			
C-213, C-215	W124	Forested		211.95			
C-213, C-215	W125	Forested		142.47			
C-218	W139	Scrub-shrub		138.70			
C-218, C-219	W140	Forested		1274.97			
C-218 C-219	W141	Wet meadow		140.77			
C-106	W148	Forested		252.51			
C-106	W149	Forested		575.33			
C-107	W159	Scrub-shrub		940.92			
C-107	W155	Scrub-shrub		18.80			
C-107, C-108	W162	Forested		46.02			
C-108	W163	Wet meadow/Open water		314.63		2615.36	
C-108	W164	Wet meadow		4.53			
C-108	W165	Wet meadow		39.23			
C-108	W166	Scrub-shrub		64.55			
C108	W353	Forested		390.31			

Plan & Profile Sheet No. or Electrical Plan No.	Resource ID	Resource Classification	Stream Impact (I. f.)	Permanent Wetland Fill (sq. ft.)	Wetland Clearing (sq. ft.)	Temporary Wetland Fill (sq. ft.)	Temporary Stream Fill (I. f.)
C-108	W354	Forested		149.38			
C-109	W167	Scrub-shrub		941.30			
C-109	W168	Scrub-shrub		229.33			
C-109	W359	Wet meadow		220.01			
C-109	W174	Forested		102.80			
C-109	W176	Scrub-shrub		133.26			
C-109	W177	Scrub-shrub		260.02			
C-301	W246	Wet meadow		35.02			
C-301	W244	Scrub-shrub		1427.82			
C-301	W239	Scrub-shrub/Wet meadow		322.80	·		
C-302, C-303	W234	Forested		4.97			
C-306, C-307	W257	Wet meadow		568.81			
C-306, C-307	W263	Forested/Wet meadow		1675.96	·		
C-307, C-308	W268	Forested		2938.29			
C-310, C-311	W282	Scrub-shrub/Wet meadow		506.05			
C-314	W312	Forested		593.08			
C-314	W309	Wet meadow		571.01			
T-25	W414	Forested/Wet meadow		20.0	102468.70	5764.20	
T-3	W331	Forested			645.96	292.81	
T-3, T-2	W339	Forested			6742.06	643.05	
T-2	W341	Scrub-shrub			0	2411.38	
T-2	W350	Forested			161.41	0	
T-9	W363	Forested			0.38	0	
T-9	W367	Forested			0.81	0	
T-11	W372	Forested			423.08	0	
T-19	W375	Forested			1625.22	557.25	
T-19	W376	Forested			884.11	0	

Plan & Profile Sheet No. or Electrical Plan No.	Resource ID	Resource Classification	Stream Impact (I. f.)	Permanent Wetland Fill (sq. ft.)	Wetland Clearing (sq. ft.)	Temporary Wetland Fill (sq. ft.)	Temporary Stream Fill (I. f.)
T-19	W378	Forested			306.99	0	
T-23		Wet meadow/Scrub-			0	383.07	
	W396	shrub					
T-24	W405	Forested			1473.74	276.93	
T-24	W406	Forested			313.10	0	
T-24	W407	Forested			46.43	0	
T-24	W408	Forested			213.00	0	
T-24	W409	Wet meadow			0	340.62	
T-24	W413	Forested			418.81	0	
T-25	W417	Forested			2374.39	0	
T-25	W419	Forested			1439.61	0	
T-25	W420	Forested			284.13	0	
T-25	W421	Forested			353.24	0	
T-26	W425	Forested			3058.18	141.89	
T-26	W428	Forested			107.22	0	
T-26	W429	Forested			7765.07	45.92	
T-26	W430	Forested			734.47	0	
T-26	W431	Forested			20815.69	0	
T-26	W432	Forested			6986.85	530.60	
T-26	W433	Forested			8603.45	0	
T-26	W434	Forested			546.36	0	
T-26	W435	Forested			3434.24	471.22	
T-27	W439	Forested			1847.31	0	
T-27	W440	Forested			6378.15	0	
T-27	W441	Forested			13310.77	2336.79	
T-28	W442	Forested			6891.38	199.28	
T-28	W443	Forested			58,507.85	648.04	
T-28	W445	Forested			97.77	0	
T-30	W452	Forested			13686.12	0	
T-30	W471	Scrub-shrub, Wet meadow			0	1318.47	
T-30	W474	Forested			1727.75	0	
T-30	W475	Wet meadow			0	344.58	

Plan & Profile Sheet No. or Electrical Plan No.	Resource ID	Resource Classification	Stream Impact (I. f.)	Permanent Wetland Fill (sq. ft.)	Wetland Clearing (sq. ft.)	Temporary Wetland Fill (sq. ft.)	Temporary Stream Fill (I. f.)
T-30	W476	Forested			875.42	0	
T-31	W479	Forested			356.99	0	
T-33	W482	Forested			4243.51	310.99	
T-33	W483	Forested			1063.52	63.00	
C-201	37DD	Intermittent	46.50				
C-201	39DD	Intermittent	41.13				
C-201	24DD	Intermittent	36.96				
C-202	04DK	Intermittent	0 31.98				
C-206	18DD	Perennial	115.98				
C-207	13ED	Intermittent	38.44				
C-208	62ED	Intermittent	110.81				
C-101	28DD	Perennial	21.76				
C-101	29DD	Intermittent	70.58				
C-101	30DD	Intermittent	53.66				
C-102	29ED	Perennial	71.27				
C-102	31ED	Perennial	72.84				
C-212, C-213	06TT	Intermittent	86.63				
C-212, C-213	36EDJ	Intermittent	13.09				
C-213, C-215	08TT	Perennial	22.43				
C-216	13TT	Intermittent	103.54				
C-219	14TT	Intermittent	50.00				
C-104	27RL	Intermittent	66.14				
C-104, T-5	07TT	Intermittent	24.34 84.29				16
C-104	55AA	Intermittent	7.45				
C-105	69AA	Intermittent	44.43				
C-105	68AA	Perennial	86.86				
C-105, T-6	29RL	Intermittent	40.76 42.43				16

Plan & Profile Sheet No. or Electrical Plan No.	Resource ID	Resource Classification	Stream Impact (I. f.)	Permanent Wetland Fill (sq. ft.)	Wetland Clearing (sq. ft.)	Temporary Wetland Fill (sq. ft.)	Temporary Stream Fill (I. f.)
C-105	67AA	Intermittent	26.14				
C-105	40RL	Intermittent	69.95				
C-105	15CF	Intermittent	64.06				
C-105	16CF	Intermittent	23.42				
C-106, C-107	88AA	Perennial	90.58				
C-107, C-108	89AA	Perennial	35.35				
C-107	35CF	Intermittent	62.30				
C-107, T-7	33CF (Stony Brook)	Perennial	55.64 77.02				16
C-107.	37CF	Intermittent	80.71				
C-108, T-8			45.40				
C-109, T-9	40CF (Sandy Stream)	Perennial	102.00 108.53				
C-109	92AA	Intermittent	51.39				
C-109	44CF	Intermittent	60.52				
C-109	45CF	Perennial	54.67				
C-110, T-10	96AA	Perennial	51.74 55.91				
C-111	58ED	Perennial	49.01				
C-111	37AA	Intermittent	40.77				
C-111	67DD	Intermittent	47.45				
C-112	41AA	Intermittent	55.06				
C-112, T-12	59ED	Perennial	77.15 41.29		·		
C-112	48DD	Perennial	37.58				
C-112	03AA	Perennial	62.33				
C-112	07AA	Intermittent	55.43				
C-112	51DD	Perennial	84.08				
C-112	06AA	Perennial	52.65				
C-112	54DD	Intermittent	63.22				
C-112	53DD	Intermittent	22.20				

Plan & Profile Sheet No. or Electrical Plan No.	Resource ID	Resource Classification	Stream Impact (I. f.)	Permanent Wetland Fill (sq. ft.)	Wetland Clearing (sq. ft.)	Temporary Wetland Fill (sq. ft.)	Temporary Stream Fill (I. f.)
C-113	100ED	Intermittent	126.03				
C-113,	60DD	Perennial					
C-301			14.66				
C-301	10AA	Intermittent	18.87				
C-309	18AA	Intermittent	91.52				
C-313	23AA	Perennial					
C-314			159.09				
C-314	30AA	Perennial	83.86	_			
T-5	37ED	Intermittent	88.59				16
T-5	05TT	Intermittent	108.96				16
T-6	42DD	Intermittent	51.98				
T-2	53TT	Perennial	80.62				16
T-2	34KW	Perennial	45.57				16
T-2	54TT	Perennial	74.07				16
T-3	56TT	Intermittent	39.29				
T-3	36KW	Intermittent	40.62				16
T-3	57TT	Intermittent	88.2				16
T-3	37KW	Intermittent	40.69				16
T-3	19KW	Intermittent	25.58				16
T-3	20KW	Intermittent	51.48				16
T-3	125ED	Intermittent	17.06				
T-3	124ED	Intermittent	24.66				
T-3	18KW	Intermittent	59.84				16
T-3	122ED	Intermittent	46.69				
T-4	120ED	Perennial	210.05				16
T-6	54AS	Intermittent	36.44				
T-6	53AS	Intermittent	59.42				16
T-7	52AS	Perennial	352.59				48
T-7	10CF	Perennial	145.87				16
T-7	07KW	Intermittent	191.01				16
T-7	06KW	Intermittent	63.18				16
T-7	05KW	Intermittent	62.74				16
T-9	41CF	Intermittent	88.91				

Plan & Profile Sheet No. or Electrical Plan No.	Resource ID	Resource Classification	Stream Impact (I. f.)	Permanent Wetland Fill (sq. ft.)	Wetland Clearing (sq. ft.)	Temporary Wetland Fill (sq. ft.)	Temporary Stream Fill (I. f.)
T-9	41CF	Intermittent	69.13				
T-9	10KW	Perennial	65.95				16
T-9	115ED	Perennial	71.2				16
T-11	35AA	Perennial	48.51				16
T-18	14AS	Intermittent	45.56				
T-18	15AS	Intermittent	23.77				
T-18	11KW	Intermittent	128.51				16
T-19	116ED	Perennial	774.75				
T-19	117ED	Intermittent	115.86				
T-20	12KW	Intermittent	157.09				32
T-20	13KW	Perennial	439.71				
T-21	126ED	Intermittent	11.96				
T-21	19TT	Intermittent	161.07				
T-22	18TT	Intermittent	160.63				16
T-23	22KW	Intermittent	22.70				
T-23	22TT	Intermittent	54.74				
T-23	25TT	Intermittent	179.28				16
T-23	26TT	Intermittent	159.15				16
T-24	28TT	Perennial	183.48				16
T-24	29TT	Perennial	294.84				32
T-24	32TT	Perennial	132.08				16
T-27	26KW	Intermittent	66.25				
T-27	35TT	Perennial	134.69				16
T-27	36TT	Intermittent	49.89				
T-28	37TT	Intermittent	61.94				
T-28	39TT	Intermittent	157.45				16
T-28	40TT	Perennial	280.18				16
T-28	28KW	Intermittent	40.23				
T-29	135ED	Perennial	100.57				
T-30	07MJ	Perennial	215.45				
T-30	06MJ	Perennial	130.97				16
T-30	134ED	Perennial	117.54				16
T-31	132ED	Perennial	103.98				16

Plan & Profile Sheet No. or Electrical Plan No.	Resource ID	Resource Classification	Stream Impact (I. f.)	Permanent Wetland Fill (sq. ft.)	Wetland Clearing (sq. ft.)	Temporary Wetland Fill (sq. ft.)	Temporary Stream Fill (I. f.)
T-31	131ED	Perennial	123.59				16
T-31	03MJ	Intermittent	35.04				
T-32	130ED	Intermittent	110.39				16
T-33	01MJ	Intermittent	64.87				
T-33	128ED	Perennial	136.92				16
T-34	Kennebec						
	River	Perennial	101.48				
Total			Direct: 3,195.03 Clearing: 7,976.91	19,706.64	281,213.24	19,695.45	752

Appendix 11-1

Appendix 11-2

1.0 INTRODUCTION

An analysis was conducted to assess the capacity of wetlands within the Highland Wind Project (Project) area to provide 13 functions and values. This analysis focused on those wetlands to be impacted by the proposed Project and included evaluating the potential effects that the proposed development may have on these functions and values. Wetland functions and values were assessed using the Highway Methodology Workbook, Wetland Functions and Values: A Descriptive Approach.¹ This method bases function and value determinations on the presence or absence of specific criteria for each of the wetland functions and values defined below. These criteria are assessed through direct field observations and a review of existing resource maps and databases. As part of the evaluation, the most important functions and values associated with the on-site wetlands are identified. In addition, the ecological integrity of the wetlands is evaluated based on the existing levels of disturbance and the overall significance of the wetlands within the local watershed. This analysis separately evaluated those wetlands that will be altered by permanent fill and those forested wetlands that will be altered by the removal of canopy vegetation to construct the electrical corridors associated with the Project.

[°] Groundwater Interchange (Recharge/Discharge)

This function considers the potential for the project area wetlands to serve as groundwater recharge and/or discharge areas. It refers to the fundamental interaction between wetlands and aquifers, regardless of the size or importance of either.

Floodwater Alteration (Storage and Desynchronization)

This function considers the effectiveness of the wetlands in reducing flood damage by attenuating floodwaters for prolonged periods following precipitation and snow melt events. • Fish and Shollfish Links

Fish and Shellfish Habitat

This function considers the effectiveness of seasonally or permanently flooded areas within the subject wetlands for their ability to provide fish and shellfish habitat.

[°] Sediment/Toxicant Retention

This function reduces or prevents degradation of water quality. It relates to the effectiveness of the wetland to function as a trap for sediments, toxicants, or pathogens, and is generally related to factors such as the type of soils, the density of vegetation, and the position in the landscape.

^o Nutrient Removal/Retention/Transformation

This wetland function relates to the effectiveness of the wetland to prevent or reduce the adverse effects of excess nutrients entering aquifers or surface waters such as ponds, lakes, streams, rivers, or estuaries.

Production Export (Nutrient)

This function relates to the effectiveness of the wetland to produce food or usable products for humans or other living organisms.

[°] Sediment/Shoreline Stabilization

This function considers the effectiveness of a wetland to stabilize stream banks and shorelines against erosion, primarily through the presence of persistent, well-rooted vegetation.

Wildlife Habitat

This function considers the effectiveness of the wetland to provide habitat for various types and populations of animals typically associated with wetlands and the wetland edge. Both resident and/or migrating species must be considered.

[°] Recreation (Consumptive and Non-Consumptive)

This value considers the suitability of the wetland and associated watercourses to provide recreational opportunities such as hiking, canoeing, boating, fishing, hunting, and other active or passive recreational activities.

° Educational/Scientific Value

This value considers the effectiveness of the wetland as a site for an "outdoor classroom" or as a location for scientific study or research.

^o Uniqueness/Heritage

This value relates to the effectiveness of the wetland or its associated water bodies to provide certain special values such as archaeological sites, unusual aesthetic quality, historical events, or unique plants, animals, or geologic features.

[°] Visual Quality/Aesthetics

This value relates to the visual and aesthetic qualities of the wetland.

[°] Endangered Species Habitat

This value considers the suitability of the wetland to support threatened or endangered species.

¹ U.S. Army Corps of Engineers. 1999. The Highway Methodology Workbook Supplement, Wetland Functions and Values: A Descriptive Approach. U.S. Army Corps of Engineers. New England Division. 32pp. NAEEP-360-1-30a.

2.0 WETLANDS ALTERED BY FILL

Wetland fill impacts are scattered across the ridgeline portion of the Project area and occur in association with roads, turbines and the Operations & Maintenance building. A total of 39 separate wetlands will be affected by fill (Refer to Table 11-1 in Section 11 for details). In addition to those wetlands within the ridgeline portion of the Project, a single 20-square foot permanent fill impact will occur in association with the electrical generator lead. Within the ridgeline Project area, individual fill impacts range from approximately 5 square feet to approximately 2,940 square feet. Nine wetlands will be completely filled, and the remaining wetlands will be partially filled. The average size of those wetlands that will be completely filled is approximately 844 square feet. Wetlands that will be partially filled are generally larger in size, ranging in size from approximately 200 square feet to 76,669 (1.8 acres).² Wetlands that are small and isolated typically have a lower functional capacity than larger and more complex wetlands. Landscape position and surrounding land use also can affect a wetland's capacity to provide functions and values, as well as opportunity. For example, wetlands located higher in a watershed generally have less opportunity to provide floodwater alteration than those located lower in the watershed. Wetlands that have been altered by timber harvesting, such as many of the wetlands with the ridgeline Project area, often have at least temporarily reduced functional capacity as a result of vegetation removal and soil compaction. Other alterations such as direct fill permanently reduce a wetland's capacity to provide functions and values. Existing functions and values provided by the individual wetlands are summarized in Table 11-2.

2.1 Functions and Values

Groundwater Interchange

There is no identified sand and gravel aquifer underlying the ridgeline portion of the Project area, so it is unlikely that there is significant groundwater interchange occurring within these wetlands. Those wetlands associated with watercourses such as W325, which is associated with a small perennial stream, and W174, which is adjacent to Sandy Stream, likely have at least limited groundwater interchange with these streams. Within those small, isolated wetlands, particularly those underlain by soils with a thick organic layer or fine particulate soils, there is likely to be very limited groundwater interchange occurring. In general, groundwater interchange is not considered a principal function of any of the assessed wetlands.

Floodwater Alteration

Each assessed wetland provides some localized floodwater alteration by receiving and detaining overland flows from adjacent uplands. These wetlands provide localized floodwater alteration by detaining varying amounts of surface runoff in topographic basins and slowing overland flows in dense woody and herbaceous vegetation. Water retention periods, particularly in smaller wetlands such as W119 and W139, may not be significant. However, these wetlands do slow at least some runoff from adjacent uplands, helping to desynchronize the rate at which surface runoff ultimately reaches lower watershed surface bodies. In general, those wetlands located higher in the watershed, such as those on the top of the ridgelines, will have less opportunity to provide floodwater alteration, particularly if they are not associated with a watercourse. Of those assessed wetlands, floodwater alteration would be a principal function for wetlands W168 and W174, which occur within the mapped floodplain of Sandy Stream. For the other wetlands, this function occurs, but it is not considered principal.

Fish and Shellfish Habitat

Nine of the assessed wetlands are associated with a watercourse. Of these streams, three are intermittent and unlikely to provide fisheries habitat. Six of the perennial streams, including Stony Brook, do not appear able to support fisheries for much of the year because flows are too rapid following spring snowmelt and are subsequently too shallow during the summer months. The presence of northern spring salamanders (*Gyrinophilus porphyriticus*), a species that typically occurs in streams without fish, in Stony Brook and some of its tributaries further suggests that these streams are unable to support fisheries. Fish

² Wetland size reflects that portion of the wetland delineated within the Project area. In some instances wetlands extend beyond the wetland boundary and their area is larger.

were not observed in any of these watercourses during the course of delineations, but specific surveys were not conducted. Sandy Stream does support fish and as such only wetlands W174 and possibly W168 would provide or contribute to this function.

Sediment and Toxicant Retention

As with floodwater alteration, all of the wetlands within the Project area have some capacity to provide sediment and toxicant retention. Wetlands can retain surface water and slow its flow thereby allowing sediments and toxicants to settle out of the water column. The opportunity for these wetlands to provide this function varies greatly depending upon their landscape position, particularly their proximity to existing development and watercourses. Those wetlands such as wetlands W353 and W354, which occur down slope on an existing access road, receive surface water run off that is sometimes sediment laden. Sediments settle out of the run off within these two wetlands before reaching Sandy Stream. Sediment and toxicant retention is a principal function for those wetlands located adjacent to existing development and larger watercourses (i.e., Sandy Stream), but those isolated wetlands on the ridgeline have both a limited capacity and limited opportunity to provide this function.

Nutrient Removal/Retention/Transformation

Similar to sediment and toxicant retention, the wetlands within the Project area have varying capacity to provide this function depending upon the size, community type, landscape position and other physical characteristics. Because there does not appear to be a source of excess nutrients immediately within the Project area, this is not considered a principal function provided by the assessed wetlands.

Production Export

Production export is a wetland function that typically occurs in the form of nutrient or biomass transport via watercourses, removal of timber and other natural products, and foraging by wildlife species. For those nine wetlands that are associated with a watercourse, production export will occur, but the level of nutrient/biomass transport by these streams depends upon characteristics such as the size of the stream, the time period that the stream contains flowing water, and the landscape surrounding the stream. Based upon the landscape setting, stream size and consistency of flow, Sandy Stream is likely capable of transporting more nutrients/biomass than the other streams. For the remaining 30 wetlands, production export will be limited primarily to timber harvesting and foraging by wildlife. Fourteen of the wetlands are currently forested or have at least a forested component, and the majority of the other wetlands are previously harvested forested wetlands. The larger wetlands will have a greater capacity to provide useable timber. Of the forested wetlands, only wetland W263, which is almost two acres in size, has a reasonable capacity to provide harvestable timber. Production export via foraging wildlife likely occurs in all of the wetlands, but is limited. Of the assessed wetlands, production export occurs or could occur in all of them, but is likely only principal for W174, which is directly associated with Sandy Stream.

Sediment/Shoreline Stabilization

Nine of the assessed wetlands are associated with a watercourse and as such provide this function at varying levels. Some of the wetlands such as W325 are only directly associated with the stream for a few feet, so the capacity for stabilization is relatively limited. In other instances such as wetland W148, the stream channel ends a short distance after entering the wetland, so again there is little opportunity for shoreline stabilization to occur. Of the nine wetlands associated with a watercourse, this is only a principal function for wetland W174, which follows the shoreline of Sandy Stream.

Wildlife Habitat

Within the larger forested landscape, all of the wetlands within the Project area provide wildlife habitat; however, only a few of them provide habitat specifically for wetland-associated or aquatic-dependant species. In general, the majority of the assessed wetlands lack open water or emergent marsh habitat required by wildlife species such as waterfowl, wading birds and some amphibians. Vernal pools were documented in four of the wetlands: W079, W163, W263 and W282. The vernal pools within wetlands W079 and W163 both occur in what appear to be a roadside borrows, and the two vernal pools within wetland W282 occur within skidder ruts. Only the vernal pool within wetland W263 is naturally occurring and is located at the base of a wind-thrown tree. With the exception of the vernal pool within wetland W163, these vernal pools are relatively small and have limited habitat. In 2009, 105 spotted salamander

(*Ambystoma maculatum*) egg masses and more than 50 wood frog (*Rana sylvatica*) egg masses were documented in the wetland W163 vernal pool. This pool appears to have a sufficient hydro-period to allow successful development and emergence of these amphibian larvae. In addition to the four wetlands that include vernal pools, other wetlands in proximity to these pools may provide habitat for the adult spotted salamander, wood frogs and other terrestrial amphibians such as the red-back salamander (*Plethodon cinereus*). All of the assessed wetlands provide some type of wildlife habitat, but this is likely only a principal function for wetland W163.

Recreation

The ridgeline portion of the Project area is open to the public for recreation, including hunting and fishing. The individual wetlands are generally too small to specifically provide these opportunities, but they are part of a landscape that does. This value is not attributed directly to any of the assessed wetlands.

Education/Scientific Value

Many of the assessed wetlands have been altered by timber harvesting activities, including road construction and removal of canopy trees, which limits their educational/scientific value. The vernal pool within wetland W163 could provide an educational opportunity, but because it is located within an industrial forest and far from the nearest school, this value would be very limited. In general, this value is not attributed to these wetlands.

Uniqueness/Heritage

In part because many of the assessed wetlands have been altered by timber harvesting activities, they do no represent exemplary examples of their community types. Project specific surveys did not identify rare plants, habitat for rare animal species or historical features within any of these wetlands. This value is not specifically attributed to these wetlands.

Visual Quality/Aesthetics

As part of a generally undeveloped landscape, these wetlands contribute to the overall visual quality of the area as seen from surrounding vantage points. This value, however, is not specifically attributed to the individual wetlands.

Endangered Species Habitat

None of the wetlands that will be impacted specifically contain habitat for endangered species. However, wetland W155 is associated with Stony Brook, which is one of two streams within the Project area where the Roaring Brook mayfly (*Epeorus frisoni*), a state listed endangered species, was documented. Wetland W155 helps protect the water quality of Stony Brook and as such at least indirectly affects the habitat for the Roaring Brook mayfly.

2.2 Summary

All of the assessed wetlands provide varying levels of floodwater alteration, sediment/toxicant retention, production export and wildlife habitat. Additionally, those nine wetlands associated with a watercourse provide fisheries habitat and sediment/shoreline stabilization, and one of these nine, wetland W155, indirectly affects habitat for the endangered Roaring Brook mayfly. Floodwater alteration is a principal function for wetlands W168 and W174, which occur within the mapped floodplain of Sandy Stream, and production export also is likely a principal function for wetland W174. Sediment and toxicant retention is a principal function for those wetlands located adjacent to existing development and larger watercourses (i.e., Sandy Stream), including wetlands W168, W174, W353 and W354. Wildlife habitat is likely only a principal function for wetland W163. The 10 wetlands that will be completely filled as a result of the Project will no longer provide their current functions, and those wetlands that will be partially filled will have a reduced capacity to provide these functions. In some instances, wetlands will have increased opportunity to provide sediment/toxicant retention where new roads and turbine pads are constructed on the landscape.

3.0 WETLANDS ALTERED BY VEGETATION REMOVAL

Removal of canopy vegetation will impact 40 forested wetlands within the aboveground portion of the collector line and the electrical generator lead corridor. The extent of clearing will range from approximately 1 square foot to approximately 102,469 square feet (2.4 acres). For the majority of these wetlands, the conversion from forested wetland community type will only affect a portion of the wetland, and for those 31 wetlands bisected by the existing Central Maine Power (CMP) transmission line, this will be an expansion of the current clearing limits. Removal of the canopy of these wetlands will have some limited affect on existing functions, although changes to wildlife habitat may be more significant. Refer to Table 11-2 for a summary of functions and values provided by the individual wetlands.

3.1 Functions and Values

Groundwater Interchange

There is no identified sand and gravel aquifer underlying the ridgeline portion of the Project area or the electrical generator lead, so it is unlikely that there is significant groundwater interchange occurring within these wetlands. Those wetlands associated with watercourses such as W331, which is associated with a small intermittent stream, and W443, which is associated with five streams, likely have at least limited groundwater interchange with these streams. Within those small, isolated wetlands, particularly those underlain by soils with a thick organic layer or fine particulate soils, there is likely to be very limited groundwater interchange occurring. In general, groundwater interchange is not considered a principal function of any of the assessed wetlands.

Floodwater Alteration

Each assessed wetland provides some localized floodwater alteration by receiving and detaining overland flows from adjacent uplands. These wetlands provide localized floodwater alteration by detaining varying amounts of surface runoff in topographic basins and slowing overland flows in dense woody and herbaceous vegetation. Water retention periods, particularly in smaller wetlands such as W391 and W392, may not be significant. However, these wetlands do slow at least some runoff from adjacent uplands thereby helping to desynchronize the rate at which surface runoff ultimately reaches lower watershed surface bodies. In general, those wetlands not associated with a watercourse with have less opportunity to provide this function. Of those assessed wetlands, floodwater alteration would be a principal function for wetlands W443 and W452, which occur within the mapped floodplain of Houston Brook. For the other wetlands, this function occurs, but it is not considered principal.

Fish and Shellfish Habitat

Two wetlands are associated with at least one watercourse. The stream associated with wetland W331 is intermittent and unlikely to provide fisheries habitat. Three streams within wetland W443 are perennial, and two are intermittent. One of the intermittent streams occurs separately within the wetlands, but the other four streams are a single interconnected system. Fish were observed in the larger of the perennial streams, and since these four streams are interconnected, they all potentially provide fisheries habitat. Of these two wetlands, fisheries habitat would only be a principal function for wetland W433.

Sediment and Toxicant Retention

As with floodwater alteration, all of the wetlands within the Project area have some capacity to provide sediment and toxicant retention. Wetlands can retain surface water and slow its flow thereby allowing sediments and toxicants to settle out of the water column. The opportunity for these wetlands to provide this function varies greatly depending upon their landscape position, particularly their proximity to existing development and watercourses. Those wetlands such as wetlands W433, which occur down slope on an existing road, receive surface water run off that is some times sediment laden. Sediments settle out of the run off within the wetland before reaching nearby streams. Sediment and toxicant retention is a principal function for those wetlands located adjacent to existing development and larger watercourses, but those isolated wetlands have both a limited capacity and limited opportunity to provide this function.

Nutrient Removal/Retention/Transformation

Similar to sediment and toxicant retention, the wetlands within the ridgeline portion of the Project area have varying capacity to provide this function depending upon the size, community type, landscape position, and other physical characteristics. There does not appear to be a source of excess nutrients immediately within the ridgeline Project area. Where the generator lead passes through pockets of residential development, there may be some additional sources of nutrients such as fertilizers applied to lawns and gardens, but there does not appear to be a large source of excess nutrients. Because there is no evident opportunity for wetlands to provide this function, it is not considered a principal function.

Production Export

Production export is a wetland function that typically occurs in the form of nutrient or biomass transport via watercourses, removal of timber and other natural products, and foraging by wildlife species. For the two wetlands that are associated with watercourses, production export will occur, but the level of nutrient/biomass transport by these streams depends upon characteristics such as the size of the stream, the time period that the stream contains flowing water, and the landscape surrounding the stream. Based upon the landscape setting, stream size and consistency of flow, the largest of the perennial streams within wetland W443 is likely capable of transporting more nutrients/biomass than the other streams. For the remaining 38 wetlands, production export will be limited primarily to timber harvesting and foraging by wildlife. These wetlands are currently forested or have at least a forested component. The larger wetlands such as wetland W414, W443 and W452 will have a greater capacity to provide useable timber. Production export via foraging wildlife likely occurs in all of the wetlands, but is limited. Of the assessed wetlands, production export occurs or could occur in all of them, but may only be principal for the three largest wetlands: W414, W443 and W452.

Sediment/Shoreline Stabilization

Only two of the assessed wetlands are associated with at least one watercourse and as such provide this function. Wetland W331 is the headwaters of its associated stream and is only directly associated with the stream channel for a very short distance. Because of this limited direct association with the stream, wetland W331 capacity to provide this function is minimal. In contrast, wetland W443 is associated with five stream channels and has sediment/shoreline stabilization as a principal function.

Wildlife Habitat

Within the larger forested landscape, all of the wetlands within the Project ridgeline provide wildlife habitat; however, only a few of them provide habitat specifically for wetland-associated or aquaticdependant species. Similarly, those wetlands along the proposed electrical generator lead occur within a predominantly forested landscape that is interspersed areas of sparse residential development. These wetlands also provide habitat for wildlife, but like the ridgeline wetlands few provide habitat for those wetland-associated or wetland-dependent species such as waterfowl, wading birds and some amphibians. Wetland W443 does have some areas of deeper water. Historic beaver (Castor canadensis) activity was observed along one of the larger perennial streams within this wetland and a great blue heron (Ardea herodias) was seen flying into the wetland at a point beyond the delineation limits. Vernal pools also were documented in three of the assessed wetlands, W414, W431, W443, and potential vernal pools were identified in wetland W452. The vernal pools within wetlands W414 and W443 are located within the existing CMP transmission line. Two of the pools occur in small excavations adjacent to H-frame structures, and the other four occur in equipment ruts. The vernal pool within wetland W431 is a small man-made excavation. The vernal pools within wetlands W414 and W443 are relatively small and based on surveys conducted in the spring of 2009 had relatively low egg mass counts (generally less than five total egg masses). The pool within wetland W431 is larger than the others and 28 wood frog egg masses were documented during 2009 surveys; however, water depth within this pool suggests that it may not have sufficient hydrologic period to allow successful development of the larvae. All of the assessed wetlands provide some type of wildlife habitat, but this is likely only a principal function for wetland W443.

Recreation

The ridgeline portion of the Project area is open to the public for recreation including hunting and fishing. The individual wetlands are generally too small to specifically provide these opportunities, but they are part of a landscape that does. This value is not attributed directly to anyone of these wetlands. The electrical generator lead corridor that extends east beyond the Project ridgeline passes through areas of rural residential development and may not be open to consumptive recreational opportunities such as hunting. The CMP transmission line is utilized as a recreational corridor for snowmobile and all-terrain vehicle riders, but this is not a value specifically attributed to any of the wetlands.

Education/Scientific Value

Many of the assessed wetlands have been altered by timber harvesting activities and construction of the CMP transmission line, which limits their educational/scientific value. The identified vernal pools are all man-made and do not represent particularly good examples of this type of habitat and would not provide valuable educational opportunities. In general, this value is not attributed to these wetlands.

Uniqueness/Heritage

In part because many of the assessed wetlands have been altered by timber harvesting activities or by construction of the existing CMP transmission line, they do no represent exemplary examples of their community types. Project specific surveys did not identify rare plants, habitat for rare animal species or historical features within any of these wetlands. This value is not specifically attributed to these wetlands.

Visual Quality/Aesthetics

As part of a generally undeveloped landscape, those wetlands located within the ridgeline portion of the Project area do contributed to the overall visual quality of the area as seen from surrounding vantage points. This value, however, is not specifically attributed to the individual wetlands. The wetlands located adjacent to and/or bisected by the existing CMP transmission line have a significantly reduced visual quality and are not considered to provide this value.

Endangered Species Habitat

None of the wetlands that will be impacted contain identified habitat for endangered species and as such do not provide this value.

3.2 Summary

All of the assessed wetlands provide varying levels of floodwater alteration, sediment/toxicant retention, production export and wildlife habitat. Additionally, the two wetlands associated with a watercourse provide sediment/shoreline stabilization and wetland W443 provides fisheries habitat. Floodwater alteration is a principal function for wetlands W443 and W452, which occur within the mapped floodplain of Houston Brook. Sediment and toxicant retention is a principal function for those wetlands located adjacent to existing development and larger water courses such as wetland W443. Of the assessed wetlands, production export appears only to be principal for the three largest wetlands: W414, W443 and W452. Wildlife habitat also is likely a principal function for wetland W443. Removal of canopy vegetation within these wetlands will initially reduce their capacity to provide some of these functions, particularly water quality protection functions such as sediment/toxicant retention, but as low-growing woody vegetation becomes re-established these functions should be more fully restored. The primary change in function will relate to wildlife habitat since these communities will be converted from forested cover types to either scrub-shrub or wet meadow. The vernal pools should continue to function as they are currently since most of them occur within the existing transmission line, but there will likely be some change in use, particularly for terrestrial species that prefer wooded cover.

				Sediment/						Educational/			Endangered
Wetland	Groundwater	Floodwater	Fish	Toxicant	Nutrient	Production	Shoreline	Wildlife		Scientific	Uniqueness/	Visual	Species
ID	Exchange	Alteration	Habitat	Retention	Removal	Export	Stabilization	Habitat	Recreation	Value	Heritage	Quality	Habitat
W014		Х		Х		Х		Х					
W082		Х		Х		Х		Х					
W079		Х		Р		Х		Х					
W325	Х	Х		Х		Х	Х	Х					
W099		Х		Х		Х		Х					
W119		Х		Х		Х		Х					
W124		Х		Х		Х		Х					
W125		Х		Х		Х		Х					
W139		Х		Х		Х		Х					
W140		Х		Х		Х		Х					
W141		Х		Х		Х		Х					
W148	Х	Х		Р		Х	Х	Х					
W149	Х	Х		Р		Х	Х	Х					
W159	Х	Х		Р		Х	Х	Х					
W155	Х	Х		Р		Х	Х	Х					Х
W162	Х	Х		Р		Х	Х	Х					
W163		Х		Р		Х		Р					
W164		Х		Р		Х		Х					
W165	Х	Х		Р		Х	Х	Х					
W166		Х		Р		Х		Х					
W353		Х		Р		Х		Х					
W354		Х		Р		Х		Х					
W167		Х		Р		Х		Х					
W168	Х	Р	Х	Р		Х	Х	Х					
W359		Х		Х		Х		Х					
W174	Х	Р	Х	Р		Р	Р	Х					
W176		Х		Р		Х		Х					
W177		Х		Р		Х		Х					
W246		Х		Х		Х		Х					
W244		Х		Х		Х		Х					
W239		Х		Х		Х		Х					

Table 11-2: Wetland Function and Value Assessment Summary Table. The bold line separates those wetlands altered by fill from those altered byvegetation removal. Highland Wind Project, Highland Plantation, Maine.

				Sediment/						Educational/			Endangered
Wetland	Groundwater	Floodwater	Fish	Toxicant	Nutrient	Production	Shoreline	Wildlife		Scientific	Uniqueness/	Visual	Species
ID	Exchange	Alteration	Habitat	Retention	Removal	Export	Stabilization	Habitat	Recreation	Value	Heritage	Quality	Habitat
W234		Х		Х		Х		Х					
W257		Х		Х		Х		Х					
W263		Х		Х		Х		Х					
W268		Х		Х		Х		Х					
W282		Х		Р		Х		Х					
W312		Х		Х		Х		Х					
W309		Х		Х		Х		Х					
W414		Х		Х		Р		Х					
W170		Х		Х		Х		Х					
W173		Х		Х		Х		Х					
W328		Х		Х		Х		Х					
W331	Х	Х		Х		Х	Х	Х					
W332		Х		Х		Х		Х					
W339		Х		Х		Х		Х					
W341		Х		Х		Х		Х					
W345		Х		Х		Х		Х					
W346		Х		Х		Х		Х					
W349		Х		Х		Х		Х					
W350		Х		Х		Х		Х					
W356		Х		Х		Х		Х					
W358		Х		Х		Х		Х					
W363		Х		Х		Х		Х					
W367		Х		Х		Х		Х					
W370		Х		Х		Х		Х					
W371		Х		Х		Х		Х					
W372		Х		Х		Х		Х					
W375		Х		Х		Х		Х					
W376		Х		Х		Х		Х					
W378		Х		Х		Х		Х					
W380		Х		Х		Х		Х					
W386		Х		Х		Х		Х					
W387		Х		Х		Х		Х					

 Table 11-2:
 Wetland Function and Value Assessment Summary Table. The bold line separates those wetlands altered by fill from those altered by vegetation removal. Highland Wind Project, Highland Plantation, Maine.

				Sediment/						Educational/			Endangered
Wetland	Groundwater	Floodwater	Fish	Toxicant	Nutrient	Production	Shoreline	Wildlife		Scientific	Uniqueness/	Visual	Species
ID	Exchange	Alteration	Habitat	Retention	Removal	Export	Stabilization	Habitat	Recreation	Value	Heritage	Quality	Habitat
W390		Х		Х		Х		Х					
W391		Х		Х		Х		Х					
W392		Х		Х		Х		Х					
W396		Х		Х		Х		Х					
W399		Х		Х		Х		Х					
W400		Х		Х		Х		Х					
W402		Х		Х		Х		Х					
W405		Х		Х		Х		Х					
W406		Х		Х		Х		Х					
W407		Х		Х		Х		Х					
W408		Х		Х		Х		Х					
W409		Х		Х		Х		Х					
W410		Х		Х		Х		Х					
W411		Х		Х		Х		Х					
W413		Х		Х		Х		Х					
W417		Х		Х		Х		Х					
W419		Х		Х		Х		Х					
W420		Х		Х		Х		Х					
W421		Х		Х		Х		Х					
W425		Х		Х		Х		Х					
W427		Х		Х		Х		Х					
W428		Х		Х		Х		Х					
W429		Х		Х		Х		Х					
W430		Х		Х		Х		Х					
W431		Х		Х		Х		Х					
W432		Х		Х		Х		Х					
W433		Х		Х		Х		Х					
W434		Х		Х		Х		Х					
W435		Х		Х		Х		Х					
W439		Х		Х		Х		Х					
W440		Х		Х		Х		Х					
W441		Х		Х		Х		Х					

 Table 11-2:
 Wetland Function and Value Assessment Summary Table. The bold line separates those wetlands altered by fill from those altered by vegetation removal. Highland Wind Project, Highland Plantation, Maine.

				Sediment/						Educational/			Endangered
Wetland	Groundwater	Floodwater	Fish	Toxicant	Nutrient	Production	Shoreline	Wildlife		Scientific	Uniqueness/	Visual	Species
ID	Exchange	Alteration	Habitat	Retention	Removal	Export	Stabilization	Habitat	Recreation	Value	Heritage	Quality	Habitat
W442		Х		Х		Х		Х					
W443	Х	Р	Р	Р		Р	Р	Р					
W445		Х		Х		Х		Х					
W452		Р		Х		Р		Х					
W471		Х		Х		Х		Х					
W474		Х		Х		Х		Х					
W475		Х		Х		Х		Х					
W476		Х		Х		Х		Х					
W477		Х		Х		Х		Х					
W479		Х		Х		Х		Х					
W482		Х		Х		Х		Х					
W483		Х		Х		Х		Х					
W484		Х		Х		Х		Х					

 Table 11-2:
 Wetland Function and Value Assessment Summary Table. The bold line separates those wetlands altered by fill from those altered by vegetation removal. Highland Wind Project, Highland Plantation, Maine.

LAND USE REGULATION COMMISSION GRID SCALE WIND ENERGY DEVELOPMENT APPLICATION

APPENDIX 11-1

Wetland and Waterbody Resource Delineation Report Highland Wind Project Somerset County, Maine

November 2009

Prepared For: Highland Wind LLC P.O. Box 457 Brunswick, ME 04011

Prepared By: Stantec Consulting 30 Park Drive Topsham, ME 04086

TABLE OF CONTENTS

1.0	INTRODUCTION	. 1
2.0	SURVEY METHODS	. 1
2.1.	WETLAND AND WATERBODY RESOURCE DELINEATION	.1
2.2.	AGENCY CONTACTS	.2
3.0	SURVEY RESULTS	.3
3.1.	GENERAL SITE DESCRIPTION	.3
3.2.	DELINEATION SURVEY RESULTS	.3
4.0	REGULATORY INFORMATION	.4
4.1.	AGENCY CORRESPONDENCE	.4
4.2.	STATE AND FEDERAL WETLAND REGULATIONS	.5

LIST OF APPENDICES

- Appendix A Site Location Map
- Appendix B Resource Maps
- Appendix C Wetland and Waterbody Resource Descriptions Table C-1: Resource Matrix
 - Table C-2. Resource Summary
- Appendix D Vernal Pool Summary Table
- Appendix E U.S. Army Corps of Engineers Wetland Delineation Data Forms
- Appendix F Significant Vernal Pool Data Forms
- Appendix G Representative Site Photographs
- Appendix H Agency Correspondence

1.0 INTRODUCTION

Stantec Consulting (Stantec) completed wetland and waterbody resource delineations in association with the proposed Highland Wind Project (Project) in Highland and Pleasant Ridge Plantations, Somerset County, Maine (Appendix A, Figure 1). Surveys for wetlands and waterbodies were conducted within the Project area that includes the following.

- The ridgeline turbine corridors include the peaks of Stewart Mountain, Witham Mountain, Bald Mountain, Burnt Hill, an unnamed peak to the west of Burnt Hill; and Briggs Hill. Each corridor is approximately 1,000 to 3,000 feet wide.
- The approximately 150-foot wide primary ridge connector road corridor extending from the base of Witham Mountain to the base of Burnt Hill. This connector road will provide access between the western and eastern portions of the Project area.
- An approximately 1,000-foot wide access road corridor extending northeast from Long Falls Dam Road to the saddle between the southern part of Stewart Mountain and Witham Mountain. This road will provide direct access to the Project area.
- The electrical collector line system that is internal to the Project area occurs within the access road corridors and as separate overland segments. Approximately 1.5 miles of the electrical collector line occurs as overland segments extending from Stewart Mountain to the proposed Project collector substation. This corridor is approximately 250 feet wide.
- An approximately 250-foot wide electrical generator lead corridor will extend from the Project collector substation to the existing Central Maine Power Company (CMP) substation located at Wyman Dam in Moscow, Maine. Approximately 3.5 miles of the generator lead will be a new overland corridor, and approximately 7 miles will be co-located with a CMP transmission line.

This report includes descriptions of the wetland resources within the Project area as identified above. These findings provide information normally required for the Land Use Regulation Commission (LURC) and U.S. Army Corps of Engineers (Corps) permitting processes.

2.0 SURVEY METHODS

2.1. WETLAND AND WATERBODY RESOURCE DELINEATION

Surveys for wetland and waterbody resources were conducted under seasonally-appropriate field conditions in the fall of 2008 and spring of 2009. In September and November 2009, an approximately 2.6-mile portion of the generator lead corridor was re-aligned and delineated to accommodate this change. This delineation also was conducted under seasonally-appropriate field conditions. Wetland boundaries under federal and state jurisdiction were determined using the technical criteria described in the Corps *Wetland Delineation Manual.*¹ Wetland boundaries were marked with pink, numbered flagging, and boundary flags were located using Trimble® Pro Series Global Positioning System (GPS) receivers. Stream locations also were recorded using the GPS receivers. Stream and *Wetland of Special Significance* determinations made during the wetland and waterbody resource delineations are based on the criteria in the LURC *Land Use Districts and Standards* (Chapter 10). Identification of these resources was limited to observable conditions within the Project area and available background information.

2.2. VERNAL POOL SURVEYS

Stantec conducted vernal pool surveys in May 2009, which included the entire project area with the exception of the realigned portion of the generator lead corridor. The purpose of these surveys was to evaluate potential vernal pools within the defined Project area. The results of these surveys were derived using standard field techniques and represent observations made during the 2009 amphibian breeding season. The presence, absence, and number of egg masses presented in this report reflect the results of these surveys. Vernal pools are dynamic habitats that vary in water level, vegetative cover, and other

¹ Environmental Laboratory. 1987. United States Army Corps of Engineers Wetland Delineation Manual, Technical Report Y-87-1, U.S. Army Corps of Engineers Waterways Experiment Station, Vicksburg, MS.

physical characteristics during the course of a year, as well as from year to year. In addition, the breeding activity of amphibians, particularly the initiation of breeding, is dependent upon seasonal environmental parameters such as temperature and precipitation. Due to this variability, the presence and number of egg masses may differ between breeding seasons and during the course of a given breeding season. Based upon Stantec's observations of the on-site vernal pools, these survey events were appropriately timed to capture peak amphibian breeding activity.

Vernal pool surveys involved searching for amphibian breeding activity, primarily the presence of egg masses, and use by other vernal pool-dependent species. Information also was collected on the physical characteristics of the pool such as the likely hydro-period (i.e., how long surface water will remain in the pool) and the type of the inlet and outlet. Information on the biological and physical characteristics of the pool then was used to determine if the vernal pool met the criteria of a Significant Vernal Pool as applied by the Maine Department of Inland and Fisheries and Wildlife (MDIFW) and defined in Chapter 335 of the Maine Natural Resources Protection Act. According to this rule, a vernal pool is a natural, temporary to semi-permanent body of water occurring in a shallow depression that typically fills during the spring or fall and may dry during the summer. Vernal pools have no permanently flowing inlet or outlet and no viable populations of predatory fish. A Significant Vernal Pool contains one or any combination of the following:

- 40 or more wood frog (Rana sylvatica) egg masses;
- 20 or more spotted salamander (Ambystoma maculatum) egg masses;
- 10 or more blue spotted salamander (Ambystoma laterale) egg masses;
- Presence of fairy shrimp (Eubranchipus spp.); and/or
- Documented use by a state-listed rare, threatened or endangered species that commonly require a vernal pool to complete a critical portion of their life-history such as Blanding's turtle (*Emydoidea blandingii*), spotted turtle (*Clemmys guttata*), ringed boghaunter dragonfly (*Williamsonia lintneri*), wood turtles (*Clemmys insculpta*), ribbon snakes (*Thamnophis sauritus*), swamp darner dragonflies (*Epiaeschna heros*), and comet darner dragonflies (*Anax longipes*).

In addition, the characteristics of the pools were compared to the regulatory definition of a vernal pool used by the Corps. In Maine, the Corps has the following working definition for vernal pools; however, this definition is not rigidly followed by the Corps or other reviewing federal agencies, including the U.S. Fish and Wildlife Service (USFWS) and the U.S. Environmental Protection Agency.

Temporary to permanent bodies of water occurring in shallow depressions that fill during the spring and fall and may dry during the summer. Vernal pools have no permanent or viable populations of predatory fish. Vernal pools provide the primary breeding habitat for wood frogs, spotted salamanders, blue-spotted salamanders, and fairy shrimp, and provide habitat for other wildlife including several endangered and threatened species.

Once a determination was made that a regulatory vernal pool was present, a GPS receiver was used to locate the boundary of the vernal pool envelope.

2.3. AGENCY CONTACTS

Stantec contacted the Maine Department of Environmental Protection (MDEP), Maine Natural Areas Program (MNAP), MDIFW, and USFWS for information regarding documented occurrences of rare, threatened, or endangered species and communities within or in the vicinity of the Project area. The Maine Historic Preservation Commission (MHPC) was also contacted for information regarding significant historic resources within or in the vicinity of the Project area.

3.0 SURVEY RESULTS

3.1. GENERAL SITE DESCRIPTION

The Project area includes the ridgelines of Stewart Mountain, Witham Mountain, Bald Mountain, Burnt Hill, an unnamed peak to the west of Burnt Hill and Briggs Hill, and portions of the surrounding side slopes and valleys, as well as an approximately 11-mile generator lead corridor extending east to Wyman Dam on the Kennebec River. Mountain elevations are generally less than 2,300 feet. The Project area is part of an actively managed industrial forest, and there is evidence of past and present timber harvesting activity on most of the ridgeline and side slopes. The landscape includes previously harvested stands that are in various stages of regeneration, as well as numerous gravel access roads and skidder trails. Communities within the Project area include forested uplands, forested wetlands, scrub-shrub wetlands, emergent wetlands, and streams. The upland forest community is dominated by Beech-Birch-Maple Forest and Spruce-Northern Hardwoods Forest.² Both forested communities occur in various stages of succession due to forestry management practices. The canopy of the Beech-Birch-Maple community is dominated by American beech (Fagus grandifolia), yellow birch (Betula alleghaniensis), and sugar maple (Acer saccharum). Additional tree species include paper birch (Betula papyrifera), eastern hophornbeam (Ostrya virginiana), red spruce (Picea rubens), balsam fir (Abies balsamea), and eastern hemlock (Tsuga canadensis). The shrub layer includes the above-mentioned tree species, as well as striped maple (Acer pensylvanicum), hobblebush (Viburnum lantanoides), and beaked hazelnut (Corylus cornuta). Dominant herbaceous species include bracken fern (Pteridium aquilinum), Canada dwarf-dogwood (Cornus canadensis), evergreen wood fern (Dryopteris intermedia), and shining clubmoss (Huperzia lucidula). The composition of the Spruce-Northern Hardwoods Forest is similar to the Beech-Birch-Maple community and is dominated by red spruce and balsam fir with hardwood species mixed throughout. The understory is more sparsely vegetated with the above-mentioned shrub and herbaceous species.

3.2. DELINEATION AND VERNAL POOL SURVEY RESULTS

The results of the wetland and waterbody delineation are presented in Appendices B and C. Appendix B includes wetland delineation maps that depict the location of each delineated wetland and stream identified within the Project area. Data for each of the wetland resources within the Project area are presented in a Resource Matrix Table and a Resource Summary Table (Appendix C, Table C-1 and C-2). The Resource Matrix Table is a brief summary of the general characteristics of each resource, and the Resource Summary Table provides a more in-depth description of each resource. Resource identification numbers are assigned to each resource and correspond with the same numbers that appear on the wetland delineation maps presented in Appendix B. A table detailing observed amphibian breeding activity in each vernal pool is presented in Appendix D. The following is a brief summary of the information presented in these tables.

- Stantec identified a total of 478 wetlands and 224 streams within the Project area. Ninety-eight wetlands are associated with a stream.
- Stantec identified 46 vernal pools within the ridgeline portion of the Project area and 12 vernal pools along the proposed generator lead corridor. Of these pools, 43 are man-made and occur within either a roadside ditch/excavation or a rut created by heavy equipment. The remaining 15 pools are naturally occurring and support breeding activity by wood frogs and/or spotted salamanders. Three pools met the criteria to be considered Significant Vernal Pools based upon the level of amphibian breeding activity. Thirty-eight additional potential vernal pools were surveyed, but no breeding activity or vernal pool-associated species were observed at these locations.

² Gawler, S.C. and A.R. Cutko, 2004. Natural Landscapes of Maine: A Classification of Vegetated Natural Communities and Ecosystems, Maine Natural Areas Program, Maine Department Of Conservation, Augusta, Maine.

• During the September and November 2009 delineation of the re-aligned generator lead corridor, Stantec identified 13 potential vernal pools. Of these potential vernal pools, ten were determined to be man-made and three to be naturally occurring. The three naturally occurring potential vernal pools will be treated as Significant Vernal Pools until seasonally appropriate surveys can be conducted to determine their actual status.

Additional information related to wetlands, streams, and vernal pools is provided in Appendix E (Corps wetland delineation data forms), Appendix F (Significant Vernal Pool data forms), and Appendix G (representative site photographs).

4.0 **REGULATORY INFORMATION**

4.1. AGENCY CORRESPONDENCE

Full identification of *Wetlands of Special Significance* involves contacting natural resource agencies such as the MNAP, MDIFW, MDEP, USFWS, and MHPC to determine if there are any documented occurrences of rare, threatened, or endangered species and communities, or historic features within or in the vicinity of the Project area. Following is a brief discussion of their responses. Full responses are presented in Appendix H.

- MNAP indicated that there are no rare or exemplary botanical features documented within the Project area, but this may reflect minimal survey efforts on the part of MNAP and other contributors to MNAP's Biological and Conservation Data System. They did identify the ridge top and upper slopes of Witham Mountain as having the potential to support exemplary natural habitat. As defined by the MNAP, an exemplary natural community/habitat can either be a natural community that is considered rare and has been assigned a State rarity rank of S1 or S2³ or a commonly occurring natural community with high ecological integrity. The lower slopes of Briggs Hill also were identified as potentially supporting exemplary natural habitat. Finally, MNAP identified four state-listed rare plants that have been documented within a four-mile radius of the Project area.
- The USFWS responded that although Highland Plantation is not within the proposed critical habitat for the federally-threatened Canada lynx (*Lynx canadensis*), the Project area does occur within the range of this species. Their correspondence also noted the possibility of transient bald eagles (*Haliaeetus leucocephalus*) and golden eagles (*Aquila chrysaetos*) in the area. These two species are protected under the federal Bald and Golden Eagle Protection Act and the Migratory Bird Treaty Act. Peregrine falcons (*Falco peregrinus*) have been documented nesting on Henhawk Ridge, approximately eight miles northeast of the Project area. This species is federally protected under the Migratory Bird Treaty Act, and its breeding population is state-listed as Endangered. Finally, the northern spring salamander (*Gyrinophilus porphyriticus*), a state-listed species of Special Concern, was noted as potentially occurring within the Project area⁴.
- The MDIFW responded that there are several high or moderate value Inland Waterfowl and Wading Bird Habitats in proximity to the Project area; however, only the habitat associated with Stony Brook appears to be located within the Project area.
- MDEP identified no Significant Wildlife Habitat in their review of the Project area but had no information about vernal pools. They recommend that qualified professionals survey the area for vernal pools during the appropriate identification period.

The MHPC indicated that no surveys have been conducted in the Project area, and therefore they have no records of known archaeological sites or historic architectural resources. They recommend that archaeological surveys be conducted at stream crossings and at crossings of surficial deposits

 $^{^{3}}$ S1 = Critically imperiled in Maine because of extreme rarity (five or fewer occurrence or very few remaining individuals or acres) or because some aspect of its biology makes it especially vulnerable to extirpation from the State; S2 = Imperiled in Maine because of rarity (6-20 occurrences or few remaining individuals or acres) or because of other factors making it vulnerable to further decline.

⁴ The USFWS provided rare species information for several miles beyond the Project area. As a result, their response includes references to species not addressed by MDIFW who confined their response primarily to the Project area.

associated with glacial outwash/eskers. Archaeological surveys also were recommended at bedrock exposures that might have been potential raw material sources for Native Americans. In addition to archaeological surveys, MHPC recommended surveys be conducted to identify historic architectural resources within the Project area.

4.2. STATE AND FEDERAL WETLAND REGULATIONS

LURC and the Corps regulate the wetlands identified within the Project area. Under the provisions of Section 404 of the Clean Water Act, the Corps regulates activities within waters of the United States, which include navigable waters and all their tributaries, adjacent wetlands, and other waters or wetlands where degradation or destruction could affect interstate or foreign commerce. The Corps has issued a Programmatic General Permit (PGP) for the State of Maine that merges the federal and state permit review process for many projects. In Maine, wetlands and waterbodies, as well as other protected natural resources, in unorganized plantations and townships are regulated under LURC's Land Use Districts and Standards (Chapter 10). The following provides information regarding LURC's zoning subdistricts. The purpose of this system of subdistricts is to protect valuable resources such as waterbodies, wetlands, wildlife habitat and mountain areas above 2,700 feet, and to prevent conflicts between incompatible land uses.

Development and Management Subdistricts

LURC's jurisdiction includes 10 development subdistricts and 3 management subdistricts. This Project area includes the General Management Subdistrict (M-GN). The M-GN subdistrict includes those areas that LURC determined were appropriate for forestry or agricultural management activities, but that did not need the level of protection afforded by the Highly Productive Management Subdistrict (M-HP) or the Natural Character Management Subdistrict (M-NC). The M-GN subdistrict also includes those areas that do not fit within any other subdistrict.

Protection Subdistricts

Within LURC jurisdiction, the level of regulatory review for wetland alterations depends upon the size of the proposed impact and the **Wetland Protection Subdistrict (P-WL)** involved. Generally, projects that alter less than 4,300 square feet of P-WL2 or P-WL3 wetlands are exempt from the Tier permitting process. For all other projects, three categories of review exist: Tier 1, 2 and 3.

- Tier 1 reviews are limited to projects that alter between 4,300 square feet and 14,999 square feet of P-WL2 or P-WL3 wetlands.
- Tier 2 reviews are limited to projects that alter between 15,000 square feet and 43,560 square feet (1 acre) P-WL2 or P-WL3 wetlands provided the wetlands do not contain critically imperiled (S1) or imperiled (S2) natural communities.
- Tier 3 reviews are for projects that alter any area of a P-WL1 wetland; between 15,000 square and 43,559 square feet of P-WL2 or P-WL3 wetlands that contain critically imperiled (S1) or imperiled (S2) natural communities; or 43,560 square feet (1 acre) or more of a P-WL2 or P-WL3 wetlands.

Alterations of P-WL1 wetlands may be eligible for Tier 1 or 2 review if LURC determines that the activity will have no undue adverse impact on the freshwater wetlands or other protected natural resources present. The applicant must specifically request that LURC review the project's eligibility in order to reduce the level of regulatory review.

Based upon the available LURC *Land Use Guidance Map for Highland Plantation,* the *Land Use Guidance Map for Pleasant Ridge Plantation,* and fieldwork conducted by Stantec, the Project area includes P-WL1, P-WL2 and P-WL3 wetlands. Stantec identified 110 *Wetlands of Special Significance* within the Project area. Of these *Wetlands of Special Significance,* 56 wetlands occur solely within the P-WL1 subdistrict and 54 wetlands include the P-WL1 subdistrict in conjunction with one or both of the other wetland subdistricts. In addition, the 224 identified streams would be considered *Wetlands of Special Significance* and occur within the P-WL1 subdistrict. The remaining 368 wetlands identified within the Project area occur within either the P-WL2 or P-WL3 subdistrict or within some combination of these two subdistricts.

LURC jurisdiction also includes 13 other protection subdistricts. The other applicable subdistricts for this Project are the Shoreland Protection Subdistrict and the Flood Prone Area Subdistrict.

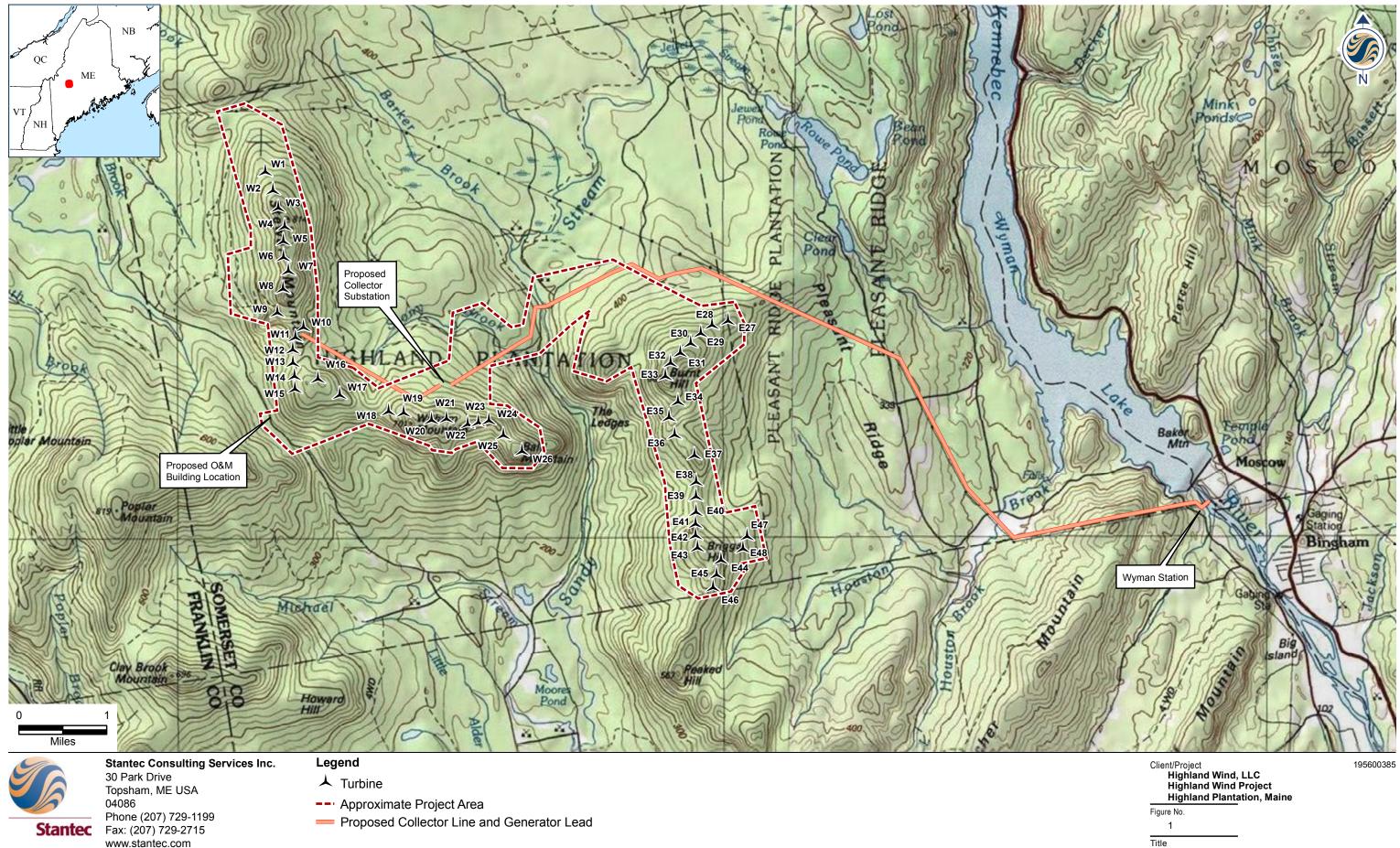
The **Shoreland Protection Subdistricts (P-SL)** are intended to protect water quality, habitat for plants, fish and wildlife, and scenic and recreational opportunities. There are two defined shoreland protection subdistricts, P-SL1 and P-SL2; both of which occur within this Project area.

- The P-SL1 is defined as those areas within 250 feet of the normal high water mark, measured as a horizontal distance landward of such high water mark, of (a) tidal waters, and (b) flowing waters downstream from the point where such waters drain 50 square miles or more.
- The P-SL2 is defined as those areas within 75 feet measured as a horizontal distance landward of the normal high water mark of stream channels upstream from the point where such channels drain 50 square miles, the upland edge of those coastal and inland wetlands as defined in LURC Chapter 10, and the normal high water mark of bodies of standing water less than 10 acres in size, excluding bodies of standing water that are less than 3 acres in size and that are not fed or drained by a flowing water.

Depending upon the type of activities, projects located within a P-SL subdistrict may require a permit from LURC. Those uses that require a permit are described in Section 10.23, L of LURC's *Land Use Districts and Standards*. Wind energy development within designated expedited wind energy development areas is an allowed use that requires a permit from LURC.

Within the Project area, only the Kennebec River has an associated 250-foot P-SL1. The wetlands identified within the Project area would have an associated 75-foot P-SL2, and 14 of the larger watercourses would have an associated 75-foot P-SL2. These larger watercourses include Little Michael River, Stony Brook, Sandy Stream, Churchill Brook, and Houston Brook.

The **Flood Prone Area Protection Subdistrict (P-FP)** is intended to reduce the damage and cost of flooding within flood prone areas and to comply with the National Flood Insurance Program. Those areas identified and mapped by the Federal Emergency Management Agency as areas of special flood hazard (Zones A, AE, A1-30, VE) are those that fall within the P-FP subdistrict. Depending upon the type of activities, projects located within the P-FP subdistrict may require a permit from LURC. Those uses that require a permit are described in Section 10.23, C of LURC's *Land Use Districts and Standards*. Road construction is one allowed use that requires a permit from LURC.


Within the Project area, the P-FP subdistrict is limited to the floodplains along Sandy Stream and Houston Brook. This encompasses 18 delineated wetlands within the generator lead corridor.

Regulatory Summary

The Project area includes one management subdistrict, M-GN, and three protection subdistricts, P-WL, P-SL and P-FP. The M-GN subdistrict encompasses the entire Project area exclusive of those areas within one of the three protection subdistricts. Each of the identified stream and wetland resources occurs within the Wetland Protection Subdistrict, P-WL. In addition, the identified wetlands and 14 of the larger watercourses have an associated 75-foot Shoreland Protection Subdistrict, P-SL2. The Kennebec River is the only resource within the Project area that has an associated P-SL1. Eighteen of the delineated wetlands located near Sandy Stream and Houston Brook occur within the mapped Flood Prone Area Protection Subdistrict, P-FP.

Any proposed development is subject to the provisions and regulatory requirements of these respective subdistricts as outlined in the *Land Use Districts and Standards* (Chapter 10). If the proposed project is a "prohibited use" for the given subdistrict(s), an applicant can petition LURC for a change in subdistrict boundaries or zoning classification to allow for new uses. Such a zoning change can only be approved if it is (1) consistent with LURC's Comprehensive Land Use Plan, (2) satisfies a demonstrated need in the community or area, and (3) would have no undue adverse impacts on resources or uses [12 M.R.S.A. §685-A(8-A)].

Appendix A Site Location Map

00385-F001-11x17-USGS-Locus-Turbines.mxd

Project Location Map October 27, 2009

Appendix B Resource Maps

Appendix C Wetland and Waterbody Resource Descriptions

	Resource	١	Netland	d Type ¹	,2	. 2	Vernal	Wetland	
Map #	Identification Number	PFO	PSS	PEM	PUB	Stream ³	Pool	Protection Subdistrict ^{4, 5}	Notes ⁶
1	W001			D				P-WL2a	
1	W001			D		1		P-WL2a	
						1			
1	W003			D				P-WL2a	
1	W004			D				P-WL2a	
1	W005			D				P-WL2a	
2	W006	D						P-WL3	
2	W007	D						P-WL3	
2	W008	D						P-WL3	
2	W009		D					P-WL2a	
2	W010	D						P-WL3	
2	W011		D	х			1 VP	P-WL2a	naturally occurring VF
2	W012		D	Х				P-WL2a	
2	14/04.0					1		P-WL1c6,	
2	W013		D			I		P-WL2a	
2	W014	D						P-WL3	
2	W015		D					P-WL2a	
2	W016	D						P-WL3	
2	W017	D						P-WL3	
2	W018		D					P-WL2a	
2	W019		U	D				P-WL2a	
2	W019			D				P-WL2a	
2	W020		D	U				P-WL2a	
2	W021 W022		U	D				P-WL2a P-WL2a	
				D					
2	W023			D				P-WL2a	
2	W024			D				P-WL1c6	
2	W025			D		I		P-WL1c6, P-WL2a	
2	W026			D				P-WL2a	
0	14/007	V						P-WL2a,	
2	W027	Х		D				P-WL3	
2	W028			D				P-WL2a	
		~	-					P-WL2a,	
2	W029	Х	D					P-WL3	
2	W030		D					P-WL2a	
2	W031		-	D				P-WL2a	1
2	W032			D		I		P-WL1c6	
2	W033		D	D				P-WL1c6	
2	W034			D				P-WL1c6	
2	W034 W035			D				P-WL2a	
2	W035 W036			D				P-WL2a P-WL2a	
2				D				P-WL2a P-WL2a	
2	W037			U				P-VVL2a	more mede
2	W038			D			1 VP	P-WL2a	man-made VP
2	W039	D						P-WL3	
2	W040	D						P-WL3	
2	W041			D				P-WL2a	
2	W042			D		Р		P-WL1c6,	
				U		F		P-WL2a	
2	W043			D				P-WL2a	
2	W044			D				P-WL2a	
2 and 3	W045	D				I		P-WL1c6	
2 and 3	W046	-		D		P		P-WL1c6	1

 Table C-1. Resource Matrix

	Resource	1	Vetland	d Type ¹	,2		Vernal	Wetland	
Map #	Identification Number	PFO	PSS	PEM	PUB	Stream ³	Pool	Protection Subdistrict ^{4, 5}	Notes ⁶
2	W047			D				P-WL2a	
2	W048			D				P-WL2a	
2	W049		D					P-WL2a	
2	W050			D		I		P-WL1c6	
2	W320	D						P-WL3	
3	W051			D		Р		P-WL1c6	
3	W052			D		Р		P-WL1c6	
3	W053			D		Р		P-WL1c6	
3	W054			D		Р		P-WL1c6, P-WL2a	
3	W055			D				P-WL2a	
3	W056			D		I		P-WL1c6	
3	W057			D			1 VP	P-WL2a	man-made VP
3	W058	D						P-WL3	
3	W059			D		I		P-WL1c6	
3 and 4	W060	D						P-WL3	
3 and 4	W061			D				P-WL2a	
3 and 4	W062			D				P-WL2a	
3 and 19	W328			D				P-WL2a	
3	W487			D		Р		P-WL1c6,	
						•		P-WL2a	
4	W063			D				P-WL2a	
4	W064	D	_	_				P-WL3	
4	W065		D	D				P-WL2a	
4	W066	D	Х					P-WL3, P-WL2a	
4	W067	D	D	D			6 VPs	P-WL2a, P-WL3	3 naturally occurring VPs and 3 man- made VPs
4	W068			D				P-WL2a	
4	W069		Х	D			1 VP	P-WL2a	man-made VP
4	W070		D					P-WL2a	
4	W071			D				P-WL2a	
4	W072	D	D				5 VPs	P-WL3, P-WL2a	3 naturally occurring VPs and 2 man- made VPs
4	W073	D		Х			3 VPs	P-WL2a, P-WL3	man-made VPs
4	W074			D			1 VP	P-WL2a	man-made VP
4	W075			D		Р		P-WL1c6	
4	W076	D				I		P-WL1c6, P-WL3	
4	W077	D						P-WL3	
4 and 6	W327	D						P-WL3	
4 and 19	W339	D						P-WL3	
5	W079			D			1 VP	P-WL2a	man-made VP
5	W080		Х	D			1 VP	P-WL2a	man-made VP
5	W081			D				P-WL2a	

	Resource		Netland	d Type ¹	,2			Wetland	
Map #	Identification Number	PFO	PSS	PEM	PUB	Stream ³	Vernal Pool	Protection Subdistrict ^{4, 5}	Notes ⁶
F	W082		D	D				P-WL2a	
5 5	W082		D D	U				P-WL2a P-WL2a	
5	W083		U	D				P-WL2a P-WL2a	
5	W084 W085		_	D				P-WL2a P-WL1c6	
		_	D			I		P-WL1C6 P-WL3	
5	W086	D							
5	W087	D						P-WL3	
5	W321			D			1 VP	P-WL2a	man-made VP
5	W322			D				P-WL2a	
5	W323			D				P-WL2a	
5	W324	D						P-WL3	
5	W325	D				Р		P-WL1c6, P-WL3	
5	W326	D				21		P-WL1c6, P-WL3	
4 and 6	W088		D					P-WL2a	
4 and 6	W089	D	-					P-WL3	
4 and 6	W090		D					P-WL2a	
6	W091		D					P-WL2a	
6	W092		-	D		Р		P-WL1c6	
6	W093	D				•		P-WL3	
6	W094	D						P-WL3	
6	W095		D					P-WL2a	
6	W096	D						P-WL3	
6	W097		D					P-WL2a	
6	W098		D	D				P-WL2a	
6	W099			D				P-WL2a	
6	W100		D	D				P-WL2a	
6	W100			D			1 VP	P-WL2a	naturally
-				-					occurring VP
6	W102		D	_				P-WL2a	
6	W103		-	D				P-WL2a	
6	W104		D			1		P-WL1c6	
6	W105		D					P-WL1c6	
6	W106		D			I		P-WL1c6	
6	W107		D					P-WL2a	
6	W108		D					P-WL2a	
6	W109			D				P-WL2a	
6	W110			D				P-WL2a	
6	W111		D			I		P-WL1c6	
6	W112		D			I		P-WL1c6, P-WL2a	
6	W113		D					P-WL2a	
6	W114			D				P-WL2a	
6	W115	D						P-WL3	
6	W116	D						P-WL3	
6	W117	D						P-WL3	
6	W118	1		D		I		P-WL1c6	
6 and 7	W119			D				P-WL2a	
6 and 7	W120		D	-				P-WL2a	
6 and 19	W343	D	-					P-WL3	
6 and 19	W344	D						P-WL3	
6 and 19	W345			D				P-WL2a	
6 and 19	W346	1	D					P-WL2a	
6	W340	-	D					P-WL2a	
U	14041	1	ט			I		i -vvLZa	

	Resource	1	Netland	d Type ¹	,2		Vernal	Wetland	
Map #	Identification Number	PFO	PSS	PEM	PUB	Stream ³	Pool	Protection Subdistrict ^{4, 5}	Notes ⁶
6	W348		D					P-WL2a	
6	W349		-	D				P-WL2a	
6	W350	D						P-WL3	
6	W351			D				P-WL2a	
7	W121	D		-				P-WL3	
7	W122	D						P-WL3	
7	W123	D						P-WL3	
7	W124	D						P-WL3	
7	W125	D						P-WL3	
7	W126		D					P-WL2a	
7	W127	D						P-WL3	
			_					P-WL1c6,	
7	W128		D			I		P-WL2a	
7	W129		D			I		P-WL1c6,	
7	14/4/2/0		_					P-WL2a	
7	W130	_	D					P-WL2a	
-	W131	D						P-WL3	
7	W132	D						P-WL3	
7	W133	V	D			Р		P-WL1c6,	
/	VV 133	Х	U			Р		P-WL2a, P-WL3	
								P-WL3 P-WL1c6,	
7	W134	D	D			Р	2 VPs	P-WL106, P-WL3,	naturally
/	VV134	U	U			Г	2 15	P-WL3, P-WL2a	occurring VPs
7	W135		D	Х				P-WL2a	_
7	W135 W136		D	~				P-WL2a	
8	W130	D	D					P-WL3	
8	W137	D						P-WL3	
8	W138 W139	D	D					P-WL2a	
8	W139 W140	D	D					P-WL3	
8	W140	D		D				P-WL2a	
8	W142		D	D				P-WL2a	
8	W142		D			1		P-WL2a	
0	VV1 4 5		D			•		P-WL1c6,	
9	W144	D		D		Р		P-WL2a,	
5	***			D		•		P-WL3	
9	W145			D				P-WL2a	
9	W146			D				P-WL2a	
10	W147	D						P-WL3	
								P-WL1c6,	
10	W148	D				Р		P-WL3	
		_						P-WL1c6,	
10	W149	D				I		P-WL3	
								P-WL1c6,	
10	W150	D		D		I		P-WL2a,	
								P-WL3	
40		_						P-WL1c6,	
10	W151	D				I		P-WL3	
10	W152			D		Р		P-WL1c6	
10	W153	D						P-WL3	
								P-WL-1c6,	
10	W154	D		D		Р		P-WL2a,	
								P-WL3	
10	W155		D			Р		P-WL1c6,	Stony Brook
117	VV 100	1			1	r	1	P-WL2a	Storry Brook

Map # Identification Number PFO PSS PEM PUB Stream3 OP oot Pool Protections Pool Protections Pool Protections Pool Protections Pool Notes* 10 W169 D D D P P P-WL2a P 10 W160 D D P P-WL2a P P-WL2a 10 W161 D D P P-WL166 man-made 10 W163 D C P P-WL3 P 10 W163 D D P P-WL3 P 11 W163 D D C P-WL3 P 11 W165 D D C P-WL2a P P 11 W168 D D C P P P P P P P P P P P P P P P P P P		Resource		Vetland	d Type ¹	,2		Vernel	Wetland	
10 W158 D P $P-WL26$ $P-WL26$ 10 W159 D C P $P-WL26$ $P-WL26$ 10 W162 D C P $P-WL26$ $mar-made$ 11 W162 D C P-WL28 $mar-made$ VP 10 and 11 W357 D C P $P-WL26$ $mar-made$ 11 W166 D C P $P-WL26$ $mar-made$ 11 W168 D C I P-WL28 $mar-made$ 11 W169 D C I I P-WL28 $mar-made$ 11 W169 D D I I P	Map #						Stream ³	Vernal Pool	Protection Subdistrict ^{4, 5}	Notes ⁶
10 W159 D D P P P-WL2a P-WL2a P-WL2a 10 W160 D D P P-WL3 P-WL3 10 W162 D C P P-WL3 P-WL3 10 W162 D C P P-WL66 P-WL66 10 W163 D D P-WL3 P-WL3 10 W352 D D P-WL3 P-WL3 10 W352 D D P-WL3 P-WL3 11 W164 D D P-WL3 P-WL3 111 W164 D D P-WL3 P-WL3 111 W166 D I P-WL3 P-WL3 111 W168 D I I P-WL3 P-WL3 111 W169 P D I I P-WL3 P-WL3 111 W169 P P D I I P-WL165 P-P-P 111 W170 P P D <td>10</td> <td>W158</td> <td></td> <td>D</td> <td>D</td> <td></td> <td>Р</td> <td></td> <td></td> <td></td>	10	W158		D	D		Р			
10 W 169 D P P-WL2a P-WL2a 10 W161 D - P P-WL3 - 10 W162 D - P P-WL3 - 10 W162 D - P P-WL3 - 10 W163 D X X I 1 VP P-WL3 10 and 11 W357 D D - P P-WL2a - 11 W165 D D I P-WL2a - - 11 W166 D I P-WL2a - - P-WL2a 11 W167 D I P-WL2a - P-WL2a - 11 W168 D I I P-WL2a - - P-WL3 - 11 W169 D I I I P-WL3 - - P-P subdistrict along Sandy Sream -										
10 W160 D P P-WL2a P-WL3a 10 W162 D P P P-WL166 man-made 10 W163 L X X I 1 VP P-WL2a VP 10 W352 D - - P-WL2a VP 10 and 11 W357 D - - P-WL2a - 11 W164 D - P-WL2a - - P-WL2a - 11 W166 D - - P-WL2a - - 11 W167 D - - P-WL2a - - 11 W167 D - - P-WL2a - - F9 subdistrict along Sandy Stream 11 W168 D - - - - - - - - - - - - - - - - -	10	W159		D			Р			
10 W161 D P P-WL13 10 W162 D P P-WL166 man-made 10 W163 L X X I 1 VP P-WL166 P-WL3 10 W352 D - - P-WL3 VP 10 and 11 W366 D D - P-WL2a - 11 W166 D I P-WL2a - - 11 W166 D I P-WL2a - - 11 W167 D I P-WL2a - - 11 W167 D I P-WL2a - - - 11 W168 D I I P-WL2a - - P-WL3 - 11 W169 D I I I P-P - - - P-P - - - P-P - Nobistrict alo	10	W160		D						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	10		D							
10 W103 h <td>10</td> <td>W162</td> <td>D</td> <td></td> <td></td> <td></td> <td>Р</td> <td></td> <td></td> <td></td>	10	W162	D				Р			
10 W352 D Image: constraint of the second seco	10	W/163			x	x	1	1 VP	P-WL1c6,	
10 and 11 W357 D P P-WL2a 11 W164 D I P-WL2a 11 W165 D I P-WL2a 11 W166 D I P-WL2a 11 W167 D I P-WL2a 11 W168 D I P-WL163 P-WL163 Imaturally cocurring VP. mapped P-FP subdistrict along Sandy Stream naturally cocurring VP. 11 W170 D D I VP P-WL163 P-FP 11 W172 D D P P-WL163 P-FP subdistrict along Sandy Stream 11 W172 D D P P-WL163 P-FP subdistrict along Sandy Stream 11 W172 D D P P-WL163 P-FP subdistrict along Sandy Stream Stream Mapped P-FP P-FP			_		~	~	•	1 11		VP
11 W164 D P-WL2a 11 W166 D I P-WL2a 11 W166 D I P-WL2a 11 W166 D P-WL2a P-WL2a 11 W168 D I P-WL2a 11 W169 D I P-WL2a 11 W169 D I ISVP P-WL2a 11 W170 D D ISVP P-WL1c3 P-FP 11 W170 D D IVP P-WL1c3 Trapped P-FP 11 W172 D D P P-FP Subdistrict along Sandy Stream 11 W173 D P P P-WL1c6, P-WL1c3, P-FP subdistrict along Sandy Stream 111 W174 D P<			D		_					
11 W165 D I P-WL166 mapped P- 11 W167 D I P-WL2a mapped P- 11 W168 D I P-WL2a mapped P- 11 W168 D I P-WL2a mapped P- 11 W168 D I P-WL163, P-WL2a P-WL163, P-WL2a 11 W169 D I ISVP P-WL163, P-FP subdistrict along Sandy Stream 11 W169 D D I IVP P-WL163 mapped P- 11 W170 D D I IVP P-WL163 mapped P- 11 W172 D D P P-WL164 P-FP subdistrict along Sandy Stream 11 W173 D D P P-WL164 P-PFP subdistrict along Sandy Stream 111 W173 D P P P-WL164, P-WL163, P-WL163, P-WL163, P-WL164 P-WL164 111 W174 D P P										
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							-			
11 W167 D N P-WL2a mapped P- P-WL1c3, P-WL1c3, P-WL2a mapped P- P subdistrict along Sandy Stream 11 W168 D I I P-WL1c3, P-WL2a mapped P- P-WL2a 11 W169 D I ISVP P-WL1c3, P-WL1c3 naturally occurring VP. mapped P-FP 11 W170 D D IVP P-WL1c3 man-made VP. mapped P-FP 11 W170 D D P P-WL1c3 mapped P- FP subdistrict along Sandy Stream 11 W172 D D P P-WL1c3 mapped P- FP subdistrict along Sandy Stream 11 W172 D D P P-WL1c3, P-WL1c3 mapped P- FP subdistrict along Sandy Stream 11 W173 D P P P-WL1c6, P-WL1c3, P-WL2a mapped P- FP subdistrict along Sandy Stream 11 W174 D P P P-WL1c6, P-WL2a mapped P- FP subdistrict along Sandy Stream 11 W175 D P P-WL36 P 11					D		I			
11 W168 D I P-WL1c6, P-WL1c3, P-WL2a mapped P- FP subdistrict along Sandy Stream 11 W169 D 1 SVP P-WL1c3, P-WL2a naturally occurring VP. mapped 11 W169 D 1 SVP P-WL1c3, P-WL2a naturally occurring VP. mapped 11 W170 D D 1 VP P-WL1c3, P-WL1c3 VP. mapped 11 W170 D D 1 VP P-WL1c3, P-WL1c3 VP. mapped P- FP subdistrict along Sandy Stream 11 W172 D P P P-WL1c6, P-WL1c3, P-WL1c3, P-WL1c3 Mapped P- FP subdistrict along Sandy Stream 11 W173 D 1 P P P-WL1c6, P-WL1c3, P-WL2a Mapped P- FP subdistrict along Sandy Stream 11 W174 D P P P-WL1c6, P-WL2a P 11 W175 D P P-WL2a P P 11 W178 D P P-WL2a P P 11 W353 D P P-WL2a										
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	11	VV 107								manned P_
11W169DIISVPP-WL1c3occurring VP. mapped P-FPsubdistrict along Sandy Stream11W170IDIVPP-WL1c3man-made VP. mapped P-FPVP. subdistrict along Sandy Stream11W172DDPP-WL1c3man-made VP. mapped P- FP subdistrict along Sandy Stream11W172DDPP-WL1c6, P-WL1c3mapped P- FP subdistrict along Sandy Stream11W173DDPP-WL1c6, P-WL1c3mapped P- FP subdistrict along Sandy Stream11W173DPPP-WL1c6, P-WL1c3mapped P- FP subdistrict along Sandy Stream11W174DPPP-WL1c6, P-WL1c6mapped P- FP subdistrict along Sandy Stream11W174DPPP-WL2amapped P- FP subdistrict along Sandy Stream11W174DPPP-WL2amapped P- FP subdistrict along Sandy Stream11W175DPP-WL3P11W176DPP-WL3P11W178DPP-WL3P11W353DPPP-WL311W356DPP-WL2aP11W358DPP-WL2aP11W359DPP-WL2a	11	W168		D			I		P-WL1c3,	FP subdistrict along Sandy
11W170DD1 VPP-WL1c3VP. mapped P-FP subdistrict along Sandy Stream11W172DDPP-WL1c3mapped P- FP subdistrict along Sandy Stream11W172DDPP-WL1c6, 21P-WL1c6, P-WL1c3, P-WL2aMapped P- FP subdistrict along Sandy Stream11W173DDPPP-WL1c6, P-WL2aP-WL1c6, P-WL2a, P-WL2aP-WL2a, P-WL2a11W175DPPP-WL1c6, P-WL2aP-WL2a11W176DIP-WL2aP-WL311W176DIP-WL3P-WL311W176DIP-WL3I11W176DIP-WL3I11W353DIP-WL3I11W356DIP-WL3I11W356DIP-WL3I11W358DIP-WL2aI11W358DPP-WL2aI11W359DPP-WL2aI	11	W169		D				1 SVP	P-WL1c3	occurring VP. mapped P–FP subdistrict along Sandy
11W172DPP-WL1c6, P-WL1c3FP subdistrict along Sandy Stream11W173D1 P 2 IP-WL1c3, P-WL1c3, P-WL2aP-WL1c6, FP subdistrict along Sandy Stream11W174DFPP-WL1c6, P-WL1c3, P-WL3P-WL1c6, P-WL1c3, P-WL3Mapped P- FP subdistrict along Sandy Stream11W174DFPPP-WL1c6, P-WL1c3, P-WL3Mapped P- FP subdistrict along Sandy Stream11W176DIP-WL3Mapped P- FP subdistrict along Sandy Stream11W175DIP-WL311W176DIP-WL2a11W178DIP-WL2a11W353DIP-WL311W356DIP-WL311W356DIP-WL2a11W358DPP-WL2a11W358DPP-WL2a11W359DPP-WL2a	11	W170			D			1 VP	P-WL1c3	VP. mapped P–FP subdistrict along Sandy
11W173DD1 P 2 IP-WL1c6, P-WL2amapped P- FP subdistrict along Sandy Stream11W174D-PPP-WL2amapped P- FP subdistrict along Sandy Stream11W174D-PPP-WL3, P-WL3P-WL3, 	11	W172			D		Р			FP subdistrict along Sandy
11 W174 D Image: Product of the system Product of the system FP subdistrict along Sandy Stream 11 W175 D Image: Product of the system P-WL3 Product of the system 11 W176 D Image: Product of the system P-WL3 Product of the system 11 W176 D Image: Product of the system Product of the system Product of the system 11 W177 Image: Product of the system Image: Product of the system Product of the system 11 W178 Image: Product of the system Image: Product of the system Product of the system 11 W178 Image: Product of the system Image: Product of the system Product of the system 11 W178 Image: Product of the system Image: Product of the system Product of the system 11 W353 Image: Product of the system Image: Product of the system Product of the system 11 W356 Image: Product of the system Image: Product of the system Product of the system 11 W358 Image: Product of the system Image: Product of the system Product of the system	11	W173		D					P-WL1c3,	mapped P– FP subdistrict along Sandy Stream
11 W176 D I P-WL1c6 11 W177 D D P-WL2a 11 W178 D D P-WL2a 11 W353 D D P-WL3 11 W354 D P-WL3 P-WL3 11 W355 D P-WL3 P-WL3 11 W356 D P-WL3 P-WL3 11 W356 D P-WL2a P-WL2a 11 W358 D D P-WL2a 11 W358 D D P-WL2a 11 W359 D P P-WL2a							Р		P-WL1c3, P-WL3	FP subdistrict along Sandy
11 W177 D D P-WL2a 11 W178 D D P-WL2a 11 W353 D P-WL3 P-WL3 11 W354 D P-WL3 P-WL3 11 W355 D P-WL3 P-WL3 11 W356 D P-WL3 P-WL3 11 W356 D P-WL3 P-WL2a 11 W358 D D P-WL2a 11 W358 D D P-WL2a 11 W359 D D P-WL2a			D	_						
11 W178 D P-WL2a 11 W353 D P-WL3 11 W354 D P-WL3 11 W355 D P-WL3 11 W356 D P-WL3 11 W358 D P-WL2a 11 W358 D P-WL2a 11 W358 D P-WL2a 11 W359 D I							I			
11 W353 D P-WL3 11 W354 D P-WL3 11 W355 D P-WL3 11 W356 D P-WL3 11 W356 D P-WL2a 11 W358 D I P-WL2a 11 W359 D I P-WL2a				D						
11 W354 D P-WL3 11 W355 D P-WL3 11 W356 D P-WL3 11 W356 D P-WL2a 11 W358 D I P-WL2a 11 W359 D I P-WL2a					ט					
11 W355 D P-WL3 11 W356 D P-WL2a 11 W358 D I P-WL2a 11 W359 D I P-WL2a 11 W359 D I P-WL2a										
11 W356 D P-WL2a 11 W358 D I P-WL1c6 P-WL2a 11 W359 D P-WL2a										
11 W358 D I P-WL1c6 P-WL2a 11 W359 D P-WL2a										
11 W358 D I P-WL2a 11 W359 D P-WL2a										
11 W359 D D P-WL2a	11	W358			D		I			
	11	W359			D					
	11	W360							P-WL2a	

13

W217

	Resource	1	Netlan	d Type ¹	,2		Vernal	Wetland	
Map #	Identification	PFO	PSS	PEM	PUB S	Stream ³	Pool	Protection	Notes ⁶
	Number		100		1.05		1 001	Subdistrict ^{4, 5}	
11	W361			D				P-WL2a	
11	W362		D					P-WL2a	
11 and 20	W363	D						P-WL3	
11 and 20	W364			D				P-WL2a	
11 and 20	W365			D				P-WL2a	
12 and 20	W179			D			1 VP	P-WL2a	man-made VP
12 and 20	W180			D				P-WL2a	
12 and 20	W181			D				P-WL2a	
12 and 20	W182			D		I		P-WL1c6, P-WL2a	
12 and 20	W183			D		I		P-WL1c6, P-WL2a	
12	W184			D				P-WL2a	
12	W185			D				P-WL2a	
12	W186			D				P-WL2a	
12	W187			D				P-WL2a	
12	W188			D				P-WL2a	
12 and 13	W190			D				P-WL2a	
12 and 13	W191			D				P-WL2a	
12 and 13	W192			D		I		P-WL1c6, P-WL2a	
12	W193			D				P-WL2a	
12 and 20	W100	D						P-WL3	
12 and 20	W373			D				P-WL2a	
12and 20	W374			D				P-WL2a	
12 and 21	W384			D			1 VP	P-WL2a	man-made VP
12 and 21	W385		D					P-WL2a	VI
12 and 21	W386		D					P-WL2a	
13	W194		-	D				P-WL2a	
13	W195			D				P-WL2a	
13	W196			D				P-WL2a	
13	W197		D					P-WL2a	
13	W198		D					P-WL2a	
13	W199		D					P-WL2a	
13	W200		_	D				P-WL2a	
13	W201		D	_				P-WL2a	
13	W202		_	D				P-WL2a	
13	W203		1	D				P-WL2a	
13	W204	D	1	1				P-WL3	
13	W205		1	D				P-WL2a	
13	W206			D		I		P-WL1c6	
13	W207		D					P-WL2a	
13	W208			D				P-WL2a	
13	W209			D				P-WL2a	
13	W210			D				P-WL2a	
13	W211		D	1				P-WL2a	
13	W212		D					P-WL2a	
13	W213			D				P-WL2a	
13	W214			D				P-WL2a	
13	W215			D				P-WL2a	
13	W216			D				P-WL2a	
12	\\/217		1	р	1	·		P \// 20	

D

P-WL2a

	Resource	1	Netland	d Type ¹	,2			Wetland	
Map #	Identification Number	PFO	PSS	PEM	PUB	Stream ³	Pool	Protection Subdistrict ^{4, 5}	Notes ⁶
						11		P-WL1c6,	
13	W218	D	Х	D		1 P		P-WL2a,	
				_		••		P-WL3	
13	W219			D				P-WL2a	
13	W220			D				P-WL2a	
13	W221			D		I		P-WL1c6	
13	W222			D			1 VP	P-WL2a	man-made VP
13	W223			D			1 VP	P-WL2a	man-made VP
13	W224			D			2 VPs	P-WL2a	man-made VPs
12 and 14	W225	D						P-WL3	
14	W226		D					P-WL2a	
14	W227	D						P-WL3	
14	W228			D				P-WL2a	
14	W229			D		Р		P-WL1c6	
14	W230			D		I		P-WL1c6	
14	W231		D			I		P-WL1c6,	
			U			1		P-WL2a	
14	W232			D				P-WL2a	
14	W233		D					P-WL2a	
14	W234	D						P-WL3	
14	W235		D					P-WL2a	
14	W236			D				P-WL2a	
14	W237	D						P-WL3	
14	W238	D						P-WL3	
14	W239		D	D				P-WL2a	
14	W240			D				P-WL2a	
14	W241			D		I		P-WL1c6	
14	W242		D					P-WL2a	
14	W243		D					P-WL2a	
14	W244		D					P-WL2a	
14	W245		D					P-WL2a	
14	W246		_	D				P-WL2a	
14 and 15	W247	D						P-WL3	
15	W248		D					P-WL2a	
15	W249	D						P-WL3	
15	W250			D				P-WL2a	
15	W251			D				P-WL2a	
15	W252			D			1 VP	P-WL2a	man-made VP
15	W253			D		I		P-WL1c6, P-WL2a	-
15	W254	D		х			1 VP	P-WL2a, P-WL3	man-made VP
15	W255	D				I		P-WL1c6, P-WL3	
15	W256	D						P-WL3	
15	W257	-		D				P-WL2a	
15	W258			D			1 VP	P-WL2a	man-made VP
15	W259			D				P-WL2a	
15	W260			D				P-WL2a	
15	W262			D				P-WL1c6	

	Resource	١	Vetlane	d Type ¹	,2		Vernal	Wetland	6
Map #	Identification Number	PFO	PSS	PEM	PUB	Stream ³	Pool	Protection Subdistrict ^{4, 5}	Notes ⁶
15	W263	D		D			1 VP	P-WL2a,	naturally
		D					1 11	P-WL3	occurring VF
15	W264			D		I		P-WL1c6	
15	W265	D					1 VP	P-WL3	naturally occurring VF
15	W266			D				P-WL2a	Ŭ
15	W267			D				P-WL2a	
16	W268	D						P-WL3	
16	W269			D				P-WL2a	
16	W270			D				P-WL2a	
16	W271			D				P-WL2a	
16	W272		D					P-WL2a	
16	W273	D						P-WL3	
16	W274		D					P-WL2a	
16	W275			D				P-WL2a	
16	W276			D				P-WL2a	
16	W277			D				P-WL2a	
16	W278			D				P-WL2a	
16	W279			D				P-WL2a	
16	W280			D				P-WL2a	
16	W281		D					P-WL2a	
16	W282		D	D			2 VPs	P-WL2a	man-made VPs
17	W283		D					P-WL2a	
17	W284		D			I		P-WL1c6	
17	W285			D				P-WL2a	
17	W286			D		Р		P-WL1c6	
17	W287			D				P-WL2a	
17	W288			D				P-WL2a	
17	W289			D				P-WL2a	
								P-WL1c6,	
17	W290	Х		D		I		P-WL2a,	
								P-WL3	
17	W291	X	D					P-WL1c6, P-WL2a,	
17	VV291	^	D					P-WL2a, P-WL3	
17	W292			D				P-WL3	
17	W292 W293		D					P-WL2a	
17	W293		D					P-WL2a	
		_				_		P-WL1c6,	naturally
17	W295	D				I	1 SVP	P-WL3	occurring VI
17	W296	D						P-WL3	J
17	W297	D						P-WL3	
17	W298			D				P-WL2a	
17	W299			D		Р		P-WL1c6	
17	W300			D		Р		P-WL1c6	
17	W301			D		I		P-WL1c6, P-WL2a	
17	W302			D		Р		P-WL2a	
17	W302 W303			D		P		P-WL1c6	
17	W303		D			I I	1 VP	P-WL1co	man-made
	W305							P-WL2a	VP
18 18	W305 W306			D D				P-WL2a P-WL2a	

	Resource	۱	Vetland	d Type ¹	,2			Wetland	
Map #	Identification Number	PFO	PSS	PEM	PUB	Stream ³	Pool	Protection Subdistrict ^{4, 5}	Notes ⁶
18	W307		D				1 VP	P-WL2a	man-made VP
18	W308		D					P-WL2a	
18	W309			D				P-WL2a	
18	W310		D					P-WL2a	
18	W311		D					P-WL2a	
18	W312	D						P-WL3	
18	W313	D						P-WL3	
18	W314	D						P-WL3	
18	W315	D					1 SVP	P-WL3	naturally occurring VP
18	W316		D					P-WL2a	
18	W317			D			1 VP	P-WL2a	naturally occurring VP
18	W318		D				1 VP	P-WL2a	man-made VP
18	W319		D					P-WL2a	
19	W329		D	D				P-WL1c6	
19	W330		D					P-WL2a	
19	W331	D				I		P-WL1c6	
		U				1		P-WL3	
19	W332			D				P-WL2a	
19	W333			D				P-WL2a	
19	W334			D				P-WL2a	
19	W335		D			I		P-WL1c6 P-WL2a	
19	W336		х		D			P-WL1c4 P-WL2a	larger wetland includes mapped IWWH
19	W337			D				P-WL2a	
19	W338	D						P-WL3	
19	W340			D		1 P, 1 I		P-WL1c6	
19	W341		D			2 P		P-WL2a	
			D					P-WL1c6	
19	W342			D		Р		P-WL1c6	
20	W366	D						P-WL3	
20	W367	D						P-WL3	
20	W368	D						P-WL3	
20	W369	D				Р		P-WL3	
-								P-WL1c6	
20	14/270			v		Р		P-WL3,	
20	W370		D	Х		Р		P-WL2a, P-WL1c6	
20	W371		D					P-WL2a	
20	W375	D						P-WL3	
20	W376	D						P-WL3	
21	W377	-		D				P-WL2a	
21	W378	D						P-WL3	
21	W379			D		Р		P-WL1c6	
21	W380			D				P-WL2a	
21	W381	D						P-WL3	
21	W382		D					P-WL2a	
21	W383		D					P-WL2a	

	Resource	\	Vetland	d Type ¹	,2		Vernal	Wetland	
Map #	Identification Number	PFO	PSS	PEM	PUB	Stream ³	Pool	Protection Subdistrict ^{4, 5}	Notes ⁶
21	W387		D			Р		P-WL1c6, P-WL2a	Churchill Brook
22	W388			D			1 VP	P-WL2a	man-made VP
22	W389			D				P-WL2a	
22	W390			D				P-WL2a	
22	W391			D				P-WL2a	
22	W392				D		1 VP	P-WL2a	man-made VP
22	W393			D				P-WL2a	
22	W394		D					P-WL2a	
23	W396		Х	Х				P-WL2a	
23	W397			D				P-WL2a	
23	W398		Х	Х				P-WL1c6	
23	W399			D				P-WL2a	
23	W400		Х	Х				P-WL2a	
23	W401			D				P-WL2a	
23	W402			D		I		P-WL2a,	
				D		1		P-WL1c6	
23 23	W403 W404			D D		I		P-WL1c6 P-WL2a	
23	VV404			U				P-WL2a P-WL2a,	
23	W405	D		D				P-WL2a, P-WL3	
23	W406	D						P-WL3	
23	W407	D						P-WL3	
23	W408	Х	Х					P-WL2a, P-WL3	
23	W409			D				P-WL2a	
23	W410		Х	Х				P-WL2a	
23	W411		D					P-WL2a	
23	W412		Х	Х				P-WL2a	
23 and 24	W413	D						P-WL3	
23 and 24	W414	D		D			1 VP	P-WL2a P-WL3	man-made VP
24	W415	D						P-WL3	
24	W416	D						P-WL3	
24	W417	D						P-WL3	
24	W418			D				P-WL2a	
24	W419	D						P-WL3	
24	W420	D		D				P-WL2a, P-WL3	
24	W421	D		D				P-WL2a, P-WL3	
24	W422			D				P-WL2a	
24	W423			D				P-WL2a	
24	W424	D						P-WL3	
24	W425	D						P-WL3	
24	W426			D			1 VP	P-WL2a	man-made VP
24	W427			D				P-WL2a	
24	W428	D						P-WL3	
24	W429	D						P-WL3	
24	W430	D						P-WL3	
24	W431	D					1 VP	P-WL3	man-made VP

	Resource	1	Vetland	d Type ¹	,2		Vernal	Wetland	
Map #	Identification	PFO	PSS	PEM	PUB	Stream ³	Pool	Protection	Notes ⁶
	Number		100	1 – 141	100		1 001	Subdistrict ^{4, 5}	
24 and 25	W432	D						P-WL3	
25	W433	D						P-WL3	
25	W434	D						P-WL3	
25	W435	D						P-WL3	
25	W436	D						P-WL3	
25	W437	D						P-WL3	
25	W438	D						P-WL3	
25	W439	D						P-WL3	
25	W440	D		D				P-WL2a, P-WL3	
25	W441	D						P-WL3	
25	W442	D						P-WL3	
25 and 26	W443	D	Х	Х		3 P, 2 I	5 VPs	P-WL1c3, P-WL1c6, P-WL2a, P-WL3	man-made VPs. mapped P–FP subdistrict along Houston Brook.
26	W444	D						P-WL3	
26	W445	D						P-WL3	
26	W446			D				P-WL2a	
26	W447		D			3 P		P-WL1c3, P-WL1c6	mapped P–FP subdistrict along Houston Brook
26	W448		D					P-WL1c3	mapped P–FP subdistrict along Houston Brook
26	W449		D					P-WL1c3	mapped P–FP subdistrict along Houston Brook
26	W450	D						P-WL1c3	Mapped P–FP subdistrict along Houston Brook
26	W485		D					P-WL2a	
26	W486		D					P-WL1c3 P-WL2a	mapped P–FP subdistrict along Houston Brook

	Resource	1	Netland	d Type ¹	,2		Vernel	Wetland	
Map #	Identification Number	PFO	PSS	PEM	PUB	Stream ³	Vernal Pool	Protection Subdistrict ^{4, 5}	Notes ⁶
26	W469		D					P-WL1c3	mapped P-FP subdistrict along Houston Brook. 3 man-made PVPs.
26 and 27	W470		D					P-WL2a	
26 and 27	W471		D	х				P-WL1c3, P-WL2a	mapped P–FP subdistrict along Houston Brook. 5 man-made PVPs
27	W451		D					P-WL1c3	mapped P–FP subdistrict along Houston Brook
27	W452	x		х				P-WL1c3, P-WL2a, P-WL3	mapped P–FP subdistrict along Houston Brook. 3 natural and 1 man-made PVPs.
27	W454			D				P-WL2a	1 11 0.
27	W455		D					P-WL2a	
27	W456		_	D				P-WL2a	
27	W457		Х	D				P-WL2a	
27	W458		D					P-WL2a	
27	W459	D	_			I		P-WL1c6 P-WL3	
27	W460			D				P-WL2a	
27	W461			D				P-WL2a	
27	W462		D			Р		P-WL1c6	
27	W472			D				P-WL2a P-WL1c3	mapped P–FP subdistrict along Houston Brook
27	W474	D						P-WL1c3	mapped PFP subdistrict along Houston Brook
27	W475			D				P-WL2a	

	Resource	١	Netland	d Type ¹	,2		Vernal	Wetland	
Map #	Identification Number	PFO	PSS	PEM	PUB	Stream ³	Pool	Protection Subdistrict ^{4, 5}	Notes ⁶
27	W476	D				I		P-WL1c6 P-WL3	
27	W477			D				P-WL3	
27	W478			D				P-WL2a	
27	W479	D		0				P-WL3	
27	W480	D						P-WL3	
27	W481			D				P-WL2a	
28	W463		D				1 VP	P-WL2a	man-made VP
28	W464			D		Р		P-WL1c6	northern spring salamander
28	W482	D		D		I		P-WL2a, P-WL3	
28	W483	D		D				P-WL2a, P-WL3	
28	W484			D				P-WL2a	
29	W465		D					P-WL2a	
29	W466		D					P-WL2a	
29	W467			D				P-WL2a	
29	W468	D						P-WL3	

¹ Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of Wetlands and Deepwater Habitats of the United States. FWS/OBS-79/31, U.S. Fish and Wildlife Service, Office of Biological Services, Washington, D.C. ² D = Dominant; X = Present ³ P = Perennial; I = Intermittent

⁴ P-WL1: Wetland Protection Subdistrict

Areas enclosed by the normal high water mark of flowing waters, stream channels, and bodies of standing a) water, except for constructed ponds less than 10 acres in size which are not fed or drained by flowing waters;

- b) Coastal wetlands, together with areas below the high water mark of tidal waters and extending seaward to the limits of the State's jurisdiction; or
- Freshwater wetlands, as follows: c)
 - Within 250' of a coastal wetland or of the normal high water mark of any body of standing water i) greater than 10 acres;
 - Containing at least 20,000 square feet in total of the following: aquatic vegetation, emergent marsh ii) vegetation, or open water, unless the wetlands are the result of constructed ponds less than 10 acres in size which are not fed or drained by flowing waters;
 - iii) That are inundated with floodwater during a 100 year flood event;
 - iv) Containing significant wildlife habitat:
 - Consisting of, or containing, peatlands, except that LURC may determine that a previously mined, V) peatland or portion thereof, is not a wetland of special significance; or
 - Within 25' of a stream channel. vi)

P-WL2: Wetland Protection Subdistrict

- Scrub shrub and other non-forested freshwater wetlands, excluding those covered under P-WL1; a)
- b) Constructed ponds less than 10 acres in size which are not fed or drained by flowing waters.

P-WL3: Wetland Protection Subdistrict - Forested freshwater wetlands, excluding those covered under P-WL1 and P-WL2.

⁵ Wetlands and some streams identified within the Project area have an associated Shoreland Protection Subdistrict, P-SL2. P-SL2 includes: areas within 75 feet, measured as a horizontal distance landward, of (a) the normal high water mark of stream channels upstream for the point where such channels drain 50 square miles; (b) the upland edge of those coastal and inland wetlands identified in Section 10.23, N, 2, a, (1)(b) and (c) and (2) and (3); and (c) the normal high water mark of bodies of standing water less than 10 acres in size, but excluding bodies of standing water which are less than three acres in size and which are not fed or drained by a flowing water.

³ P-FP = Flood Prone Area Protection Subdistrict: Those areas identified and mapped by the Federal Emergency Management Agency as areas of special flood hazard (Zones A, AE, A1-30, VE) are those that fall within the P-FP subdistrict.

Resource Identification Number	General Wetland Type	Cowardin Classification of Wetlands ¹	Wetland Protection Subdistrict ^{2, 3}	Dominant Vegetation	Hydric Soil Indicators	Evidence of Hydrology
W001	emergent	PEM	P-WL2a	eastern rough sedge, interrupted fern, common wrinkle-leaved goldenrod, fringed sedge, red raspberry, yellow birch	8" very dark A over depleted matrix with 12% redoximorphic features	soil saturated to surface, free water at 2 inches below ground surface
W002	emergent, intermittent stream	PEM	P-WL1c6	small enchanter's- nightshade, sharp-toothed nodding-aster, northern wood sorrel, Canada reed grass	0-8" dark A over depleted sandy soil with redoximorphic concentrations	soil saturated to surface, wetland drainage patterns sulfur odor, organic streaking
W003	emergent	PEM	P-WL2a	nodding sedge, Canada goldenrod, red raspberry, long-beaked willow, pussy willow, common woolsedge, sensitive fern, woodland horsetail	6-8" dark A over depleted matrix with 7% redoximorphic features	soil saturated to surface, standing water in small pools, free water at 2 inches
W004	emergent	PEM	P-WL2a	fringed sedge, common woolsedge, sharp-toothed nodding-aster, grass-leaved goldenrod, eastern rough sedge, soft rush	3" organic soil material over 10" Ap-horizon over 7" sandy soil with redoximorphic features and a depleted soil with redoximorphic concentrations	soil saturated to surface
W005	emergent	PEM	P-WL2a	common woolsedge, rough bentgrass, soft rush, fringed willow-herb, grass-leaved goldenrod, fringed sedge, northern long sedge	soil disturbed, 10" dark A over rock with few faint redoximorphic concentrations	soil saturated to the surface
W006	forested	PFO	P-WL3	red spruce, yellow birch, paper birch, balsam fir, cinnamon fern, Canada dwarf-dogwood, three-leaved gold-thread, three-seeded sedge, greater bladder sedge, shining firmoss	histic epipedon. 8-12" of organic matter over a depleted matrix with 10-20% redoximorphic concentrations	soil saturated to surface, free water 2-3 inches below soil surface
W007	forested	PFO	P-WL3	red spruce, yellow birch, paper birch, balsam fir, cinnamon fern, Canada dwarf-dogwood, three-leaved gold-thread, three-seeded sedge, greater bladder sedge, shining firmoss	histic epipedon. 8-12" of organic matter over a depleted matrix with 10-20% redoximorphic concentrations	soil saturated to surface, free water 2-3 inches below soil surface

Resource Identification Number	General Wetland Type	Cowardin Classification of Wetlands ¹	Wetland Protection Subdistrict ^{2, 3}	Dominant Vegetation	Hydric Soil Indicators	Evidence of Hydrology
W008	forested	PFO	P-WL3	heart-leaved paper birch, red spruce, balsam fir, three- seeded sedge, short-tailed rush, black-girdled woolsedge	25"+ organic soil material	soil saturated to surface, some small areas of inundation
W009	scrub-shrub	PSS	P-WL2a	balsam fir, red spruce, Canada dwarf-dogwood, sharp-toothed nodding-aster, narrow lady fern	3" organic over depleted matrix with redoximorphic concentrations	soil saturated to surface, some small areas of inundation
W010	forested	PFO	P-WL3	red spruce, heart-leaved paper birch, balsam fir, Canada dwarf-dogwood, creeping snowberry, three- leaved goldthread, cinnamon fern	8" organic over depleted matrix with 2% redoximorphic concentrations	soil saturated to surface, areas inundated, trees with morphological adaptations
W011	emergent, scrub-shrub	PEM, PSS,	P-WL2a	red spruce, black spruce, mountain holly, speckled alder, rhodora, three-seeded sedge, cinnamon fern, common woolsedge	30+" organic soil material	soil saturated to surface, free water to surface
W012	scrub-shrub, emergent	PSS, PEM	P-WL2a	cinnamon fern, three-seeded sedge, Canada dwarf- dogwood, sharp-toothed nodding-aster, northern wood sorrel	areas of 16" organic soil material, areas of depleted matrix with redoximorphic features	soil saturated to surface, small pockets of inundation
W013	scrub-shrub, intermittent stream	PSS	P-WL1c6, P-WL2a	speckled alder, balsam fir, red spruce, yellow birch, dwarf raspberry, mountain wood fern, sharp-toothed nodding-aster, smooth white violet	16" organic soil material, some areas of 6-8" organic material over rock	soil saturated to surface, free water 1 inch below surface
W014	forested	PFO	P-WL3	balsam fir, red spruce, three- seeded sedge, rattlesnake manna grass, fringed sedge	20"+ organic soil material	wetland drainage patterns, soil saturated to surface
W015	scrub-shrub	PSS	P-WL2a	red spruce, cinnamon fern, balsam fir	4-6" organic soil material over 6" very dark A over a depleted matrix	free water at 1" below surface, soil saturated to surface
W016	forested	PFO	P-WL3	balsam fir, three-seeded sedge, Canada dwarf- dogwood, cinnamon fern, three-leaved goldthread	2" organic, 4" dark A, 2" depleted B, refusal at 6" from mineral soil surface	soil saturated to the surface, wetland drainage patterns, standing water in topographic depressions
W017	forested	PFO	P-WL3	balsam fir, three-seeded sedge, Canada dwarf- dogwood, cinnamon fern, three-leaved goldthread	2" organic, 4" dark A, 2" depleted B, refusal at 6" from mineral soil surface	soil saturated to the surface, wetland drainage patterns, standing water in topographic depressions

W026

emergent

Resource Identification Number	General Wetland Type	Cowardin Classification of Wetlands ¹	Wetland Protection Subdistrict ^{2, 3}	Dominant Vegetation	Hydric Soil Indicators	Evidence of Hydrology
W018	scrub-shrub	PSS	P-WL2a	balsam fir, red spruce, yellow birch, swamp-red currant, red raspberry, three-seeded sedge, common woolsedge	20"+ organic soil material	soil saturated to surface, areas inundated
W019	emergent	PEM	P-WL2a	northeastern manna grass, mountain wood fern, wild sarsaparilla, hobblebush, Canada dwarf-dogwood	12" very dark organic over depleted matrix with 3% redoximorphic features	soils saturated to surface, evident drainage patterns, free water at 0.5 inch below ground surface
W020	emergent	PEM	P-WL2a	northeastern mannagrass, mountain wood fern, wild sarsaparilla, hobblebush, Canada dwarf-dogwood	12" very dark organic over depleted matrix with 3% redoximorphic features	soils saturated to surface, evident drainage patterns, free water at 0.5 inch"
W021	scrub-shrub	PSS	P-WL2a	speckled alder, yellow birch, hobblebush, balsam fir, smooth white violet, sharp- toothed nodding-aster, red raspberry, mountain wood fern, peat moss	16" organic soil material	soil saturated to surface, drainage patterns, free water 0.5 inch below surface
W022	emergent	PEM	P-WL2a	eastern rough sedge, golden-saxifrage, sharp- toothed nodding-aster, dwarf raspberry, common woolsedge, yellow birch	12" organic over dark A with redoximorphic features	soil saturated to surface, inundation, wetland drainage patterns, trees with morphological adaptations
W023	emergent	PEM	P-WL2a	northeastern mannagrass, small-enchanter's nightshade, balsam fir, northern wood sorrel, evergreen wood fern	10" organic over loamy fine sand with faint redoximorphic features	wetland drainage patterns, soil saturated to surface, free water at 1 inch below surface
W024	emergent, intermittent stream	PEM	P-WL1c6	narrow lady fern, sharp- toothed nodding-aster, marsh fern, balsam fir, beaked hazelnut, dwarf raspberry	20"+ layers of organic and loamy sand, few/faint redoximorphic features	water stained leaves, drift lines, wetland drainage patterns
W025	emergent, intermittent stream	PEM	P-WL1, P-WL2a	eastern rough sedge, northeastern mannagrass, greater bladder sedge, three- seeded sedge, yellow birch, balsam fir, red spruce	20"+ layers of organic and loamy sand, few/faint redoximorphic features	trees with morphological adaptations, wetland drainage patterns, soil saturated to surface

northeastern mannagrass, small-enchanter's

nightshade, balsam fir,

northern wood sorrel, evergreen wood fern

P-WL2a

PEM

shallow soils- layers of mucky sandy soils and organic

wetland drainage patterns,

soil saturated to surface

Resource Identification Number	General Wetland Type	Cowardin Classification of Wetlands ¹	Wetland Protection Subdistrict ^{2, 3}	Dominant Vegetation	Hydric Soil Indicators	Evidence of Hydrology
W027	emergent, forested	PEM, PFO	P-WL2a, P-WL3	northeastern mannagrass, nodding sedge, bristly black currant, mountain wood fern, red spruce, balsam fir, sharp-toothed nodding-aster, yellow birch	shallow soils- layers of mucky sandy soils and organic	wetland drainage patterns, soil saturated to surface
W028	emergent	PEM	P-WL2a	northeastern mannagrass, sharp-toothed nodding-aster, slender wood-reed, cinnamon fern, northern wood sorrel, red spruce	12" of very dark A over a depleted matrix with 3% redoximorphic features	soil saturated to surface, free water to within 1 inch of soil surface
W029	scrub-shrub, forested	PSS, PFO	P-WL2a, P-WL3	speckled alder, red spruce, beaked hazelnut, yellow birch, fowl mannagrass, northeastern mannagrass, northern wood sorrel	8-10" organic over depleted matrix, 13" of organic over depleted matrix with 12% redoximorphic features	soil saturated to surface, free water within 2 inches, wetland drainage patterns, trees with morphological adaptations
W030	scrub-shrub	PSS	P-WL2a	balsam fir, yellow birch, showy mountain-ash, black spruce, northeastern mannagrass, purple- stemmed American-aster, wild sarsaparilla	8-12" very dark A over depleted matrix with 3% redoximorphic features, areas of 10-14" organic over depleted matrix with 8-10% redoximorphic features	soil saturated to surface, many evident wetland drainage patterns
W031	emergent	PEM	P-WL2a	three-seeded sedge, narrow lady fern, beech fern, dwarf raspberry, New England American-aster, balsam fir, red spruce, yellow birch	23"organic soil material	soil saturated to surface, areas inundated
W032	emergent, intermittent stream	PEM	P-WL1c6	northeastern mannagrass, fowl mannagrass, red raspberry, speckled alder, dwarf raspberry, New England American-aster	15" dark A and organic over 3" depleted matrix with redoximorphic concentrations before refusal	wetland drainage patterns, soil saturated to surface
W033	scrub-shrub/emergent, intermittent stream	PSS/PEM	P-WL1c6	yellow birch, red raspberry, northeastern mannagrass, narrow lady fern, cinnamon fern, Canada reed grass	dark mineral soil that extends to 20" with few redoximorphic concentrations	soil saturated to surface, areas inundated
W034	emergent, intermittent stream	PEM	P-WL1c6	northeastern mannagrass, narrow lady fern, yellow birch, red raspberry, cinnamon fern, Canada reed grass, bristly black currant	dark mineral soil that extends to 20" with few redoximorphic concentrations	soil saturated to surface, areas inundated
W035	emergent	PEM	P-WL2a	nodding sedge, common woolsedge, red raspberry, Canada reed grass, balsam fir, red maple, sharp-toothed nodding-aster	disturbed- 20" dark A with redoximorphic features, some areas with a depleted matrix the last inch before rock	soil saturated to surface

Resource Identification Number	General Wetland Type	Cowardin Classification of Wetlands ¹	Wetland Protection Subdistrict ^{2, 3}	Dominant Vegetation	Hydric Soil Indicators	Evidence of Hydrology
W036	emergent	PEM	P-WL2a	nodding sedge, common woolsedge, red raspberry, northeastern mannagrass, sensitive fern	2" organic over 8" dark Ap over 7 inches depleted B with redoximorphic features	soil saturated to surface
W037	emergent	PEM	P-WL2a	eastern rough sedge, common grass-leaved goldenrod, fringed sedge, sharp-toothed nodding-aster, common woolsedge	10" of very mucky, very dark A over depleted matrix with 3% redoximorphic features	soil saturated to surface, small areas of open water
W038	emergent	PEM	P-WL2a	common woolsedge, common grass-leaved goldenrod, fringed sedge, sharp-toothed nodding-aster, fowl mannagrass, red raspberry	5" organic, 3" sandy soil depleted with redoximorphic concentrations	inundated, altered depression, soil saturated to surface
W039	forested	PFO	P-WL3	balsam fir, red spruce, three- seeded sedge, mountain wood fern, beaked hazelnut, spear moss.	16" organic over depleted matrix with redoximorphic concentrations	soil saturated to surface, free water at 2 inches
W040	forested	PFO	P-WL3	yellow birch, balsam fir, red spruce, three-seeded sedge, sharp-toothed nodding-aster, showy mountain-ash, cinnamon fern, peat moss	16" organic soil material	soil saturated to surface, free water to within 3 inches of surface
W041	emergent	PEM	P-WL2a	northeastern mannagrass, eastern rough sedge, fowl meadowgrass, marsh fern, speckled alder, dwarf raspberry	8" very dark A over depleted matrix with 5-10% redoximorphic features	soil saturated to surface, areas inundated
W042	emergent, perennial stream	PEM	P-WL1c6 P-WL2a	eastern rough sedge, blue marsh violet, fowl mannagrass, golden- saxifrage, fringed sedge, sharp-toothed nodding-aster, selfheal, Pennsylvania bitter- cress, red raspberry	depleted soil with redoximorphic features, stratified depositional layers	wetland drainage patterns, soil saturated to the surface
W043	emergent	PEM	P-WL2a	northeastern mannagrass, golden-saxifrage, eastern rough sedge, cinnamon fern, bedstraw	6" organic soil over a depleted matrix with redoximorphic concentrations	soil saturated to the surface, areas inundated, wetland drainage patterns
W044	emergent	PEM	P-WL2a	cinnamon fern, eastern rough sedge, silvery glade fern, golden-saxifrage, yellow birch, lady fern	7" well-decomposed organic soil over 11" dark, mucky A over 9" gleyed B horizon with <2% redoximorphic concentrations	wetland drainage patterns, areas inundated, soil saturated, trees with morphological adaptations

Resource Identification Number	General Wetland Type	Cowardin Classification of Wetlands ¹	Wetland Protection Subdistrict ^{2, 3}	Dominant Vegetation	Hydric Soil Indicators	Evidence of Hydrology
W045	forested, intermittent stream	PFO	P-WL1c6	yellow birch, sugar maple*, eastern rough sedge, blue marsh violet, fowl mannagrass, golden- saxifrage, fringed sedge, sharp-toothed nodding-aster, selfheal, Pennsylvania bitter- cress, red raspberry	depleted soil with redoximorphic features, layered from deposition	wetland drainage patterns, soil saturated to the surface, trees with morphological adaptations
W046	emergent, perennial stream	PEM	P-WL1c6	eastern rough sedge, blue marsh violet, fowl mannagrass, golden- saxifrage, fringed sedge, sharp-toothed nodding-aster, selfheal, Pennsylvania bitter- cress, red raspberry	depleted soil with redoximorphic features, stratified depositional layers	wetland drainage patterns, soil saturated to the surface
W047	emergent	PEM	P-WL2a	northeastern mannagrass, slender wood reed, sharp- toothed nodding-aster, balsam fir, dwarf raspberry, golden-saxifrage, two- seeded sedge	10-12" dark A over a depleted matrix with 3% redoximorphic features	soil saturated to the surface, wetland drainage patterns
W048	emergent	PEM	P-WL2a	northeastern mannagrass, sharp-toothed nodding-aster, red raspberry, mountain wood fern, tall crowfoot	5" organic soil over a dark, mucky A with redoximorphic depletions	soil saturated to the surface, areas of inundation, wetland drainage patterns
W049	scrub-shrub	PSS	P-WL2a	balsam fir, red spruce, yellow birch, heart-leaved paper birch, northeastern mannagrass, golden- saxifrage, dwarf raspberry	20" dark mineral soil	soil saturated to the surface, areas of inundation
W050	emergent, intermittent stream	PEM	P-WL1c6	northeastern mannagrass, purple-stemmed American- aster, slender wood-reed, bristly black currant, mountain wood fern, red raspberry	8" very dark A over depleted matrix with 2% redoximorphic features	wetland drainage patterns, soil saturated to surface
W320	forested	PFO	P-WL3	balsam fir, yellow birch, cinnamon fern, sedges, peat moss	~8-16" of organic soil material	soil saturated to surface, areas of shallow inundation
W051	emergent, perennial stream	PEM	P-WL1c6	golden-saxifrage, fowl mannagrass, eastern rough sedge, selfheal, sharp- toothed nodding-aster, lady fern	7" well-decomposed organic soil over 11" dark, mucky A over 9" gleyed B horizon with <2% redoximorphic concentrations	wetland drainage patterns, areas inundated, soil saturated, trees with morphological adaptations

Resource Identification Number	General Wetland Type	Cowardin Classification of Wetlands ¹	Wetland Protection Subdistrict ^{2, 3}	Dominant Vegetation	Hydric Soil Indicators	Evidence of Hydrology
W052	emergent, perennial stream	PEM	P-WL1c6	golden-saxifrage, zig-zag goldenrod, smooth white violet, lady fern, sharp- toothed nodding-aster, slender wood-reed, eastern rough sedge	very dark, mucky A over a depleted matrix with 3% redoximorphic features	soil saturated to the surface, wetland drainage patterns
W053	emergent, perennial stream	PEM	P-WL1c6	northeastern mannagrass, sharp-toothed nodding-aster, dwarf raspberry, fragrant bedstraw, interrupted fern, zig-zag goldenrod, golden- saxifrage	low chroma sandy soil and loamy sand with 10% redoximorphic features with organic streaking	soil saturated to the surface, wetland drainage patterns
W054	emergent, perennial stream	PEM	P-WL1c6, P-WL2a	northeastern mannagrass, sharp-toothed nodding-aster, dwarf raspberry, fragrant bedstraw, interrupted fern, zig-zag goldenrod, golden- saxifrage	low chroma sandy soil and loamy sand with 10% redoximorphic features with organic streaking	soil saturated to the surface, wetland drainage patterns
W055	emergent	PEM	P-WL2a	northeastern mannagrass, blue marsh violet, fowl mannagrass, fringed willow- herb, common woolsedge, sharp-toothed nodding-aster	4-8" organic soil material over rock, soils have been disturbed by previous timber harvesting	soil saturated to the surface
W056	emergent, intermittent stream	PEM	P-WL1c6	fowl mannagrass, yellow birch, lady fern, red elderberry, mountain wood fern, small enchanter's nightshade, hobblebush	10" organic over 3" A horizon with redoximorphic features	soil saturated to the surface, free water 1.5" below surface
W057	emergent	PEM	P-WL2a	nodding sedge, cinnamon fern, fowl mannagrass, marsh fern, red raspberry	20" organic soil material over a depleted matrix with 5% redoximorphic concentrations	inundated, water-stained leaves
W058	forested	PFO	P-WL3	red spruce, yellow birch, hobblebush, sharp-toothed nodding-aster, Canada mayflower, starflower	15" organic soil material over a depleted matrix with less than 2% redoximorphic features	soil saturated to the surface, trees with morphological adaptations, standing water in topographic pits
W059	emergent, intermittent stream	PEM	P-WL1c6	nodding sedge, Canada reed grass, rattlesnake mannagrass, wrinkle-leaf goldenrod, sharp-toothed nodding-aster, sensitive fern, lady fern	mucky, dark, coarse sandy soil, disturbed	soil saturated to the surface, wetland drainage patterns, standing water in topographic pits
W328	emergent	PEM	P-WL2a	eastern rough sedge, red raspberry, sensitive fern, spotted touch-me-not, dwarf raspberry, hobblebush, yellow birch, striped maple.	10" of organic soil material over low chroma sand with 7% redoximorphic features	soil saturated to surface, free water at 3.5" below surface, wetland drainage patterns

Resource Identification Number	General Wetland Type	Cowardin Classification of Wetlands ¹	Wetland Protection Subdistrict ^{2, 3}	Dominant Vegetation	Hydric Soil Indicators	Evidence of Hydrology
W060	forested	PFO	P-WL3	balsam fir, red spruce*, sugar maple*, hobblebush, northeastern mannagrass, fowl mannagrass, golden- saxifrage, spotted touch-me- not, sharp-toothed nodding- aster	10" well-decomposed organic material over a 2" depleted matrix over rock	soil saturated to the surface, water-stained leaves, wetland drainage patterns, areas inundated
W061	emergent	PEM	P-WL2a	eastern rough sedge, spotted joe-pye weed, wrinkle-leaf goldenrod, dwarf raspberry, fringed willow- herb, spotted touch-me-not, lady fern, sensitive fern, cinnamon fern	very dark, mucky A over a depleted B	soil saturated to the surface, areas inundated
W062	emergent	PEM	P-WL2a	wrinkle-leaf goldenrod, fowl mannagrass, slender wood- reed, sharp-toothed nodding- aster, dwarf raspberry	dark A over a depleted B with 3% redoximorphic concentrations	soil saturated to the surface
W063	emergent	PEM	P-WL2a	blue marsh violet, dwarf raspberry, slender wood- reed, golden-saxifrage, cinnamon fern, interrupted fern	very dark, mucky A over a depleted B	soil saturated to the surface, areas inundated
W064	forested	PFO	P-WL3	yellow birch, red spruce, heart-leaved paper birch, balsam fir, interrupted fern	3" organic material, 8-10" mucky, dark A over a depleted sandy soil with 2% redoximorphic features	soil saturated within 12 inches of the soil surface, trees with morphological adaptations, water-stained leaves
W065	emergent/scrub-shrub	PEM/PSS	P-WL2a	nodding sedge, Canada dwarf-dogwood, interrupted fern	8" dark A over a sandy B horizon with redoximorphic features	soil saturated to the surface, water stained leaves, areas of inundation
W066	forested, scrub-shrub	PFO, PSS	P-WL3, P-WL2a	speckled alder, red spruce, heart-leaved paper birch, three-seeded sedge, balsam fir, showy mountain-ash, mountain holly	12-20" organic soil material over rock	soil saturated to the surface, areas inundated, sulfur odor from soil pit
W067	scrub- shrub/forested/emergent	PSS/PFO/PEM	P-WL2a, P-WL3	red spruce, mountain holly, red maple, three-seeded sedge, short-tailed rush, common woolsedge, black- girdled woolsedge, soft rush, cinnamon fern, rhodora, Labrador tea, creeping snowberry, heart-leaved paper birch	6" organic material over a depleted matrix with more than 2% redoximorphic concentrations, 12+" organic soil material	soil saturated to the surface, some areas inundated, trees with morphological adaptations

Resource Identification Number	General Wetland Type	Cowardin Classification of Wetlands ¹	Wetland Protection Subdistrict ^{2, 3}	Dominant Vegetation	Hydric Soil Indicators	Evidence of Hydrology
W068	emergent	PEM	P-WL2a	common woolsedge, black- girdled woolsedge, short- tailed rush, three-seeded sedge	Mucky, mixed A/B soil horizons, dark with 30% redoximorphic concentrations and depletions at 6"	soil saturated to the surface, areas inundated
W069	emergent, scrub-shrub	PEM, PSS	P-WL2a	three-seeded sedge, short- tailed rush, common woolsedge, black-girdled woolsedge, soft rush, cinnamon fern, red spruce, mountain holly, red maple	15" organic soil material over rock, previously disturbed	soil saturated to the surface, areas inundated
W070	scrub-shrub	PSS	P-WL2a	hobblebush, common woolsedge, three-seeded sedge, heart-leaved paper birch	30+" well-decomposed organic soil material, over a mucky A	free water at 2 inches, soil saturated to the surface, some areas inundated, wetland drainage patterns
W071	emergent	PEM	P-WL2a	common woolsedge, three- seeded sedge, short-tailed rush, sharp-toothed nodding- aster, red raspberry, white meadowsweet, soft rush	6" organic soil material over a depleted matrix with a redoximorphic concentrations	soil saturated to the surface, water-stained leaves
W072	forested/scrub-shrub	PFO/PSS	P-WL3, P-WL2a	red spruce, balsam fir, heart- leaved paper birch, three- seeded sedge, creeping snowberry, cinnamon fern, fringed sedge, red maple, mountain holly	18" organic soil material over rock, some areas with 30+"	soil saturated to the surface, areas inundated, standing water topographic pits
W073	forested, emergent	PFO, PEM	P-WL2a, P-WL3	common woolsedge, three- seeded sedge, red spruce, velvet-leaved blueberry, cinnamon fern, mountain holly	4" dark, mucky A and organic soil material over a depleted matrix with redoximorphic concentrations	soil saturated to the surface, areas inundated, standing water topographic pits
W074	emergent	PEM	P-WL2a	common woolsedge, three- seeded sedge, short-tailed rush, sharp-toothed nodding- aster, red raspberry, white meadowsweet, soft rush	mixed dark A and organic material over depleted matrix with redoximorphic features	soil saturated to the surface, water-stained leaves
W075	emergent, perennial stream	PEM, MDEP stream	P-WL1c6	sharp-toothed nodding-aster, dwarf raspberry, fowl manna \grass, lady fern, evergreen wood fern	20" organic soil material	wetland drainage patterns, areas inundated, soil saturated to the surface
W076	forested, intermittent stream	PFO	P-WL1c6, P-WL3	red maple, red spruce, cinnamon fern, hobblebush, Canada dwarf-dogwood, fringed sedge, creeping snowberry	30+" organic soil material	soil saturated to the surface, areas inundated, trees with morphological adaptations

Resource Identification Number	General Wetland Type	Cowardin Classification of Wetlands ¹	Wetland Protection Subdistrict ^{2, 3}	Dominant Vegetation	Hydric Soil Indicators	Evidence of Hydrology
W077	forested	PFO	P-WL3	balsam fir, red spruce, yellow birch, three-seeded sedge, cinnamon fern, fringed sedge, black-girdled bulrush	5" organic soil material and dark A-horizon; areas of 20" organic soil material	soil saturated to the surface, trees with morphological adaptations, free water at 5 inches below ground surface
W327	forested	PFO	P-WL3	red spruce, red maple, yellow birch, balsam fir, three-seeded sedge, cinnamon fern, , three- leaved goldthread, Canada dwarf-dogwood, peat moss	histosol: 24+" of organic material	soil saturated to surface, areas of shallow inundation
W339	forested	PFO	P-WL3	balsam fir, red maple, yellow birch, green ash, northeastern mannagrass, fowl mannagrass, Canada reed grass, spotted touch- me-not, sensitive fern, peat moss	14-18" of organic material over depleted B-horizon with 5-10% redoximorphic features	soil saturated to surface, wetland drainage patterns
W487	emergent	PEM	P-WL1c6 P-WL2a	cinnamon fern, sedge	depleted B-horizon within 7" of the surface	soil saturated to the surface
W079	emergent	PEM	P-WL2a	lance-leaved American aster, fowl mannagrass, yellow birch, soft rush, dark green bulrush, fringed sedge, common wrinkle-leaved goldenrod	6-10" organic soil material over a depleted matrix with 4% redoximorphic features	soil saturated to the surface, water ponded in ~50 % of the wetland
W080	emergent, scrub-shrub	PEM, PSS	P-WL2a	common woolsedge, reed canary grass, common grass-leaved goldenrod, spotted joe-pye weed, yellow birch, red raspberry, broad- leaved cat-tail, soft rush	5" organic soil material over a depleted matrix and 2% redoximorphic concentrations, soil disturbed	areas inundated, soil saturated to the surface
W081	emergent	PEM	P-WL2a	common woolsedge, common grass-leaved goldenrod, spotted joe-pye weed, yellow birch, red raspberry, reed canary grass, soft rush	5" organic soil material over a depleted matrix and 2% redoximorphic concentrations	areas inundated, soil saturated to the surface
W082	emergent/scrub-shrub	PEM/PSS	P-WL2a	Canada reed grass, reed canary grass, slender wood reed, golden-saxifrage, blue marsh violet, yellow birch	12" mixed organic soil material and muck A-horizon over a depleted matrix, soil disturbed	soil saturated to the surface, areas of standing water
W083	scrub-shrub	PSS	P-WL2a	yellow birch, dwarf raspberry, hobblebush, cinnamon fern, starflower, evergreen wood fern	dark A with redoximorphic depletions	soil saturated to the surface, wetland drainage patterns

Resource Identification Number	General Wetland Type	Cowardin Classification of Wetlands ¹	Wetland Protection Subdistrict ^{2, 3}	Dominant Vegetation	Hydric Soil Indicators	Evidence of Hydrology
W084	emergent	PEM	P-WL2a	smooth goldenrod, common woolsedge, field horsetail, grass-leaved goldenrod, hobblebush, American burnweed	15-18" organic soil material over a depleted sandy soil with 5% redoximorphic features	soil saturated to the surface, water stained leaves
W085	scrub-shrub, intermittent stream	PSS	P-WL1c6	yellow birch, dwarf raspberry, hobblebush, cinnamon fern, starflower, evergreen wood fern	16+" organic soil material stratified with sand	wetland drainage patterns, soil saturated to the surface
W086	forested	PFO	P-WL3	yellow birch, cinnamon fern, New York fern, fowl mannagrass, sugar maple, sharp-toothed nodding-aster	9" organic soil material and dark, mucky A over a depleted sandy soil with redoximorphic concentrations and organic streaking	soil saturated to the surface, wetland drainage patterns
W087	forested	PFO	P-WL3	yellow birch, cinnamon fern, New York fern, fowl mannagrass, sugar maple, sharp-toothed nodding-aster	organic soil material and dark A over a depleted matrix with redoximorphic concentrations and depletions	soil saturated to the surface, wetland drainage patterns
W321	emergent	PEM	P-WL2a	nodding sedge, soft rush, woolsedge, sensitive fern, marsh fern, wood horsetail, long-beaked willow, red raspberry, yellow birch	depleted fine sandy loam with redoximorphic concentrations	soil saturated to surface, free water at ~6" below surface, wetland drainage patterns
W322	emergent	PEM	P-WL2a	nodding sedge, sensitive fern, common wrinkle-leaved goldenrod, yellow birch, red raspberry	~6" organic soil material	soil saturated to surface, free water to surface
W323	emergent	PEM	P-WL2a	mannagrass	~4" organic soil material over depleted B-horizon with redoximorphic concentrations	soil saturated to surface
W324	forested	PFO	P-WL3	yellow birch, balsam fir, striped maple, mannagrass, red raspberry, tall meadow rue, sharp-toothed nodding aster	16+" organic soil material mixed with sand	soil saturated to surface, free water at ~16" below surface, wetland drainage patterns
W325	forested, perennial stream	PFO	P-WL1c6, P-WL3	red maple, yellow birch, striped maple, long-beaked willow, dwarf raspberry, interrupted fern, greater bladder sedge, spotted touch-me-not, mannagrass	depleted fine sandy loam with redoximorphic concentrations and depletions	soil saturated to surface, free water to surface

Resource Identification Number	General Wetland Type	Cowardin Classification of Wetlands ¹	Wetland Protection Subdistrict ^{2, 3}	Dominant Vegetation	Hydric Soil Indicators	Evidence of Hydrology
W326	forested, intermittent streams	PFO	P-WL1c6, P-WL3	yellow birch, balsam fir, green ash, speckled alder, hobblebush, dwarf raspberry, cinnamon fern, fringed sedge, smooth white violet, blue marsh violet	20+" organic soil material	soil saturated to surface, free water 4" below surface, wetland drainage patterns
W088	scrub-shrub	PSS	P-WL2a	red spruce, three-seeded sedge, yellow birch, Canada dwarf-dogwood, velvet- leaved blueberry, three- leaved goldthread, sharp- toothed nodding-aster, peat moss	16" organic soil material	soil saturated to the surface
W089	forested	PFO	P-WL3	red spruce, balsam fir, mountain paper birch, red maple, three-seeded sedge, Canada dwarf-dogwood, creeping snowberry, three- leaved goldthread, velvet- leaved blueberry	4" organic soil material over a depleted matrix with oxidized rhizospheres and 2% redoximorphic concentrations	soil saturated to surface, small pockets of inundation
W090	scrub-shrub	PSS	P-WL2a	red maple, balsam fir, red spruce, Canada dwarf- dogwood, three-seeded sedge, rhodora, marsh fern, cinnamon fern	4" organic over 2" dark A over 3" of depleted matrix	soil saturated to surface
W091	scrub-shrub	PSS	P-WL2a	red spruce, interrupted fern, cinnamon fern, common grass-leaved goldenrod, Canada reed grass, sharp- toothed nodding-aster, fringed sedge, soft rush, sensitive fern	dark, mucky A horizon with redoximorphic features throughout	soil saturated to surface, free water at surface
W092	emergent, perennial stream	PEM	P-WL1c6	Canada reed grass, grass- leaved goldenrod, fringed sedge, sharp-toothed nodding-aster, northern water-horehound, red raspberry	16" organic soil material	soil saturated to the surface, ~50% of the wetland ponded
W093	forested	PFO	P-WL3	balsam fir, fowl mannagrass, three-leaved goldthread, Canada dwarf-dogwood, hobblebush	2" organic over 4" dark A over a 2" depleted B with 2% redoximorphic concentrations	wetland drainage patterns
W094	forested	PFO	P-WL3	red spruce, yellow birch, cinnamon fern, red maple, three-seeded sedge, mountain holly, Canada- dwarf dogwood	8-10" very dark A-horizon over a depleted matrix with 5% redoximorphic features	soil saturated to surface

Resource Identification Number	General Wetland Type	Cowardin Classification of Wetlands ¹	Wetland Protection Subdistrict ^{2, 3}	Dominant Vegetation	Hydric Soil Indicators	Evidence of Hydrology
W095	scrub-shrub	PSS	P-WL2a	yellow birch, red spruce, sharp-toothed nodding aster, three-leaved goldthread, interrupted fern, northern wood sorrel	16" organic soil material (with many areas of shallow soil to bedrock)	soil saturated to surface
W096	forested	PFO	P-WL3	red spruce, balsam fir, heart- leaved paper birch, red maple, northern white-cedar, nannyberry, hobblebush, mountain holly, three-seeded sedge, cinnamon fern, creeping snowberry	12" organic soil material over a depleted sandy soil with 2% redoximorphic features	areas inundated, soil saturated to the surface, trees with morphological adaptations
W097	scrub-shrub	PSS	P-WL2a	sharp-toothed nodding-aster, northeastern mannagrass, balsam fir, yellow birch, red spruce, cinnamon fern, common wrinkle-leaved goldenrod, common grass- leaved goldenrod, fringed willow-herb	20"+ organic soil material	soil saturated to surface, wetland drainage patterns
W098	emergent	PEM	P-WL2a	red spruce, Canada reed grass, balsam fir, red raspberry	6" dark A horizon over a depleted matrix with 10% redoximorphic features	soil saturated from 2 inches below ground surface to surface
W099	emergent	PEM	P-WL2a	Canada reed grass, hobblebush, red spruce, sensitive fern, cinnamon fern, Canada dwarf- dogwood, three-leaved goldthread	disturbed, dark mineral soil for 20" with redoximorphic depletions	soil saturated to the surface, areas inundated
W100	scrub-shrub	PSS	P-WL2a	gray birch, balsam fir, dark- green bulrush, mountain holly, three-seeded sedge, fringed sedge, sharp-toothed nodding-aster, Canada dwarf-dogwood	depleted sandy soil with no redoximorphic features	soil saturated, areas inundated
W101	emergent	PEM	P-WL2a	dark-green bulrush, mountain holly, three-seeded sedge, fringed sedge, sharp- toothed nodding-aster, Canada dwarf-dogwood, gray birch, balsam fir	depleted sandy soil	soil saturated, areas inundated

Resource Identification Number	General Wetland Type	Cowardin Classification of Wetlands ¹	Wetland Protection Subdistrict ^{2, 3}	Dominant Vegetation	Hydric Soil Indicators	Evidence of Hydrology
W102	scrub-shrub	PSS	P-WL2a	red spruce, yellow birch, hobblebush, balsam fir, fringed sedge, Canada reed grass, three-seeded sedge, yellow birch, common wrinkle-leaved goldenrod, Canada dwarf-dogwood	16" organic soil material; dark A horizon over a depleted matrix with redoximorphic features	soil saturated to surface, small areas of ponded water
W103	emergent	PEM	P-WL2a	balsam fir, hobblebush, red spruce, Canada reed grass, fringed sedge, Canada dwarf-dogwood, mountain wood fern, smooth white violet	7" dark A horizon over a depleted matrix with redoximorphic features	soil saturated to within 1.5 inches of surface
W104	emergent, intermittent stream	PEM	P-WL1c6	hobblebush, red spruce, yellow birch, red maple, Canada reed grass, mountain wood fern, sharp- toothed nodding-aster, Canada dwarf-dogwood, three-leaved goldthread	3" very dark A over depleted matrix with 2% redoximorphic concentrations	soil saturated to within 1 inch of surface, wetland drainage patterns
W105	emergent, intermittent stream	PEM	P-WL1c6	hobblebush, red spruce, yellow birch, red maple, Canada reed grass, mountain wood fern, sharp- toothed nodding-aster, Canada dwarf-dogwood, three-leaved goldthread	3" very dark A over depleted matrix with 2% redoximorphic concentrations	soil saturated to within 1 inch of surface, wetland drainage patterns
W106	scrub-shrub, intermittent stream	PSS	P-WL1c6	yellow birch, red maple, red spruce, hobblebush, Canada reed grass, Canada dwarf- dogwood, evergreen wood fern	6-8" organic horizon over 1-3" dark A horizon over depleted B horizon with 25% redoximorphic features	soil saturated to the surface, wetland drainage patterns
W107	scrub-shrub	PSS	P-WL2a	red spruce, balsam fir, red maple, hobblebush, Canada reed grass, Canada dwarf- dogwood, interrupted fern, evergreen wood fern, nodding sedge	16+" organic horizon	soil saturated to the surface, 3 inches to free water
W108	scrub-shrub	PSS	P-WL2a	red maple, hobblebush, witherod, Canada reed grass, interrupted fern, Canada dwarf-dogwood, red raspberry	16+" organic horizon	soil saturated to the surface, 3 inches to free water

Resource Identification Number	General Wetland Type	Cowardin Classification of Wetlands ¹	Wetland Protection Subdistrict ^{2, 3}	Dominant Vegetation	Hydric Soil Indicators	Evidence of Hydrology
W109	emergent	PEM	P-WL2a	Canada reed grass, yellow birch, red spruce, balsam fir, gray birch, common wrinkle- leaved goldenrod, evergreen wood fern, red raspberry, mountain wood fern, common grass-leaved goldenrod, sharp-toothed nodding-aster	5" of dark A over a depleted matrix with 7% redoximorphic concentrations	soil saturated to within 2 inches of soil surface; portions of the wetland ponded
W110	emergent	PEM	P-WL2a	Canada reed grass, yellow birch, red spruce, balsam fir, gray birch, common wrinkle- leaved goldenrod, evergreen wood fern, red raspberry, mountain wood fern, common grass-leaved goldenrod, sharp-toothed nodding-aster, northeastern manna grass, mountain holly	5" of dark A over a depleted matrix with 7% redoximorphic concentrations	soil saturated to within 2 inches of soil surface; portions of the wetland ponded
W111	scrub-shrub, intermittent stream	PSS	P-WL1c6	balsam fir, red spruce, hobblebush, Canada reed grass, Canada dwarf- dogwood, evergreen wood fern	16+" organic soil material	soil saturated to the surface, 3 inches to free water
W112	scrub-shrub, intermittent stream	PSS	P-WL1c6, P-WL2a	red spruce, black spruce, yellow birch, gray birch, three-seeded sedge, black girdled-woolsedge, crested wood fern, Canada dwarf- dogwood, cinnamon fern, balsam fir, round-leaved sundew, common woolsedge	16" of organic soil material	soil saturated to surface
W113	scrub-shrub	PSS	P-WL2a	red spruce, balsam fir, yellow birch, Canada reed grass, mountain wood fern	8-10" of very dark A horizon over a depleted matrix with 2% redoximorphic features	soil saturated to within 1 inch of surface
W114	emergent	PEM	P-WL2a	black-girdled woolsedge, three-leaved goldthread, mountain wood fern	5" of dark A over a depleted matrix with 10% redoximorphic concentrations	soil saturated to surface, 25 percent of wetland ponded with 4-6 inches of water
W115	forested	PFO	P-WL3	sugar maple, American beech, hobblebush, dwarf raspberry, northeastern manna grass, sensitive fern, evergreen wood fern, narrow lady fern	8-10" of organic soil material over a depleted matrix with 15% redoximorphic concentrations	wetland drainage patterns, soil saturated to surface

Resource Identification Number	General Wetland Type	Cowardin Classification of Wetlands ¹	Wetland Protection Subdistrict ^{2, 3}	Dominant Vegetation	Hydric Soil Indicators	Evidence of Hydrology
W116	forested	PFO	P-WL3	yellow birch, red maple, red spruce, hobblebush, Canada reed grass, evergreen wood fern, northern wood sorrel	15-20" organic soil material over rock	soil saturated to the surface, <1 inch to free water, wetland drainage patterns
W117	forested	PFO	P-WL3	yellow birch, red maple, red spruce, hobblebush, Canada reed grass, evergreen wood fern, northern wood sorrel	15-20" organic soil material over rock	soil saturated to the surface, <1 inch to free water, wetland drainage patterns
W118	emergent, intermittent stream	PEM	P-WL1c6	northeastern mannagrass, narrow lady fern, hobblebush, golden- saxifrage, red raspberry, dwarf raspberry, common grass-leaved goldenrod, fringed willow-herb, mountain wood fern	8-16+" organic soil material	soil saturated to surface, wetland drainage patterns, areas of inundation
W119	emergent	PEM	P-WL2a	three-seeded sedge, three- leaved goldthread, cinnamon fern, yellow birch, Canada dwarf-dogwood, red spruce, creeping snowberry, hobblebush	mucky A horizon with depletions; mixed with sand layers	soil saturated, areas of inundation
W120	scrub-shrub	PSS	P-WL2a	northeastern mannagrass, fringed willow-herb, cinnamon fern, red maple, yellow birch, creeping snowberry, balsam fir, Canada dwarf-dogwood. mountain wood-sorrel	4" organic soil material over a depleted matrix	soil saturated to surface, areas of inundation
W343	forested	PFO	P-WL3	yellow birch, red maple, hobblebush, witch-hazel, fowl mannagrass, sensitive fern, common wrinkle-leaved goldenrod, marsh fern, bristly blackberry	12-15" organic soil material over horizon with 2% redoximorphic features to a depleted B-horizon with 10-20% redoximorphic features	soil saturated to surface, wetland drainage patterns
W344	forested	PFO	P-WL3	yellow birch, red maple, hobblebush, witch-hazel, fowl mannagrass, sensitive fern, common wrinkle-leaved goldenrod, marsh fern, bristly blackberry	12-16" organic soil material over dark mucky A-horizon with 5% redoximorphic features	soil saturated to surface, wetland drainage patterns
W345	emergent	PEM	P-WL2a	Canada reed grass, fowl mannagrass, mosquito bulrush, red raspberry, wood horsetail, red spruce, green ash, yellow birch	~9" dark A-horizon with areas of depleted B-horizon	soil saturated to surface, free water to surface, wetland drainage patterns

Resource Identification Number	General Wetland Type	Cowardin Classification of Wetlands ¹	Wetland Protection Subdistrict ^{2, 3}	Dominant Vegetation	Hydric Soil Indicators	Evidence of Hydrology
W346	scrub-shrub	PSS	P-WL2a	green ash, red maple, witch- hazel, red spruce, Canada reed grass, marsh fern, sensitive fern, common wrinkle-leaved goldenrod	10-12" organic soil material that in some places overlies a depleted B-horizon with 10% redoximorphic features	soil saturated to surface, wetland drainage patterns
W347	scrub-shrub	PSS	P-WL2a	green ash, red maple, witch- hazel, red spruce, Canada reed grass, marsh fern, sensitive fern, common wrinkle-leaved goldenrod	10-12" organic soil material that in some places overlies a depleted B-horizon with 10% redoximorphic features	soil saturated to surface, wetland drainage patterns
W348	scrub-shrub	PSS	P-WL2a	green ash, red maple, witch- hazel, red spruce, Canada reed grass, marsh fern, sensitive fern, common wrinkle-leaved goldenrod	10-12" organic soil material that in some places overlies a depleted B-horizon with 10% redoximorphic features	soil saturated to surface, wetland drainage patterns
W349	emergent	PEM	P-WL2a	Canada reed grass, cinnamon fern, interrupted fern, sensitive fern, wood horsetail, beaked hazelnut, hobblebush	variable soil with redoximorphic depletions and concentrations	soil saturated to surface, free water to surface, wetland drainage patterns
W350	forested	PFO	P-WL3	yellow birch, red maple, hobblebush, sensitive fern, fowl mannagrass, spotted touch-me-not, narrow lady fern	8-10" organic soil material that in some places overlies a depleted B-horizon with 5% redoximorphic features	soil saturated to surface, wetland drainage patterns
W351	emergent	PEM	P-WL2a	cinnamon fern, mountain wood fern, dwarf raspberry, northern wood sorrel, sharp- toothed nodding-aster	~9" organic soil material	soil saturated to surface, free water to surface
W121	forested	PFO	P-WL3	red spruce, balsam fir, yellow birch, showy mountain-ash, three-seeded sedge, Canada dwarf-dogwood	6-8" organic horizon over 1" dark A horizon over depleted sandy B with 5% redoximorphic features at 10"	soil saturated to the surface, water staining, 1-2 inches to free water
W122	forested	PFO	P-WL3	red spruce, balsam fir, cinnamon fern, three-seeded sedge, creeping snowberry, three-leaved goldthread, velvet-leaf blueberry, witherod, mountain holly	dark mineral soil with depletions	soil saturated to surface
W123	forested	PFO	P-WL3	three-seeded sedge, cinnamon fern, balsam fir, three-leaved goldthread	20" dark mineral soils over a depleted horizon	soil saturated to within 2 inches of soil surface

Resource Identification Number	General Wetland Type	Cowardin Classification of Wetlands ¹	Wetland Protection Subdistrict ^{2, 3}	Dominant Vegetation	Hydric Soil Indicators	Evidence of Hydrology
W124	forested	PFO	P-WL3	red spruce, yellow birch, balsam fir, three-seeded sedge, Canada dwarf- dogwood, three-leaved goldthread, mountain holly, creeping snowberry	16" organic soil material	soil saturated to surface, free water at 3 inches below surface
W125	forested	PFO	P-WL3	red spruce, balsam fir, nodding beggar-ticks, yellow birch, hobblebush, mountain holly, American mountain- ash, three-seeded sedge, cinnamon fern, red maple, northeastern mannagrass	very dark horizon over a depleted matrix with organic streaking	soil saturated to within 1 inch of soil surface
W126	scrub-shrub	PSS	P-WL2a	red spruce, balsam fir, Canada dwarf-dogwood, hobblebush, sensitive fern, yellow birch, drooping wood sedge	dark mineral soil with depletions and organic streaking	soil saturated, wetland drainage patterns
W127	forested	PFO	P-WL3	balsam fir, yellow birch, red spruce, hobblebush, cinnamon fern, fowl mannagrass, bristly blackberry, northern wood sorrel	4-6" organic horizon over 2-4" dark A over depleted sandy B with 5% redoximorphic features at 12"	water staining, soil saturated to the surface
W128	scrub-shrub, intermittent stream	PSS	P-WL1c6, P-WL2a	red spruce, balsam fir, hobblebush, sharp-toothed nodding-aster, cinnamon fern, northeastern mannagrass	5" organic material over a depleted matrix with 2% redoximorphic depletions and refusal at 10"	soil saturated to the surface, wetland drainage patterns
W129	scrub-shrub, intermittent stream	PSS	P-WL1c6, P-WL2a	red spruce, balsam fir, Canada dwarf-dogwood, hobblebush, sensitive fern, yellow birch, drooping wood sedge	dark mineral soil with depletions and organic streaking	soil saturated, wetland drainage patterns
W130	scrub-shrub	PSS	P-WL2a	yellow birch, red spruce, red maple, bristly black currant, evergreen wood fern, fowl mannagrass, narrow lady fern	20+" organic soil material; 6-8" organic soil material over thick dark A, over depleted sandy B with 5% redoximorphic features at 10"	water staining, soil saturated to the surface
W131	forested	PFO	P-WL3	balsam fir, red spruce, mountain holly, red maple, three-seeded sedge, Canada dwarf-dogwood, three-leaved goldthread, cinnamon fern	6-8" organic horizon over 4-6" dark A horizon over depleted B with 5% redoximorphic features at 15"	soil saturated to the surface, 2-10 inches standing water

Resource Identification Number	General Wetland Type	Cowardin Classification of Wetlands ¹	Wetland Protection Subdistrict ^{2, 3}	Dominant Vegetation	Hydric Soil Indicators	Evidence of Hydrology
W132	forested	PFO	P-WL3	red spruce, balsam fir, hobblebush, Canada dwarf- dogwood, greater bladder sedge, three-leaved goldthread, velvet-leaf blueberry, creeping snowberry	6" organic over 4" of a depleted horizon with organic streaking, over 2" of a depleted sand with redoximorphic features, over rock	soil saturated to the surface
W133	scrub-shrub, forested, perennial stream	PSS, PFO	P-WL1c6, P-WL2a, P-WL3	speckled alder, balsam fir, red maple, witherod, Canada dwarf-dogwood, Labrador tea, rhodora, creeping snowberry, three-seeded sedge, mountain wood- sorrel, mountain holly, cinnamon fern, drooping sedge	30"+ organic soil material	wetland drainage patterns, trees with morphological adaptations
W134	forested/scrub-shrub, perennial stream	PFO/PSS	P-WL1c6, P-WL3, P-WL2a	red spruce, balsam fir, yellow birch, northern white-cedar, speckled alder, three-seeded sedge, Canada dwarf- dogwood, cinnamon fern, velvet-leaved blueberry, mountain holly	16" organic soil material	soil saturated to surface, free water 2 inches below soil surface
W135	scrub-shrub, emergent	PSS, PEM	P-WL2a	northeastern mannagrass, red spruce, balsam fir, hobblebush, sharp-toothed nodding-aster, dwarf raspberry, fowl mannagrass, three-leaved goldthread, sensitive fern, northern wood sorrel	12" of organic over layers of loamy sand with redoximorphic features	soil saturated to surface, areas of inundation, wetland drainage patterns
W136	scrub-shrub	PSS	P-WL2a	balsam fir, red spruce, yellow birch, mountain holly, showy mountain-ash, Canada dwarf-dogwood, three- seeded sedge, three-leaved goldthread	16+" organic soil material	soil saturated to the surface, water staining, wetland drainage patterns
W137	forested	PFO	P-WL3	red spruce, American mountain-ash, yellow birch, hobblebush, three-leaved goldthread, red maple, large cranberry, mountain holly	7" of very dark A horizon over a depleted matrix with 3% redoximorphic concentrations and organic streaking	soil saturated to surface, wetland drainage patterns
W138	forested	PFO	P-WL3	red spruce, American mountain-ash, yellow birch, hobblebush, three-leaved goldthread, red maple, large cranberry, mountain holly	7" of very dark A horizon over a depleted matrix with 3% redoximorphic concentrations and organic streaking	soil saturated to surface, wetland drainage patterns

Resource Identification Number	General Wetland Type	Cowardin Classification of Wetlands ¹	Wetland Protection Subdistrict ^{2, 3}	Dominant Vegetation	Hydric Soil Indicators	Evidence of Hydrology
W139	scrub-shrub	PSS	P-WL2a	red spruce, hobblebush, balsam fir, red maple, northern wood sorrel, Canada dwarf-dogwood, cinnamon fern, crested wood fern	3-4" organic horizon over thin dark A over depleted matrix with 5% redoximorphic at 6"	soil saturated to the surface, trees with morphological adaptations
W140	forested	PFO	P-WL3	red spruce, yellow birch, nodding beggar-ticks, three- seeded sedge, balsam fir, Canada dwarf-dogwood, three-leaved goldthread, velvet-leaved blueberry	16" organic soil material; very dark mineral soil with organic streaking	soil saturated to surface, wetland drainage patterns
W141	emergent	PEM	P-WL2a	red spruce, balsam fir, mountain paper birch, three- seeded sedge, Canada dwarf-dogwood, creeping snowberry, three-leaved goldthread	6" organic soil material over a depleted matrix with redoximorphic features at 8"	soil saturated to surface
W142	scrub-shrub	PSS	P-WL2a	red spruce, balsam fir, velvet-leaved blueberry, red maple, showy mountain-ash, yellow birch, three-leaved goldthread, Canada dwarf- dogwood	3-4" organic horizon over thin dark A over depleted B with 5% redoximorphic at 6"	soil saturated in the upper 12 inches
W143	scrub-shrub, intermittent stream	PSS	P-WL1c6	red spruce, hobblebush, balsam fir, red maple, northern wood sorrel, Canada dwarf-dogwood	16+" organic soil material; 8-10" organic horizon over thin dark A over depleted sandy B horizon with 2% redoximorphic features	soil saturated to the surface, wetland drainage patterns
W144	forested/emergent, perennial stream	PFO/PEM	P-WL1c6, P-WL2a, P-WL3	northeastern mannagrass, golden-saxifrage, Pennsylvania bitter cress, Canada reed grass, cinnamon fern, yellow birch, red maple, balsam fir, speckled alder, sensitive fern	dark, thick A over a depleted matrix with redoximorphic concentrations and some stratification	soil saturated to the surface, areas with shallow inundation, wetland drainage patterns
W145	emergent	PEM	P-WL2a	yellow birch, American beech, rattlesnake mannagrass, evergreen wood fern, cinnamon fern	5" dark mucky A over depleted matrix with 5% redoximorphic concentrations and depletions	wetland drainage patterns, soil saturated to surface
W146	emergent	PEM	P-WL2a	rattlesnake manna grass, evergreen wood fern, cinnamon fern	6" dark mucky A horizon over depleted matrix with 5% redoximorphic concentrations	shallow inundation 1-3 inches, soil saturated to surface
W147	forested	PFO	P-WL3	yellow birch, green ash, evergreen wood fern	5" dark mucky A over depleted matrix with 5% redoximorphic concentrations	soil saturated to surface, inundated with 2-4 inches of water

Resource Identification Number	General Wetland Type	Cowardin Classification of Wetlands ¹	Wetland Protection Subdistrict ^{2, 3}	Dominant Vegetation	Hydric Soil Indicators	Evidence of Hydrology
W148	forested, perennial stream	PFO	P-WL1c6, P-WL3	yellow birch, speckled alder, red spruce, red maple, gray birch, northeastern manna grass, fowl manna grass, Canada reed grass, sensitive fern, crested wood fern	O horizon over dark A over a depleted matrix with redoximorphic features	wetland drainage patterns, soil saturated to the surface, areas inundated
W149	forested, intermittent stream	PFO	P-WL1c6, P-WL3	red maple, yellow birch, speckled alder, fowl mannagrass, Canada reed grass, sensitive fern, cinnamon fern, bristly black currant	6-8" dark mucky A over a depleted matrix with 10% redoximorphic concentrations	wetland drainage patterns, soil saturated to the surface, areas inundated
W150	forested,/emergent, intermittent stream	PFO/PEM	P-WL1c6, P-WL2a, P-WL3	yellow birch, gray birch, red maple, green ash, Eastern hemlock, rattlesnake mannagrass, common wrinkle-leaved goldenrod, cinnamon fern, sensitive fern, skunk currant	6" dark mucky A horizon over depleted matrix with 5% depletions	wetland drainage patterns, soil saturated to surface
W151	forested, intermittent stream	PFO	P-WL1c6, P-WL3	yellow birch, red maple, fowl mannagrass, marsh fern, golden-saxifrage, Boot's wood fern	2" dark A over a depleted matrix, over a buried thick dark A with redoximorphic features; 18" organic soil material over a depleted matrix with redoximorphic features	soil saturated to the surface, areas of inundation
W152	emergent, perennial stream	PEM	P-WL1c6	yellow birch, speckled alder, rattlesnake mannagrass, cinnamon fern, common wrinkle-leaved goldenrod	10" organic soil material over a depleted matrix with some soil stratification	soil saturated to surface, shallow 1-3 inches standing water
W153	forested	PFO	P-WL3	gray birch, quaking aspen, yellow birch, balsam fir, common wrinkle-leaved goldenrod, cinnamon fern, evergreen wood fern, Canada reed grass, three- leaved goldthread	8" organic over depleted matrix with 10% redoximorphic concentrations	soil saturated to surface
W154	forested/emergent, perennial stream	PFO/PEM	P-WL-1c6, P-WL2a, P-WL3	red maple, yellow birch, eastern hemlock, gray birch, red spruce, speckled alder, Canada reed grass, cinnamon fern, sensitive fern, common wrinkle-leaved goldenrod, evergreen wood fern	10-12" dark mucky A horizon over depleted matrix	wetland drainage patterns, soil saturated to surface
W155	scrub-shrub, perennial stream	PSS	P-WL1c6, P-WL2a	speckled alder, Canada reed grass	flood plain soil layered sand and mixed organic	wetland drainage patterns, soil saturated to surface

Resource Identification

Number

W158

W159

W160

W161

W162

General Wetland Type	Cowardin Wetland Classification of Protectio		Dominant Vegetation	Hydric Soil Indicators	Evidence of Hydrology
General wettand Type	Wetlands ¹	Protection Subdistrict ^{2, 3}	Dominant vegetation	Hydric Soli Indicators	Evidence of Hydrology
scrub-shrub/emergent, perennial stream	PSS/PEM	P-WL1c6, P-WL2a	speckled alder, yellow birch, red maple, balsam fir, Canada reed grass, cinnamon fern, Pennsylvania bitter cress	low-chroma soil with bands of gravel and sand with redoximorphic concentrations	soil saturated to the surface, wetland drainage patterns, water-stained leaves
scrub-shrub, perennial stream	PSS	P-WL1c6, P-WL2a	speckled alder, balsam fir, yellow birch, Canada reed grass, cinnamon fern, sensitive fern, foam-flower	low-chroma soil with bands of gravel and sand with redoximorphic concentrations	soil saturated to the surface, wetland drainage patterns, water-stained leaves
scrub-shrub	PSS	P-WL2a	northern white-cedar, yellow birch, Canada reed grass, goldenrod	dark A over a depleted matrix with redoximorphic concentrations	soil saturated to the surface, free water at 3 inches
forested	PFO	P-WL3	balsam fir, hobblebush, Canada reed grass, sensitive fern, dwarf raspberry, northeastern mannagrass	thick dark A over a depleted matrix with redoximorphic concentrations	wetland drainage patterns, soil saturated to the surface, areas inundated
forested, perennial stream	PFO	P-WL1c6	balsam fir, yellow birch, Canada reed grass, zig-zag goldenrod, northeastern mannagrass	thick dark O and A over a depleted matrix with redoximorphic concentrations	wetland drainage patterns, soil saturated to the surface, areas inundated
emergent, open water, intermittent stream	PEM, PUB	P-WL1c6, P-WL2a	red maple, yellow birch, red raspberry, Canada reed grass, rattlesnake mannagrass, common woolsedge, eastern rough sedge, white meadowsweet	30" organic soil material	5-10 inches standing water, soil saturated to surface
forested	PFO	P-WL3	paper birch, Canada reed grass, sensitive fern, wood horsetail, common wrinkle- leaved goldenrod, interrupted fern, greater bladder sedge, dwarf	depleted fine sandy loam with redoximorphic concentrations	soil saturated to surface, free water ~6" below surface, wetland drainage patterns

W163	emergent, open water, intermittent stream	PEM, PUB	P-WL1c6, P-WL2a	grass, rattlesnake mannagrass, common woolsedge, eastern rough sedge, white meadowsweet	30" organic soil material	5-10 inches standing water, soil saturated to surface
W352	forested	PFO	P-WL3	paper birch, Canada reed grass, sensitive fern, wood horsetail, common wrinkle- leaved goldenrod, interrupted fern, greater bladder sedge, dwarf raspberry	depleted fine sandy loam with redoximorphic concentrations	soil saturated to surface, free water ~6" below surface, wetland drainage patterns
W357	emergent	PEM	P-WL2a	spotted touch-me-not, blue marsh violet, eastern rough sedge, interrupted fern, evergreen wood fern, hobblebush	~10" organic soil material over fine sand	soil saturated to surface, free water ~4" below surface, wetland drainage patterns
W164	emergent	PEM	P-WL2a	eastern hemlock, red maple, yellow birch, foam-flower, eastern rough sedge, evergreen wood fern	30" organic soil material	1-3 inches standing water, soil saturated to surface
W165	emergent, intermittent stream	PEM	P-WL1c6	eastern rough sedge, Canada reed grass, fiddlehead fern, sensitive fern	floodplain soil, stratified layers of gravel and an A horizon	soil saturated to the surface, wetland drainage patterns

Resource Identification Number	General Wetland Type	Cowardin Classification of Wetlands ¹	Wetland Protection Subdistrict ^{2, 3}	Dominant Vegetation	Hydric Soil Indicators	Evidence of Hydrology
W166	scrub-shrub	PSS	P-WL2a	white meadowsweet, Canada reed grass, soft rush, common woolsedge, long-beaked willow	5" dark A horizon over depleted matrix with 5% redoximorphic concentrations	10 inches standing water, soil saturated to surface
W167	scrub-shrub	PSS	P-WL2a	yellow birch, red maple, speckled alder, balsam fir, white meadowsweet, Canada reed grass, common wrinkle-leaved goldenrod	10" dark mucky A over depleted matrix	soil saturated to surface, 1-2 inches of inundation
W168	scrub-shrub, intermittent stream	PSS	P-WL1c3, P-WL1c6, P-WL2a	yellow birch, speckled alder, balsam fir, northeastern mannagrass	12" organic soil material over gleyed matrix with redoximorphic concentrations	wetland drainage patterns, soil saturated to the surface, areas inundated
W169	scrub-shrub	PSS	P-WL1c3	yellow birch, speckled alder, balsam fir, northeastern mannagrass	12" organic soil material over gleyed matrix with redoximorphic concentrations	wetland drainage patterns, soil saturated to the surface, areas inundated
W170	emergent	PEM	P-WL1c3	speckled alder, yellow birch, balsam fir, Canada reed grass, sensitive fern, royal fern	5" dark mucky A horizon over depleted matrix with 10% redoximorphic concentrations	8 inches standing water, soil saturated to surface
W172	emergent, perennial stream	PEM	P-WL1c6, P-WL1c3	Canada reed grass, golden- saxifrage, fiddlehead fern, zig-zag goldenrod, wood fern	dark, thick, mucky A horizon over a depleted sandy soil matrix with 10% redoximorphic concentrations	areas inundated, wetland drainage patterns, water- stained leaves
W173	scrub-shrub, perennial stream, intermittent streams	PSS	P-WL1c6, P-WL1c3, P-WL2a	speckled alder, red spruce, yellow birch, Canada reed grass, tussock sedge, fringed sedge, common wrinkle-leaved goldenrod, tall white-aster	16+" organic soil material in places with other areas of 4-8" dark A horizon over a depleted matrix with 5% redoximorphic concentrations	soil saturated to surface, free water 6" below ground surface, wetland drainage patterns
W174	forested, perennial stream	PFO	P-WL1c6, P-WL1c3, P-WL3	yellow birch, northern white- cedar, balsam fir, speckled alder, Canada reed grass, interrupted fern, sensitive fern, crested wood fern, cinnamon fern	thick, dark A over a depleted matrix with redoximorphic features	soil saturated to the surface, wetland drainage patterns, areas inundated
W175	forested	PFO	P-WL3	yellow birch, red maple, balsam fir, cinnamon fern, rattlesnake mannagrass, evergreen wood fern, sensitive fern	6" organic over depleted B horizon matrix with redoximorphic depletions	wetland drainage patterns, soil saturated to surface
W176	scrub-shrub, intermittent stream	PSS	P-WL1c6	yellow birch, cinnamon fern, common wrinkle-leaved goldenrod, eastern rough sedge	6-10" dark organic A horizon over depleted matrix	wetland drainage patterns, soil saturated to surface

Resource Identification Number	General Wetland Type	Cowardin Classification of Wetlands ¹	Wetland Protection Subdistrict ^{2, 3}	Dominant Vegetation	Hydric Soil Indicators	Evidence of Hydrology
W177	scrub-shrub	PSS	P-WL2a	yellow birch, common woolsedge, sensitive fern, grass-leaved goldenrod	thick, dark A with depletions, over a depleted matrix with redoximorphic concentrations at 16"	free water at 1 inch, soil saturated to the surface, ditch associated
W178	emergent	PEM	P-WL2a	yellow birch, hobblebush, cinnamon fern, evergreen wood fern, common wrinkle- leaved goldenrod, lady fern, eastern rough sedge	6" organic soil material mixed with an A-horizon over depleted matrix	wetland drainage patterns, soil saturated to surface
W353	forested	PFO	P-WL3	black ash, yellow birch, mountain maple, Canada reed grass, mannagrass, eastern rough sedge, spotted touch-me-not, field mint	16"+ organic soil material	soil saturated to surface, wetland drainage patterns
W354	forested	PFO	P-WL3	black ash, yellow birch, mountain maple, Canada reed grass, mannagrass, eastern rough sedge, spotted touch-me-not, field mint	16"+ organic soil material	soil saturated to surface, wetland drainage patterns
W355	forested	PFO	P-WL3	red maple, yellow birch, hobblebush, green ash, cinnamon fern, interrupted fern, slender lady fern, nodding sedge, Canada reed grass	10-12" organic soil material over thin dark A-horizon to depleted B-horizon with 10-25% redoximorphic features	soil saturated to surface, water-stained leaves
W356	emergent	PEM	P-WL2a	nodding sedge, sensitive fern, violet, common wrinkle- leaved goldenrod, interrupted fern, yellow birch, red raspberry, long-beaked willow	depleted fine sandy loam	soil saturated to surface, free water to surface, shallow inundation
W358	emergent, intermittent stream	PEM	P-WL1c6 P-WL2a	eastern rough sedge, spotted touch-me-not, blue marsh violet, fragrant bedstraw, foam-flower, fringed willow-herb	~4-10" organic soil material	soil saturated to surface, free water to surface, wetland drainage patterns
W359	emergent	PEM	P-WL2a	eastern rough sedge, two- leaved toothwort, silvery glade fern	~12" organic soil material	soil saturated to surface, free water at ~12" below surface
W360	emergent	PEM	P-WL2a	mannagrass, northern wood sorrel, starflower, wild sarsaparilla	~9-10" organic soil material over depleted sand	soil saturated to surface

Resource Identification Number	General Wetland Type	Cowardin Classification of Wetlands ¹	Wetland Protection Subdistrict ^{2, 3}	Dominant Vegetation	Hydric Soil Indicators	Evidence of Hydrology
W361	emergent	PEM	P-WL2a	mannagrass, common wrinkle-leaved goldenrod, foam-flower, red maple, hobblebush, speckled alder, balsam fir, yellow birch	depleted fine sand	soil saturated to surface, shallow inundation in ruts
W362	scrub-shrub	PSS	P-WL2a	speckled alder, yellow birch, red maple, Canada reed grass, sensitive fern, evergreen wood fern, starflower, tall white-aster, cinnamon fern, slender lady fern	~3" organic soil material over depleted matrix with redoximorphic features	soil saturated to surface, free water at 9" below surface
W363	forested	PFO	P-WL3	yellow birch, red maple, green ash, New York fern, mannagrass, dwarf raspberry, foam-flower, spotted touch-me-not, fringed sedge	20" dark mineral soil over depleted matrix with 15% organic streaking	soil saturated to surface, free water at 7" below surface, wetland drainage patterns
W364	emergent	PEM	P-WL2a	fringed sedge, foam-flower, common wrinkle-leaved goldenrod, dwarf raspberry, tall meadow rue, spotted touch-me-not, red maple	variable soil with areas of depleted matrix and areas with redoximorphic concentrations and depletions	soil saturated to surface
W365	emergent	PEM	P-WL2a	dwarf raspberry, interrupted fern, tall meadow rue, sedge, three-leaved goldthread, black ash, red maple, beaked hazelnut	depleted sand with mixed alluvial depositions	soil saturated to surface, free water at 2" below surface, wetland drainage patterns
W179	emergent	PEM	P-WL2a	red-osier dogwood, yellow birch, Canada reed grass, white meadowsweet, sallow sedge	4-5" dark mucky A horizon over a depleted matrix with 5-10% redoximorphic concentrations	ruts with standing water, soil saturated to surface
W180	emergent	PEM	P-WL2a	eastern rough sedge, fringed willow-herb, fowl mannagrass, yellow birch	dark A over a depleted matrix with redoximorphic concentrations	wetland drainage patterns
W181	emergent	PEM	P-WL2a	golden-saxifrage, cinnamon fern, woodland horsetail, sharp-toothed nodding-aster	12" organic soil material over a depleted matrix	soil saturated to the surface
W182	emergent, intermittent stream	PEM	P-WL1c6, P-WL2a	common woolsedge, fringed sedge	sandy A horizon over a sandy B horizon over a buried organic soil layer over a depleted matrix with redoximorphic concentrations	wetland drainage patterns, soil saturated
W183	emergent, intermittent stream	PEM	P-WL1c6, P-WL2a	common woolsedge, fringed sedge	depleted sandy soil with redoximorphic concentrations	wetland drainage patterns, soil saturated

Resource Identification Number	General Wetland Type	Cowardin Classification of Wetlands ¹	Wetland Protection Subdistrict ^{2, 3}	Dominant Vegetation	Hydric Soil Indicators	Evidence of Hydrology
W184	emergent	PEM	P-WL2a	northeastern mannagrass, common woolsedge, fringed sedge, sensitive fern, golden-saxifrage	dark A horizon over a depleted sand	soil saturated to surface, wetland drainage patterns
W185	emergent	PEM	P-WL2a	golden-saxifrage, fowl mannagrass, hobblebush	mixed dark, mucky A/O over a depleted matrix with redoximorphic concentrations	wetland drainage patterns, soil saturated to the surface
W186	emergent	PEM	P-WL2a	northeastern mannagrass, golden-saxifrage, interrupted fern, yellow birch	8" organic over a depleted matrix with redoximorphic concentrations	soil saturated to the surface, areas of inundation
W187	emergent	PEM	P-WL2a	common woolsedge, evergreen wood fern, common wrinkle-leaved goldenrod, sharp-toothed nodding-aster, green ash, yellow birch, horsetail species	sandy A horizon over a depleted B with 2% redoximorphic features over a buried O horizon	soil saturated to surface, areas of inundation, wetland drainage patterns
W188	emergent	PEM	P-WL2a	red raspberry, bristly blackberry, coltsfoot, Canada reed grass, common wrinkle- leaved goldenrod, common grass-leaved goldenrod, yellow birch	sandy A horizon over a sandy B horizon with redoximorphic features	wetland drainage patterns, soil saturated to surface
W190	emergent	PEM	P-WL2a	eastern rough sedge, Canada reed grass, common grass-leaved goldenrod, northeastern mannagrass, common woolsedge, fringed sedge, red raspberry, yellow birch, paper birch, Canada goldenrod	5" O horizon over a depleted matrix with redoximorphic features	soil saturated 3 inches below soil surface, some areas inundated, wetland drainage patterns
W191	emergent	PEM	P-WL2a	northeastern mannagrass, fringed sedge, yellow birch	dark, thick A over a depleted matrix with redoximorphic concentrations	free water at surface, soil saturated to the surface, wetland drainage patterns
W192	emergent, intermittent stream	PEM	P-WL1c6, P-WL2a	eastern rough sedge, fringed sedge, evergreen wood fern, sharp-toothed nodding-aster, Canada goldenrod, zig-zag goldenrod, common grass- leaved goldenrod	10" dark A over a depleted matrix with redoximorphic features	soil saturated to surface, inundated in some areas
W193	emergent	PEM	P-WL2a	three-seeded sedge, common woolsedge, golden- saxifrage, fringed willow- herb, evergreen wood fern, white ash, red raspberry, pointed broom sedge	mucky A with redoximorphic features over depleted matrix	soil saturated to surface, wetland drainage patterns, some areas of inundation

Resource Identification Number	General Wetland Type	Cowardin Classification of Wetlands ¹	Wetland Protection Subdistrict ^{2, 3}	Dominant Vegetation	Hydric Soil Indicators	Evidence of Hydrology
W372	forested	PFO	P-WL3	yellow birch, red spruce, striped maple, hobblebush, golden-saxifrage, spotted touch-me-not, evergreen wood fern, common grass- leaved goldenrod	3" organic soil material over depleted matrix	soil saturated to surface, free water at 2" below surface, small areas of shallow inundation
W373	emergent	PEM	P-WL2a	dwarf raspberry, spotted touch-me-not, , sharp- toothed nodding-aster, three- seeded sedge, common wrinkle-leaved goldenrod, hobblebush, American honeysuckle	~6" organic soil material over depleted matrix with redoximorphic concentrations	soil saturated to surface, free water to surface
W374	emergent	PEM	P-WL2a	spotted touch-me-not, New York fern, sharp-toothed nodding-aster, dwarf raspberry, cinnamon fern, yellow birch, hobblebush	depleted B-horizon	soil saturated to surface, free water at 4" below surface, wetland drainage patterns
W384	emergent	PEM	P-WL2a	fringed sedge, field horsetail, sharp-toothed nodding-aster, tall white-aster, yellow birch, long-beaked willow	1" organic soil material over depleted matrix with 5% redoximorphic features	soil saturated to surface, area of shallow inundation
W385	scrub-shrub	PSS	P-WL2a	speckled alder, yellow birch, smooth white violet, sensitive fern, soft rush, common selfheal, tall white-aster, purple-stemmed American- aster	low chroma sand with 25-40% redoximorphic depletions	soil saturated to surface, wetland drainage patterns
W386	scrub-shrub	PSS	P-WL2a	speckled alder, long-beaked willow, balsam poplar, Canada reed grass, field horsetail, common wrinkle- leaved goldenrod, blue marsh violet	depleted sandy loam with redoximorphic concentrations	soil saturated to surface, free water at ~4" below surface, water-stained leaves, wetland drainage patterns
W194	emergent	PEM	P-WL2a	northeastern mannagrass, golden-saxifrage, sensitive fern, fowl mannagrass, Canada reed grass	dark, thick A over a depleted sandy B with 10% redoximorphic concentrations	soil saturated to the surface, free water at 3 inches
W195	emergent	PEM	P-WL2a	fowl mannagrass, Canada reed grass, northeastern mannagrass, fringed sedge, common woolsedge, Canada goldenrod, fringed willow- herb, common grass-leaved goldenrod, yellow birch, American beech	thick, dark A horizon over a depleted sand with 10% redoximorphic concentrations	soil saturated to surface, free water at 3 inches below soil surface, wetland drainage patterns

Resource Identification Number	General Wetland Type	Cowardin Classification of Wetlands ¹	Wetland Protection Subdistrict ^{2, 3}	Dominant Vegetation	Hydric Soil Indicators	Evidence of Hydrology
W196	emergent	PEM	P-WL2a	woolsedge, northeastern mannagrass, eastern rough sedge	dark A over a depleted matrix with oxidized rhizospheres and redoximorphic concentrations	soil saturated to the surface, areas of inundation
W197	scrub-shrub	PSS	P-WL2a	red maple, yellow birch, Canada reed grass, common wrinkle-leaved goldenrod, red raspberry, evergreen wood fern, northeastern mannagrass, greater bladder sedge	sandy A over a sandy B with 2% redoximorphic features over a buried O horizon	soil saturated 2 inches below soil surface, areas of inundation, wetland drainage patterns
W198	scrub-shrub	PSS	P-WL2a	yellow birch, northeastern mannagrass, evergreen wood fern, fringed sedge, red raspberry, common wrinkle-leaved goldenrod, coltsfoot, sensitive fern	2" O horizon over a depleted sand with redoximorphic features	soil saturated 3" below soil surface, wetland drainage patterns
W199	scrub-shrub	PSS	P-WL2a	yellow birch, red maple, fringed sedge, eastern rough sedge, northeastern mannagrass	dark A over a depleted matrix with oxidized rhizospheres	areas inundated, soil saturated to the surface, free water at 5 inches below surface
W200	emergent	PEM	P-WL2a	Canada reed grass, golden- saxifrage, fiddlehead fern, zig-zag goldenrod, wood fern species, yellow birch	thick, dark, mucky A/O over a depleted matrix with 10% redoximorphic features. Depleted sandy soil with redoximorphic concentrations and oxidized rhizospheres	areas of inundation, water- stained leaves, wetland drainage patterns, soil saturated to the surface
W201	scrub-shrub	PSS	P-WL2a	red maple, American beech, striped maple, fringed sedge, sharp-toothed nodding-aster, fringed willow-herb, Canada goldenrod, common wrinkle- leaved goldenrod, red raspberry, northeastern mannagrass	10" dark, sandy A over a depleted matrix over a buried O horizon	inundated, wetland drainage patterns
W202	emergent	PEM	P-WL2a	eastern rough sedge, fringed sedge, common woolsedge, fringed willow-herb, Canada reed grass, evergreen wood fern, sensitive fern, red raspberry	5" very dark A horizon over a depleted matrix with 10% redoximorphic concentrations	soil saturated to surface, water-stained leaves, wetland drainage patterns
W203	emergent	PEM	P-WL2a	fringed sedge, fowl mannagrass, golden- saxifrage, northeastern mannagrass, sensitive fern, sharp-toothed nodding-aster, red maple, yellow birch	thick, dark A over a depleted matrix with redoximorphic concentrations and oxidized rhizospheres	soil saturated to surface, areas of inundation, free water at 4 inches below soil surface

Resource Identification Number	General Wetland Type	Cowardin Classification of Wetlands ¹	Wetland Protection Subdistrict ^{2, 3}	Dominant Vegetation	Hydric Soil Indicators	Evidence of Hydrology
W204	forested	PFO	P-WL3	red maple, northeastern mannagrass, yellow birch, cinnamon fern, hobblebush	dark mineral soil with redoximorphic depletions over a depleted matrix with redoximorphic concentrations	soil saturated, areas inundated
W205	emergent	PEM	P-WL2a	northeastern mannagrass, fringed sedge, interrupted fern	dark soil matrix with redoximorphic concentrations	soil saturated to 2 inches, free water at 8 inches
W206	emergent, intermittent stream	PEM	P-WL1c6	evergreen wood fern, cinnamon fern, woolsedge species, mannagrass species, Canada reed grass, yellow birch, green ash	2" O horizon over 2" dark A horizon over a depleted matrix with redoximorphic features	soil saturated to surface, wetland drainage patterns
W207	scrub-shrub	PSS	P-WL2a	red maple, yellow birch, red spruce, hobblebush, fringed sedge, Canada reed grass, red raspberry	dark mineral soil with redoximorphic depletions	wetland drainage patterns, soil saturated to the surface
W208	emergent	PEM	P-WL2a	eastern rough sedge, common woolsedge, evergreen wood fern, red raspberry	10" O horizon over a depleted matrix with redoximorphic features	soil saturated to surface, inundated
W209	emergent	PEM	P-WL2a	common woolsedge, northeastern mannagrass, fringed sedge, red raspberry, common grass-leaved goldenrod, yellow birch, paper birch	10" dark A over a depleted matrix with redoximorphic features	inundated, wetland drainage patterns
W210	emergent	PEM	P-WL2a	eastern rough sedge, common woolsedge, common grass-leaved goldenrod, evergreen wood fern, red raspberry, yellow birch	5" O horizon over 2" dark A horizon over a depleted matrix with redoximorphic features	soil saturated to surface, wetland drainage patterns
W211	scrub-shrub	PSS	P-WL2a	paper birch, American beech, fowl mannagrass, evergreen wood fern, three- leaved goldthread	10" dark A over a gleyed matrix	soil saturated to surface
W212	scrub-shrub	PSS	P-WL2a	hobblebush, fowl mannagrass, fringed sedge, American beech, balsam fir, evergreen wood fern, three- leaved goldthread	3" O horizon over 3" A horizon over a gleyed matrix	soil saturated to surface, wetland drainage patterns
W213	emergent	PEM	P-WL2a	eastern rough sedge, cinnamon fern, fringed willow herb, northeastern mannagrass	6" of organic over depleted matrix with 2 percent redoximorphic features	soil saturated to surface, drainage patterns, some areas of inundation

General Wetland Ty

emergent

emergent

emergent

emergent

Resource Identification

Number

W214

W215

W216

W217

					5
	-	-		-	
Гуре	Cowardin Classification of Wetlands ¹	Wetland Protection Subdistrict ^{2, 3}	Dominant Vegetation	Hydric Soil Indicators	Evidence of Hydrology
	PEM	P-WL2a	fringed sedge, fowl mannagrass, sharp-toothed nodding-aster, Canada reed grass, three-petaled bedstraw	thick, dark, mucky A over a low chroma matrix with redoximorphic features	soil saturated to surface, areas of inundation, wetland drainage patterns
	PEM	P-WL2a	fringed sedge, eastern rough sedge, cinnamon fern, fringed willow herb, northeastern mannagrass	6" of mucky A over depleted matrix with 10% redoximorphic concentrations	soil saturated to surface, drainage patterns, some areas of inundation
	PEM	P-WL2a	red maple, red spruce, yellow birch, fringed sedge, rattlesnake mannagrass, common woolsedge, fringed willow-herb, sharp-toothed nodding-aster, sensitive fern, short-tail rush	8" of very dark A horizon over a depleted matrix with 5% redoximorphic concentrations	soil saturated to surface, half of wetland is ponded
	PEM	P-WL2a	common woolsedge, red raspberry, yellow birch	thick, dark A over a depleted matrix with redoximorphic concentrations and oxidized rhizospheres	areas of inundation and soil saturated to the surface
scrub- tream	PFO, PEM, PSS	P-WL1c6, P-WL2a, P-WL3	yellow birch, red maple, red spruce, balsam fir, speckled alder, fringed sedge, short- tailed rush, eastern rough sedge, common woolsedge, Canada goldenrod, rattlesnake mannagrass, sensitive fern, golden- saxifrage, sharp-toothed nodding-aster	6" very mucky, dark A over a depleted matrix with 12% redoximorphic concentrations. 8- 16" organic soil material occur in small areas throughout the wetland	soil saturated to surface, wetland drainage patterns, areas inundated, water- stained leaves
			northeastern mannagrass,		areas inundated, soil

W218	forested, emergent, scrub- shrub, intermittent stream	PFO, PEM, PSS	P-WL1c6, P-WL2a, P-WL3	sedge, common woolsedge, Canada goldenrod, rattlesnake mannagrass, sensitive fern, golden- saxifrage, sharp-toothed nodding-aster	redoximorphic concentrations. 8- 16" organic soil material occur in small areas throughout the wetland	wetland drainage patterns, areas inundated, water- stained leaves
W219	emergent	PEM	P-WL2a	northeastern mannagrass, golden-saxifrage, yellow birch	24" organic soil material	areas inundated, soil saturated to the surface, water-stained leaves
W220	emergent	PEM	P-WL2a	northeastern mannagrass, golden-saxifrage, Canada reed grass, three-seeded sedge, yellow birch	thick, dark A over a depleted matrix with redoximorphic concentrations	wetland drainage patterns, areas inundated, soil saturated to the surface
W221	emergent, intermittent stream	PEM	P-WL1c6	Canada reed grass, golden- saxifrage, hobblebush, hop- hornbeam	soil disturbed; dark matrix with redoximorphic depletions	wetland drainage patterns, areas inundated
W222	emergent	PEM	P-WL2a	common woolsedge, peat moss	2" O horizon over 2" A horizon over a depleted matrix with redoximorphic features	soil saturated to surface, 8 inches of standing water
W223	emergent	PEM	P-WL2a	common woolsedge, three- seeded sedge, yellow birch	thick, dark A over a depleted matrix with oxidized rhizospheres	areas inundated, soil saturated at 2 inches below soil surface

Resource Identification Number	General Wetland Type	Cowardin Classification of Wetlands ¹	Wetland Protection Subdistrict ^{2, 3}	Dominant Vegetation	Hydric Soil Indicators	Evidence of Hydrology
W224	emergent	PEM	P-WL2a	common woolsedge, red raspberry, soft rush, balsam fir, yellow birch	7" of dark A over a depleted matrix with redoximorphic features	soil saturated to surface, inundation
W225	forested	PFO	P-WL3	three-seeded sedge, common woolsedge, golden- saxifrage, fringed willow- herb, yellow birch, marsh fern, red spruce	20" of organic over depleted sandy soil with 20% redoximorphic features	soil saturated to surface, wetland drainage patterns, some areas of inundation
W226	scrub-shrub	PSS	P-WL2a	common woolsedge, three- seeded sedge red spruce, balsam fir	10" organic over dark mineral soil with depletions	soil saturated to surface, areas inundated
W227	forested	PFO	P-WL3	balsam fir, red spruce, heart- leaved paper birch, three- seeded sedge, creeping snowberry, goldthread, Canada dwarf-dogwood	6" organic soil material over a depleted matrix with redoximorphic concentrations at 8"	soil saturated to the surface, standing water in topographic pits
W228	emergent	PEM	P-WL2a	sharp-toothed nodding-aster, sugar maple, rattlesnake mannagrass, evergreen wood fern, northern wood sorrel, dewdrop	mucky A-horizon over a depleted sandy soil with 3% redoximorphic concentrations	soil saturated to surface, wetland drainage patterns
W229	emergent, perennial stream	PEM	P-WL1c6	sharp-toothed nodding-aster, sugar maple, rattlesnake mannagrass, evergreen wood fern, northern wood sorrel, dewdrop	4" organic soil material over depleted matrix with 10% redoximorphic concentrations	soil saturated to surface, wetland drainage patterns
W230	emergent, intermittent stream	PEM,	P-WL1c6	hobblebush, northeastern mannagrass, bristly black currant, dwarf raspberry, northern wood sorrel, mountain wood fern	mixed organic soil and mineral soil over a depleted matrix over a buried A	soil saturated to surface
W231	scrub-shrub, intermittent stream	PSS	P-WL1c6, P-WL2a	rattlesnake mannagrass, common wrinkle-leaved goldenrod, dwarf raspberry, beaked hazelnut, hobblebush, evergreen wood fern, marsh fern, sharp- toothed nodding-aster	18" organic soil material over rock	wetland drainage patterns, soil saturated to surface, areas of inundation
W232	emergent	PEM	P-WL2a	Canada reed grass, sharp- toothed nodding-aster, spotted touch-me-not	16+" of organic soil material over bedrock	soil saturated to surface, areas of inundation
W233	scrub-shrub	PSS	P-WL2a	three-seeded sedge, evergreen wood fern, red spruce, paper birch, cinnamon fern, balsam fir, Canada dwarf-dogwood	16" dark, mucky A over a depleted matrix both with redoximorphic concentrations	wetland drainage patterns, soil saturated to surface, free water at 3 inches

General Wetland Type

Resource Identification

Number

Cowardin Classification of Wetlands¹

			.
Wetland Protection Subdistrict ^{2, 3}	Dominant Vegetation	Hydric Soil Indicators	Evidence of Hydrology
P-WL3	red spruce, balsam fir, cinnamon fern, common lowbush blueberry, sharp- toothed nodding-aster, three- seeded sedge	4-8" of dark A over a depleted matrix	soil saturated to surface, areas of inundation, trees with morphological adaptations
P-WL2a	red spruce, yellow birch, hobblebush, balsam fir, three-seeded sedge, sharp- toothed nodding-aster, red raspberry, long beech fern	14" of very dark, mucky A over a depleted matrix with 5% redoximorphic features	soil saturated to surface, free water 1 inch below soil surface
P-WL2a	northeastern mannagrass, Canada dwarf-dogwood, hobblebush, dwarf raspberry, cinnamon fern, balsam fir	10" organic soil material over a dark A-horizon with 12% redoximorphic features	soil saturated to the surface, free water at 2 inches below the soil surface
P-WL3	red spruce, cinnamon fern, Canada dwarf-dogwood, sharp-toothed nodding aster, three-leaved goldthread, three-seeded sedge	16" dark mineral soil with redoximorphic concentrations and depletions over a depleted matrix with redoximorphic concentrations over rock	soil saturated to surface, small areas of inundation, wetland drainage patterns
	red spruce, yellow birch,		

W234	forested	PFO	P-WL3	cinnamon fern, common lowbush blueberry, sharp- toothed nodding-aster, three- seeded sedge	4-8" of dark A over a depleted matrix	areas of inundation, trees with morphological adaptations
W235	scrub-shrub	PSS	P-WL2a	red spruce, yellow birch, hobblebush, balsam fir, three-seeded sedge, sharp- toothed nodding-aster, red raspberry, long beech fern	14" of very dark, mucky A over a depleted matrix with 5% redoximorphic features	soil saturated to surface, free water 1 inch below soil surface
W236	emergent	PEM	P-WL2a	northeastern mannagrass, Canada dwarf-dogwood, hobblebush, dwarf raspberry, cinnamon fern, balsam fir	10" organic soil material over a dark A-horizon with 12% redoximorphic features	soil saturated to the surface, free water at 2 inches below the soil surface
W237	forested	PFO	P-WL3	red spruce, cinnamon fern, Canada dwarf-dogwood, sharp-toothed nodding aster, three-leaved goldthread, three-seeded sedge	16" dark mineral soil with redoximorphic concentrations and depletions over a depleted matrix with redoximorphic concentrations over rock	soil saturated to surface, small areas of inundation, wetland drainage patterns
W238	forested	PFO	P-WL3	red spruce, yellow birch, mountain paper birch, red maple, three-seeded sedge, Canada dwarf-dogwood, cinnamon fern, interrupted fern, three-leaved goldthread	8" of dark A over a depleted matrix with 4% redoximorphic concentrations	soil saturated to surface, water stained leaved, wetland drainage patterns
W239	scrub-shrub/emergent	PSS/PEM	P-WL2a	yellow birch, red spruce, balsam fir, greater bladder sedge, Canada dwarf- dogwood	dark A over a depleted matrix with redoximorphic concentrations	soil saturated to within 2 inches of surface, area of inundation, wetland drainage patterns
W240	emergent	PEM	P-WL2a	northeastern mannagrass, Canada reed grass, dwarf raspberry, evergreen wood fern, mountain wood fern, sharp-toothed nodding-aster, northern wood sorrel, smooth white violet, hobblebush, yellow birch, red spruce	7" dark, mucky A over a depleted matrix with redoximorphic features	soil saturated to surface, wetland drainage patterns
W241	emergent, intermittent stream	PEM	P-WL1c6	northeastern mannagrass, sharp-toothed nodding-aster, three-seeded sedge, smooth white violet, dwarf raspberry	16" of dark A over a depleted matrix with 3% redoximorphic features	soil saturated to surface
W242	scrub-shrub	PSS	P-WL2a	sharp-toothed aster, cinnamon fern, red spruce, three-seeded sedge, paper birch	depleted matrix at 6" with organic mixed throughout	soil saturated to surface

emergent

emergent

General

Resource Identification

Number

W243

W244

W245

W246

W247

W248

W249

W250

W251

W252

neral Wetland Type	Cowardin Classification of Wetlands ¹	Wetland Protection Subdistrict ^{2, 3}	Dominant Vegetation	Hydric Soil Indicators	Evidence of Hydrology
scrub-shrub	PSS	P-WL2a	yellow birch, fringed sedge, evergreen wood fern, mountain wood fern, red raspberry, balsam fir	dark, mucky A over depleted matrix	soil saturated to surface, areas of inundation
scrub-shrub	PSS	P-WL2a	three-seeded sedge, red spruce, balsam fir, paper birch, yellow birch, common woolsedge, sharp-toothed aster, marsh fern	12" somewhat well decomposed (hemic) O horizon	soil saturated to surface, free water at 3", trees with morphological adaptations
scrub-shrub	PSS	P-WL2a	red spruce, three-seeded sedge, balsam fir, Canada dwarf-dogwood	12" O horizon	soil saturated to surface, free water at 3 inches, trees with morphological adaptations
emergent	PEM	P-WL2a	common woolsedge, Canada reed grass, greater bladder sedge, red raspberry, balsam fir, red maple, yellow birch	6" of dark A over a depleted matrix	areas of inundation, soil saturated to surface
forested	PFO	P-WL3	red spruce, yellow birch, balsam fir, hobblebush, three-seeded sedge, greater bladder sedge, Canada dwarf-dogwood, sharp- toothed nodding-aster	20" of very dark A over a depleted matrix with 4% redoximorphic features	soil saturated to surface, free water 3 inches below soil surface
scrub-shrub	PSS	P-WL2a	red spruce, yellow birch, hobblebush, balsam fir, three-seeded sedge, sharp- toothed nodding-aster, red raspberry, long beech fern	20" + of moderately decomposed peat, histosol	soil saturated to surface, free water 1 inch below soil surface
forested	PFO	P-WL3	red spruce, yellow birch, hobblebush, balsam fir, sharp-toothed nodding-aster, Canada dwarf-dogwood	dark mineral soils with 2% redoximorphic features in underlying horizons	Soil saturated to surface, wetland drainage patterns
emergent	PEM	P-WL2a	northeastern mannagrass, Canada dwarf-dogwood, hobblebush, dwarf raspberry, cinnamon fern, balsam fir	10" organic soil material over a dark A-horizon with 12% redoximorphic features	soil saturated to the surface, free water at 2 inches below the soil surface

cinnamon fern, balsam fir red raspberry, nodding

sedge, three-leaved

goldthread, soft rush,

common woolsedge red raspberry, nodding sedge, three-leaved

goldthread, soft rush,

sedge

common woolsedge, barber-

pole bulrush, yellow-green

PEM

PEM

P-WL2a

P-WL2a

soil saturated to surface,

wetland drainage patterns

soil saturated to surface,

wetland drainage patterns

water stained leaves,

water stained leaves,

4-6" of dark A over a depleted

matrix with 15% redoximorphic

4-6" of dark A over a depleted

matrix with 15% redoximorphic

features

features

Resource Identification Number	General Wetland Type	Cowardin Classification of Wetlands ¹	Wetland Protection Subdistrict ^{2, 3}	Dominant Vegetation	Hydric Soil Indicators	Evidence of Hydrology
W253	emergent, intermittent stream	PEM	P-WL1c6, P-WL2a	red raspberry, nodding sedge, three-leaved goldthread, soft rush, common woolsedge, barber- pole bulrush, yellow-green sedge	4-6" of dark A over a depleted matrix with 15% redoximorphic features	soil saturated to surface, water stained leaves, wetland drainage patterns
W254	forested, emergent	PFO, PEM	P-WL2a, P-WL3	red spruce, balsam fir, fowl mannagrass, cinnamon fern, tussock sedge, small white American-aster	4-8" dark A over depleted matrix with 5% redoximorphic features	soil saturated to surface, wetland drainage patterns, areas of inundation
W255	forested, intermittent stream	PFO	P-WL1c6, P-WL3	red spruce, yellow birch, red maple, common woolsedge, hay-scented fern	dark A over a depleted matrix with redoximorphic features	soil saturated to surface, areas of inundation, wetland drainage patterns
W256	forested	PFO	P-WL3	red spruce, yellow birch, balsam fir, common woolsedge, fringed sedge, three-seeded sedge, Canada reed grass	depleted B horizon	soil saturated to surface, pockets of standing water
W257	emergent	PEM	P-WL2a	common woolsedge, Canadian rush, balsam fir, yellow birch	thick organic and dark A-horizon over a low chroma matrix with redoximorphic features	areas of inundation
W258	emergent	PEM	P-WL2a	common woolsedge, yellow birch, black-girdled woolsedge	depleted matrix,	soil saturated to surface, smalls pools of 9 inches of water in areas
W259	emergent	PEM	P-WL2a	northeastern mannagrass, soft rush, red raspberry, fringed sedge	gleyed matrix	wetland drainage patterns, soil saturated to surface
W260	emergent	PEM	P-WL2a	common woolsedge, soft rush, red raspberry, common wrinkle-leaved goldenrod, long-beaked willow	depleted soils with redoximorphic concentrations	soil saturated to surface, free water 4 inches below ground surface
W262	emergent, intermittent stream	PEM	P-WL1c6	Canada reed grass, northeastern mannagrass, eastern rough sedge, golden-saxifrage, fringed willow-herb	gleyed matrix with redoximorphic features	soil saturated to surface, areas of inundation, free water at 1 inch below surface
W263	forested/emergent	PFO/PEM	P-WL2a, P-WL3	red spruce, yellow birch, red maple, speckled alder, hobblebush, cinnamon fern, three-seeded sedge, northeastern mannagrass, sweet white violet, marsh fern	areas of 8-16" organic soil material	areas of inundation, soil saturated to surface, wetland drainage patterns

Resource Identification Number	General Wetland Type	Cowardin Classification of Wetlands ¹	Wetland Protection Subdistrict ^{2, 3}	Dominant Vegetation	Hydric Soil Indicators	Evidence of Hydrology
W264	emergent, intermittent stream	PEM	P-WL1c6	three-seeded sedge, northeastern mannagrass, northern wood sorrel, mountain holly	gleyed matrix with redoximorphic features	soil saturated to surface, areas of inundation, free water at 1 inch below surface
W265	forested	PFO	P-WL3	red spruce, balsam fir, Canada dwarf-dogwood, cinnamon fern, speckled alder, three-seeded sedge, wrinkle-leaf goldenrod	16" organic soil material	soil saturated to the surface, areas of standing water, wetland drainage patterns
W266	emergent	PEM	P-WL2a	common woolsedge, fringed sedge, northeastern mannagrass, yellow birch, smooth white violet	depleted soil matrix	soil saturated to surface, wetland drainage patterns
W267	emergent	PEM	P-WL2a	common woolsedge, fringed sedge, eastern rough sedge	dark A over a depleted matrix with redoximorphic features	soil saturated to surface, water-stained leaves
W268	forested	PFO	P-WL3	balsam fir, red spruce, yellow birch, three-seeded sedge	16" organic soil material	soil saturated to surface, free water to surface, pockets of shallow standing water
W269	emergent	PEM	P-WL2a	common woolsedge, long beaked willow, red raspberry, paper birch, sensitive fern, common grass-leaved goldenrod	16" of organic soil material over a depleted matrix	soil saturated to the surface, areas of standing water, wetland drainage patterns
W270	emergent	PEM	P-WL2a	American beech, evergreen wood fern, common grass- leaved goldenrod, sharp- toothed nodding-aster, fowl mannagrass, New York fern	2" organic soil material over 15" of gleyed matrix	soil saturated to the surface, areas of standing water, wetland drainage patterns
W271	emergent	PEM	P-WL2a	yellow birch, long-beaked willow, common woolsedge, wrinkle-leaved goldenrod, red maple, red raspberry, eastern rough sedge, fowl mannagrass	depleted matrix	soil saturated to surface, free water to surface
W272	scrub-shrub	PSS	P-WL2a	paper birch, yellow birch, soft rush, red raspberry, chaffy sedge, red spruce, cinnamon fern	12" organic soil material over a depleted matrix	soil saturated to the surface, areas of standing water, wetland drainage patterns
W273	forested	PFO	P-WL3	red spruce, yellow birch, speckled alder, paper birch, northeastern mannagrass, mountain wood fern, fringed sedge, sweet white violet, three-seeded sedge, northern water horehound	20+" organic soil material	soil saturated to surface, areas of inundation, free water at 2 inches below surface

Resource Identification Number	General Wetland Type	Cowardin Classification of Wetlands ¹	Wetland Protection Subdistrict ^{2, 3}	Dominant Vegetation	Hydric Soil Indicators	Evidence of Hydrology
W274	scrub-shrub	PSS	P-WL2a	nodding sedge, eastern rough sedge, Canada reed grass, common wrinkled- leave goldenrod, sugar maple, striped maple, long- beak willow	10" of Dark A over loamy sand with concentrations	downhill seep, soil saturated to surface
W275	emergent	PEM	P-WL2a	eastern rough sedge, sugar maple, red raspberry, golden-saxifrage, evergreen wood fern, marsh fern, American beech	10" of dark A over 3" of loamy sand with depletions	soil saturated to surface, areas of standing water, wetland drainage patterns
W276	emergent	PEM	P-WL2a	interrupted fern, Canada reed grass, red raspberry, yellow birch, pointed broom sedge	thick, dark A over a depleted matrix with redoximorphic features	soil saturated to surface, free water at 2 inches below surface, small areas of inundation
W277	emergent	PEM	P-WL2a	Canada reed grass, golden- saxifrage, fiddlehead fern, zig-zag goldenrod, wood fern species, yellow birch	thick, dark, mucky A/O over a depleted matrix with 10% redoximorphic features	areas of inundation, water- stained leaves, wetland drainage patterns
W278	emergent	PEM	P-WL2a	fringed sedge, common grass-leaved goldenrod, soft rush, common wool sedge, pearly everlasting	15" of dark A over loamy sand with depletions	soil saturated to the surface, areas of standing water, wetland drainage patterns
W279	emergent	PEM	P-WL2a	sharp-toothed nodding-aster, zig-zag goldenrod, Pennsylvania bitter-cress	dark A over low chroma matrix with redoximorphic features and oxidized rhizospheres.	soil saturated to surface, wetland drainage patterns
W280	emergent	PEM	P-WL2a	fringed sedge, common grass- leaved goldenrod, soft rush, common wool sedge, pearly everlasting	15" dark A over loamy sand with redoximorphic depletions	soil saturated to the surface, areas of standing water, wetland drainage patterns
W281	scrub-shrub	PSS	P-WL2a	sharp-toothed nodding-aster, evergreen wood fern, Canada reed grass, common wrinkled-leave goldenrod, Canada goldenrod, sensitive fern	3" dark A over depleted matrix with 20% redoximorphic features	soil saturated to the surface, areas of standing water, wetland drainage patterns
W282	scrub-shrub/emergent	PSS/PEM	P-WL2a	yellow birch, fringed willow- herb, slender wood-reed, cinnamon fern, eastern rough sedge, woodland horsetail, evergreen wood fern, sensitive fern, rattlesnake mannagrass, Canada reed grass, common wrinkle-leaved goldenrod	3" dark A over depleted matrix with 20% redoximorphic features	soil saturated to the surface, areas of standing water, wetland drainage patterns

Resource Identification Number	General Wetland Type	Cowardin Classification of Wetlands ¹	Wetland Protection Subdistrict ^{2, 3}	Dominant Vegetation	Hydric Soil Indicators	Evidence of Hydrology
W283	scrub-shrub	PSS	P-WL2a	nodding sedge, eastern rough sedge, Canada reed grass, common wrinkled- leave goldenrod, sugar maple, striped maple, long- beak willow	15" sandy loam with 15% redoximorphic features	inundated, wetland drainage patterns
W284	scrub-shrub, intermittent stream	PSS	P-WL1c6	sharp-toothed nodding-aster, fragrant bedstraw, common woolsedge, greater bladder sedge, cinnamon fern, hobble bush green ash, golden-saxifrage.	20" organic soil material mixed with sand	wetland drainage patterns, water-stained leaves and trees with morphological adaptations
W285	emergent	PEM	P-WL2a	yellow birch, northeastern mannagrass, nodding sedge, sharp-toothed nodding-aster, Canada reed grass, golden- saxifrage	thick, dark A over a low chroma matrix with redoximorphic features and oxidized rhizospheres	soil saturated to surface, areas of inundation
W286	emergent, perennial stream	PEM	P-WL1c6	cypress-like sedge, sharp- toothed nodding-aster, tussock sedge, eastern hemlock, American beech	20" organic soil material mixed with sand	wetland drainage patterns, water-stained leaves and trees with morphological adaptations
W287	emergent	PEM	P-WL2a	eastern rough sedge, common woolsedge, soft rush, fringed willow-herb	depleted soil	soil saturated to surface, wetland drainage patterns, free water to surface
W288	emergent	PEM	P-WL2a	common woolsedge, eastern rough sedge, soft rush, sallow sedge, long-beaked willow	depleted soil with redoximorphic concentrations	soil saturated to surface, free water within 2 inches of surface
W289	emergent	PEM	P-WL2a	yellow birch, eastern rough sedge	Depleted soil	soil saturated to surface, free water to surface, wetland drainage patterns
W290	emergent, forested, intermittent stream	PEM, PFO	P-WL1c6, P-WL2a, P-WL3	northeastern mannagrass, evergreen wood fern, interrupted fern, golden saxifrage, red raspberry, paper birch, sharp-toothed nodding-aster	10" of sandy dark A with 10% redoximorphic features over a sandy B-horizon with redoximorphic	soil saturated to surface, drainage patterns. areas of inundation
W291	scrub-shrub, forested, intermittent stream	PSS, PFO	P-WL1c6, P-WL2a, P-WL3	sugar maple. American beech, yellow birch, northeastern mannagrass, sharp-toothed nodding-aster, sensitive fern, interrupted fern, narrow lady fern, golden-saxifrage, drooping sedge	loamy sand with redoximorphic features	soil saturated to surface, wetland drainage patterns

Resource Identification Number	General Wetland Type	Cowardin Classification of Wetlands ¹	Wetland Protection Subdistrict ^{2, 3}	Dominant Vegetation	Hydric Soil Indicators	Evidence of Hydrology
W292	emergent	PEM	P-WL2a	common woolsedge, long beaked willow, red raspberry, paper birch, sensitive fern, common grass-leaved goldenrod, necklace sedge	4" of mucky dark A over depleted matrix, with 5-15% redoximorphic features and organic streaking	soil saturated to surface, wetland drainage patterns, some areas inundated. Areas disturbed
W293	scrub-shrub	PSS	P-WL2a	yellow birch, red raspberry, Canadian rush, common grass-leaved goldenrod, soft rush	16" of organic over a depleted matrix with 20% redoximorphic features	soil saturated to surface
W294	scrub-shrub	PSS	P-WL2a	smooth white violet, sharp- toothed nodding-aster, common woolsedge, red raspberry	12" of dark A over 2" of coarse sand	soil saturated to the surface, wetland drainage patterns
W295	forested , intermittent stream	PFO	P-WL1c6, P-WL3	red spruce, yellow birch, red maple, balsam fir, northeastern mannagrass, Canada reed grass, cinnamon fern, three-leaved goldthread, three-seeded sedge, common woolsedge	16-24" of organic soil material, areas of disturbed/mixed spodosol with redoximorphic concentrations in the E-horizon	soil saturated to surface, areas of inundation, free water at 1 inch below surface, wetland drainage patterns
W296	forested	PFO	P-WL3	red spruce, balsam fir, fowl mannagrass, cinnamon fern, tussock sedge, small white American Aster	20" inches of mucky dark A	soil saturated to surface, drainage patterns, areas of inundation
W297	forested	PFO	P-WL3	yellow birch, balsam fir, red spruce, northeastern mannagrass, sensitive fern, sharp-toothed nodding-aster, interrupted fern, Canada dwarf-dogwood	thick, dark A over a depleted matrix with redoximorphic features	soil saturated to surface, areas of inundation, trees with morphological adaptations
W298	emergent	PEM	P-WL2a	northeastern mannagrass, red raspberry, striped maple, evergreen wood fern, red spruce, balsam fir, Canada dwarf-dogwood	16" of organic over a depleted matrix with 20% redoximorphic features	soil saturated to surface
W299	emergent, perennial stream	PEM	P-WL1c6	red elderberry, rattlesnake mannagrass, evergreen wood fern, sharp-toothed nodding-aster, long beech fern, smooth white violet	alluvial deposition mixed with A horizon, high percentage of organic	soil saturated to surface
W300	emergent, perennial stream	PEM	P-WL1c6	evergreen wood fern, balsam fir, fringed sedge, golden saxifrage, red spruce, sharp- toothed nodding-aster	16" of organic over a depleted matrix with 20% redoximorphic features	soil saturated to surface, wetland drainage patterns; areas of inundation

Resource Identification Number	General Wetland Type	Cowardin Classification of Wetlands ¹	Wetland Protection Subdistrict ^{2, 3}	Dominant Vegetation	Hydric Soil Indicators	Evidence of Hydrology
W301	emergent, intermittent stream	PEM	P-WL1c6, P-WL2a	northeastern mannagrass, sharp-toothed nodding-aster, golden-saxifrage, drooping sedge, evergreen wood fern, red spruce, balsam fir	16" organic soil material	soil saturated to surface, wetland drainage patterns, areas of inundation, trees with morphological adaptations
W302	emergent, perennial stream	PEM	P-WL1c6	hobblebush, northeastern mannagrass, evergreen wood fern, smooth white violet, red elderberry, long beech fern	alluvial deposits mixed with an A horizon.	soil saturated to surface
W303	emergent, perennial stream	PEM	P-WL1c6	northeastern mannagrass, hobblebush, red spruce, sharp-toothed nodding-aster, interrupted fern	alluvial soils, dark A over a sand with redoximorphic concentrations	soil saturated to surface, areas of inundation
W304	scrub-shrub	PSS	P-WL2a	yellow birch, red spruce, common wool sedge, three- seeded sedge, soft rush, Canadian rush, common lowbush blueberry	6" of organic soil material over depleted matrix with 10% redoximorphic features	soil saturated to the surface, areas with more than 16 inches standing water
W305	emergent	PEM	P-WL2a	sharp-toothed nodding-aster, northeastern mannagrass, evergreen wood fern, paper birch, common wrinkle- leaved goldenrod	16" of organic soil material over depleted matrix with 20% redoximorphic features	wetland drainage patterns, water stained leaves and trees with morphological adaptations
W306	emergent	PEM	P-WL2a	common woolsedge, fringed willow-herb, soft rush, sharp- toothed nodding-aster, fringed sedge, long-beaked willow	dark mineral soils	soil saturated to surface, free water 1 inch below soil surface
W307	scrub-shrub	PSS	P-WL2a	northeastern mannagrass, common woolsedge, red raspberry, sharp-toothed nodding-aster, yellow birch	5" dark A over depleted matrix with 5% redoximorphic concentrations	soil saturated to surface, drainage patterns, some areas of inundated
W308	scrub-shrub	PSS	P-WL2a	fringed sedge, balsam fir, paper birch, soft rush, cinnamon fern, sharp- toothed nodding-aster	4" organic soil material over a depleted matrix with 2% redoximorphic features	soil saturated to surface, drainage patterns.; areas of inundation
W309	emergent	PEM	P-WL2a	yellow birch, balsam fir, red spruce, fringed sedge, common woolsedge	4-7" very dark A over a depleted matrix with 3% redoximorphic concentrations	soil saturated to surface, ~50% of wetland ponded
W310	scrub-shrub	PSS	P-WL2a	common wool sedge, sharp- toothed nodding-aster, red raspberry, soft rush, narrow lady fern, common grass- leaved goldenrod, yellow birch	5" organic soil material over depleted matrix with 10% redoximorphic features	soil saturated to surface, drainage patterns, areas of inundated

Resource Identification Number	General Wetland Type	Cowardin Classification of Wetlands ¹	Wetland Protection Subdistrict ^{2, 3}	Dominant Vegetation	Hydric Soil Indicators	Evidence of Hydrology
W311	scrub-shrub	PSS	P-WL2a	yellow birch, balsam fir, red spruce, red maple, three- seeded sedge, soft rush, sharp-toothed nodding-aster, red raspberry	1-8" very dark mucky A-horizon over a depleted matrix with 10% redoximorphic concentrations	soil saturated to surface, wetland drainage patterns
W312	forested	PFO	P-WL3	red spruce, balsam fir, red maple, yellow birch, hobblebush, three-seeded sedge, common woolsedge, fringed willow-herb, Canada dwarf-dogwood, nodding sedge, marsh fern, three- leaved goldthread, cinnamon fern	6-10" organic soil material over a depleted matrix; very dark A over a deleted matrix	soil saturated to surface, wetland drainage patterns
W313	forested	PFO	P-WL3	fringed sedge, balsam fir, paper birch, soft rush, cinnamon fern, sharp- toothed nodding-aster, eastern spicy-wintergreen, common lowbush blueberry	4-6" organic soil material over a dark mineral soil with depletions	soil saturated to surface, wetland drainage patterns, areas of inundation
W314	forested	PFO	P-WL3	red maple, hobblebush, cinnamon fern, three-seeded sedge, red spruce	16" organic soil material	soil saturated to surface, drainage patterns, areas of inundation.
W315	forested	PFO	P-WL3	fringed sedge, northeastern mannagrass, common woolsedge, three-seeded sedge, balsam fir, red spruce,	4-8" organic soil material and mineral soil over depleted matrix with 5% redoximorphic features	soil saturated to surface, drainage patterns, areas inundated
W316	scrub-shrub	PSS	P-WL2a	yellow birch, common woolsedge, soft rush, three- leaved goldthread, three- seeded sedge, red raspberry, sharp-toothed nodding-aster	depleted matrix with 5% redoximorphic concentrations	soil saturated to surface, wetland drainage patterns
W317	emergent	PEM	P-WL2a	red maple, red spruce, yellow birch, three-seeded sedge, creeping spicy- winterberry, Canada dwarf- dogwood	2" dark A horizon over depleted matrix over bedrock	soil saturated to surface, free water 1 inch below soil surface
W318	scrub-shrub	PSS	P-WL2a	common woolsedge, three- seeded sedge, paper birch, red spruce, mountain holly	6" organic over depleted matrix with 10% redoximorphic features	soil saturated to surface, wetland drainage patterns, areas inundated

Resource Identification Number	General Wetland Type	Cowardin Classification of Wetlands ¹	Wetland Protection Subdistrict ^{2, 3}	Dominant Vegetation	Hydric Soil Indicators	Evidence of Hydrology
W319	scrub-shrub	PSS	P-WL2a	red maple, red spruce, yellow birch, common woolsedge, Canada dwarf- dogwood, smooth white violet, three-seeded sedge	5" organic soil material over a depleted matrix with 5% redoximorphic features	soil saturated to surface, wetland drainage patterns, free standing water at 2 inches below soil surface
W329	scrub-shrub/emergent, intermittent stream	PSS/PEM	P-WL1c6	hobblebush, mannagrass, eastern rough sedge, sharp- toothed nodding aster, slender lady fern, three- leaved gold-thread, golden- saxifrage	16-20+" organic soil material	soil saturated to surface, free water to surface, wetland drainage patterns
W330	scrub-shrub	PSS	P-WL2a	hobblebush, eastern rough sedge, slender lady fern, sharp-toothed nodding-aster, long beech fern	alluvial soil with alternating layers of sand and sandy loam	soil saturated to surface, free water to surface, water- stained leaves, wetland drainage patterns
W331	forested, intermittent stream	PFO	P-WL1c6 P-WL3	yellow birch, hobblebush, eastern rough sedge, slender lady fern, three- petaled bedstraw, manna grass, sharp-toothed nodding-aster, blue marsh violet	variable: areas of 20+" organic soil material and areas of 4" organic soil material over depleted sand	soil saturated to surface, free water to surface, wetland drainage patterns
W332	emergent	PEM	P-WL2a	fowl manna grass, bedstraw, mountain wood fern, small enchanter's-nightshade, clasping-leaved twisted stalk	9" organic soil material and depleted loamy sand	soil saturated to surface, free water to surface
W333	emergent	PEM	P-WL2a	northeastern manna grass, bedstraw, slender lady fern, small enchanter's- nightshade	variable: areas of 24+" organic soil material and areas of 9" organic soil over B-horizon	soil saturated to surface, free water to surface
W334	emergent	PEM	P-WL2a	fowl manna grass, interrupted fern, common wrinkle-leaved goldenrod	18+" organic soil material	soil saturated to surface, wetland drainage patterns
W335	scrub-shrub, intermittent stream	PSS	P-WL1c6 P-WL2a	elderberry, balsam fir, red maple, fowl manna grass, spotted touch-me-not, common wrinkle-leaved goldenrod, slender lady fern, sensitive fern	15+" organic soil material	soil saturated to surface, wetland drainage patterns
W336	open water, scrub-shrub	PUB, PSS	P-WL1c4, P-WL2a	speckled alder, eastern rough sedge, fringed sedge, wood horsetail, slender lady fern, sensitive fern, white northern bog orchid	variable: includes areas of 16+" organic soil material	soil saturated to surface, free water to surface, wetland drainage patterns

Resource Identification Number	General Wetland Type	Cowardin Classification of Wetlands ¹	Wetland Protection Subdistrict ^{2, 3}	Dominant Vegetation	Hydric Soil Indicators	Evidence of Hydrology
W337	emergent	PEM	P-WL2a	Canada reed grass, fringed sedge, interrupted fern, cinnamon fern, wood horsetail, smooth white violet, peat moss	depleted loamy sand	soil saturated to surface, free water to surface
W338	forested	PFO	P-WL3	balsam fir, red maple, yellow birch, green ash, speckled alder, fowl mannagrass, northeastern mannagrass, Canada reed grass, sensitive fern, spotted touch-me-not, peat moss	14-18" organic soil material over depleted B-horizon with 5-10% redoximorphic features	soil saturated to surface, wetland drainage patterns
W340	emergent, perennial stream, intermittent stream	PEM	P-WL1c6	fringed sedge, eastern rough sedge, spotted Joe-pye weed, fowl mannagrass, long beech fern, red raspberry, yellow birch, hobblebush	sandy alluvial deposition	soil saturated to surface, free water to surface, wetland drainage patterns
W341	scrub-shrub, perennial streams	PSS	P-WL2a, P-WL1c6	yellow birch, balsam fir, red spruce, hobblebush, speckled alder, Canada reed grass, sensitive fern, cinnamon fern, fowl mannagrass, bristly blackberry, nodding sedge, peat moss	variable: areas of 15+" organic soil material over rock and areas of 12-14+" organic soil material over a mucky A-horizon to rock	soil saturated to surface, wetland drainage patterns
W342	emergent, perennial stream	PEM	P-WL1c6	mannagrass, tall meadow rue, spotted Joe-pye weed, Canada-mayflower, dwarf raspberry	variable: areas of alluvial deposition and areas of depleted sand	soil saturated to surface, free water within 6" of surface, wetland drainage patterns
W366	forested	PFO	P-WL3	balsam fir, red spruce , red maple, dwarf raspberry, cinnamon fern, northern wood sorrel, Canada dwarf- dogwood, tall white-aster, sedge, peat moss	20+" organic soil material	soil saturated to surface, areas of shallow inundation
W367	forested	PFO	P-WL3	balsam fir, red spruce, long- beaked willow, cinnamon fern, interrupted fern, tall white-aster, northern white- cedar, dwarf raspberry, peat moss	2-4" organic soil material over a dark mucky A-horizon to refusal	soil saturated to surface, free water ~6" of surface

Resource Identification Number	General Wetland Type	Cowardin Classification of Wetlands ¹	Wetland Protection Subdistrict ^{2, 3}	Dominant Vegetation	Hydric Soil Indicators	Evidence of Hydrology
W368	forested	PFO	P-WL3	balsam fir, red spruce, northern white-cedar, long- beaked willow, shining willow, pussy willow, white meadowsweet, Canada reed grass, dwarf raspberry, Canada dwarf-dogwood, peat moss	20+" organic soil material	soil saturated to surface
W369	forested, perennial stream	PFO	P-WL3 P-WL1c6	balsam fir, northern white- cedar, red maple, yellow birch, speckled alder, tall white-aster, dwarf raspberry, foam flower peat moss	18" organic soil material	soil saturated to surface, wetland drainage patterns
W370	scrub-shrub, emergent, perennial stream	PSS, PEM	P-WL3, P-WL2a, P-WL1c6	speckled alder, yellow birch, balsam fir, red spruce, northern white-cedar, spotted Joe-pye weed, cinnamon fern, tall white- aster, common wrinkle- leaved goldenrod, sensitive fern	variable: 16+" organic soil material in places and other areas of dark mucky A-horizon over depleted B-horizon	soil saturated to surface, free water at 5" below surface, wetland drainage patterns
W371	scrub-shrub	PSS	P-WL2a	speckled alder, black ash, yellow birch, balsam fir, mannagrass, sensitive fern, cinnamon fern, crested wood fern, tall white-aster, dwarf raspberry	12" dark mucky A-horizon over depleted B-horizon	soil saturated to surface, free water at 5" below surface, wetland drainage patterns
W375	forested	PFO	P-WL3	yellow birch, red spruce, striped maple, hobblebush, golden-saxifrage, spotted touch-me-not, evergreen wood fern, common grass- leaved goldenrod	3" organic soil material over depleted matrix	soil saturated to surface, free water at 2" below surface, small areas of shallow inundation
W376	forested	PFO	P-WL3	yellow birch, red spruce, striped maple, hobblebush, golden-saxifrage, spotted touch-me-not, evergreen wood fern, common grass- leaved goldenrod	3" organic soil material over depleted matrix	soil saturated to surface, free water at 2" below surface, small areas of shallow inundation
W377	emergent	PEM	P-WL2a	fowl mannagrass, cinnamon fern, common wrinkle-leaved goldenrod, dwarf raspberry, foam flower, eastern rough sedge, long beech fern, Jack-in-the-pulpit	3-5" organic soil material over depleted matrix with 18% redoximorphic features	soil saturated to surface, free water at 1" below surface

Resource Identification Number	General Wetland Type	Cowardin Classification of Wetlands ¹	Wetland Protection Subdistrict ^{2, 3}	Dominant Vegetation	Hydric Soil Indicators	Evidence of Hydrology
W378	forested	PFO	P-WL3	yellow birch, green ash, American beech, balsam fir, spotted touch-me-not, fringed sedge, eastern rough sedge, evergreen wood fern, foam flower	2-4" organic soil material over depleted matrix with 20% redoximorphic features	soil saturated to surface, free water at 3" below surface, wetland drainage patterns
W379	emergent, perennial stream	PEM	P-WL1c6	small enchanter's- nightshade, sedge, yellow birch	alluvial deposition: dark A- horizon over sand	soil saturated to surface, free water to surface
W380	emergent	PEM	P-WL2a	mannagrass, sedge, common wrinkle-leaved goldenrod, yellow birch, red spruce, green ash, long- beaked willow	~9" organic soil material over depleted B-horizon	soil saturated to surface, free water at ~9" below surface
W381	forested	PFO	P-WL3	quaking poplar, red maple, yellow birch, northern white- cedar, cinnamon fern, dwarf raspberry, northern wood sorrel, eastern rough sedge, sensitive fern	~4" organic soil material over depleted B-horizon with 20% redoximorphic features	soil saturated to surface, free water at 6" below surface, wetland drainage patterns
W382	scrub-shrub	PSS	P-WL2a	speckled alder, yellow birch, striped maple, fringed sedge, common wrinkle-leaved goldenrod, tall white-aster, red raspberry, dwarf raspberry, spotted touch-me- not	~1" organic soil material over depleted sandy B-horizon with 10% redoximorphic features	soil saturated to surface, free water at 3" below surface, wetland drainage patterns
W383	scrub-shrub	PSS	P-WL2a	pussy willow, long-beaked willow, red maple, common wrinkle-leaved goldenrod, fringed sedge, field horsetail, tall white-aster, sensitive fern, wood horsetail	variable depositional soil: areas with depleted matrix and other areas with large concentrations and depletions	soil saturated to surface, wetland drainage patterns
W387	scrub-shrub, perennial stream	PSS	P-WL1c6, P-WL2a	speckled alder, yellow birch, balsam fir, mannagrass, common wrinkle-leaved goldenrod, tall meadow rue, red raspberry, Canada reed grass, cinnamon fern, sensitive fern	alluvial soil: ~14" organic soil material over thin layer of sand over buried layer of organic soil material	soil saturate to surface, wetland drainage patterns
W388	emergent	PEM	P-WL2a	Canada reed grass, sensitive fern, field horsetail, interrupted fern, common wrinkle-leaved goldenrod, wood horsetail, peat moss	disturbed soil: areas with depleted B-horizon and redoximorphic concentrations	soil saturated to surface, free water to surface, areas with 12+" of inundation, wetland drainage patterns

Resource Identification Number	General Wetland Type	Cowardin Classification of Wetlands ¹	Wetland Protection Subdistrict ^{2, 3}	Dominant Vegetation	Hydric Soil Indicators	Evidence of Hydrology
W389	emergent	PEM	P-WL2a	Canada reed grass, cinnamon fern, barber-pole bulrush, sensitive fern, fringed sedge, common wrinkle-leaved goldenrod, peat moss	16+" organic soil material to refusal	soil saturated to surface, free water to surface, areas with 12+" of inundation
W390	emergent	PEM	P-WL2a	nodding sedge, fowl mannagrass, greater bladder sedge, spotted touch-me- not, soft rush, sensitive fern, red maple	8-12" organic soil material over thin A-horizon to depleted B- horizon with 5-25% redoximorphic features	soil saturated to surface, areas with shallow inundation, wetland drainage patterns
W391	emergent	PEM	P-WL2a	sensitive fern, Canada reed grass, spotted touch-me-not, field horsetail, eastern rough sedge, common wrinkle- leaved goldenrod, evergreen wood fern	depleted B-horizon with redoximorphic concentrations	soil saturated to surface, free water to surface, wetland drainage patterns
W392	open water	PUB	P-WL2a	woolsedge	ponded soil	24" of inundation
W393	emergent	PEM	P-WL2a	spotted touch-me-not, bedstraw, sharp-toothed nodding aster, red wakerobin	~6" organic soil material over a depleted B-horizon	soil saturated to surface, free water to surface
W394	scrub-shrub	PSS	P-WL2a	yellow birch, red maple, long-beaked willow, red raspberry, spotted touch-me- not, sensitive fern, slender lady fern, nodding sedge, fowl mannagrass	variable: some areas with 12-16" organic soil material and other areas with 10-12" organic soil material over depleted B-horizon with 10% redoximorphic features	soil saturated to surface, wetland drainage patterns
W396	emergent/scrub-shrub	PEM/PSS	P-WL2a	green ash, red maple, long- beaked willow, red raspberry, spotted touch-me- not, sensitive fern, Canada reed grass, Canada goldenrod, fowl mannagrass	variable: areas with >15" organic soil material and other areas with 10-12" organic soil material over depleted B-horizon with 5% redoximorphic features	soil saturated to surface, areas of shallow inundation, wetland drainage patterns
W397	emergent	PEM	P-WL2a	fowl mannagrass, sensitive fern, interrupted fern	depleted B-horizon	soil saturated to surface, free water at ~6" below surface
W398	emergent/scrub-shrub, intermittent stream	PEM/PSS	P-WL1c6	green ash, red maple, long- beaked willow, red raspberry, spotted touch-me- not, sensitive fern, Canada reed grass, Canada goldenrod, fowl mannagrass	variable: areas with >15" organic soil material and other areas with 10-12" organic soil material over depleted B-horizon with 5% redoximorphic features	soil saturated to surface, areas of shallow inundation, wetland drainage patterns

Resource Identification Number	General Wetland Type	Cowardin Classification of Wetlands ¹	Wetland Protection Subdistrict ^{2, 3}	Dominant Vegetation	Hydric Soil Indicators	Evidence of Hydrology
W399	emergent	PEM	P-WL2a	fowl mannagrass, spotted touch-me-not, zig-zag goldenrod, nodding sedge, common wrinkle-leaved goldenrod, sensitive fern, barber-pole bulrush, green ash	variable: areas with 10-15" organic soil material over rock and areas with 10-12" organic soil material over depleted B- horizon with 5% redoximorphic features	soil saturated to surface, wetland drainage patterns
W400	emergent/scrub-shrub	PEM/PSS	P-WL2a	green ash, red maple, long- beaked willow, red raspberry, spotted touch-me- not, sensitive fern, Canada reed grass, Canada goldenrod, fowl mannagrass	variable: areas with >15" organic soil material and other areas with 10-12" organic soil material over depleted B-horizon with 5% redoximorphic features	soil saturated to surface, areas of shallow inundation, wetland drainage patterns
W401	emergent	PEM	P-WL2a	fringed sedge, pointed broom sedge, sensitive fern, barber-pole bulrush, interrupted fern, Virginia strawberry, awl-fruited sedge	variable: areas with depleted B- horizon, areas of fill material and areas of shallow organic material over rock	soil saturated to surface, free water at ~9" below surface, wetland drainage patterns
W402	emergent, intermittent stream	PEM	P-WL2a, P-WL1c6	fringed sedge, sensitive fern, barber-pole bulrush, swamp yellow-loosestrife, interrupted fern, wood horsetail, tall meadow rue	Variable: areas with ~6" organic soil material to refusal and areas with depleted B-horizon	soil saturated to surface, free water to surface, wetland drainage patterns
W403	emergent, intermittent stream	PEM	P-WL1c6	fringed sedge, star sedge, barber-pole bulrush, sensitive fern, long-beaked willow, pussy willow	4-6" organic soil material to refusal	soil saturated to surface, free water within 4" of surface, wetland drainage patterns
W404	emergent	PEM	P-WL2a	barber-pole bulrush, sensitive fern, fringed sedge, field horsetail, cinnamon fern, marsh fern, Canada reed grass, soft rush	~4-9" organic soil material to refusal	soil saturated to surface, free water to surface, wetland drainage patterns
W405	emergent/forested	PEM/PFO	P-WL2a, P-WL3	fringed sedge, sensitive fern, soft rush, interrupted fern, Virginia strawberry, Canada reed grass, red maple, yellow birch, dwarf raspberry, bedstraw, marsh fern	variable: areas with ~6-9" dark A- horizon to refusal and area with depleted B-horizon	soil saturated to surface, free water to surface, wetland drainage patterns, water- stained leaves
W406	forested	PFO	P-WL3	red maple, black ash, yellow birch, balsam fir, sensitive fern, bristly blackberry, Canada reed grass, cinnamon fern, peat moss	10-12" organic soil material over a dark A-horizon and depleted B- horizon with 10-15% redoximorphic features	soil saturated to surface, areas of shallow inundation, wetland drainage patterns

Resource Identification Number	General Wetland Type	Cowardin Classification of Wetlands ¹	Wetland Protection Subdistrict ^{2, 3}	Dominant Vegetation	Hydric Soil Indicators	Evidence of Hydrology
W407	forested	PFO	P-WL3	red maple, black ash, yellow birch, balsam fir, sensitive fern, bristly blackberry, Canada reed grass, cinnamon fern, peat moss	10-12" organic soil material over a dark A-horizon and depleted B- horizon with 10-15% redoximorphic features	soil saturated to surface, areas of shallow inundation, wetland drainage patterns
W408	scrub-shrub/forested	PSS/PFO	P-WL2a, P-WL3	red maple, yellow birch, balsam fir, black ash, green ash, hobblebush, witch- hazel, fowl mannagrass, sensitive fern, cinnamon fern, spotted touch-me-not, fringed sedge, Canada reed grass, peat moss	variable: areas with 13-15" organic soil material over rock and areas with 8-10" organic soil material over dark A-horizon and depleted B-horizon with 5% redoximorphic features	soil saturated to surface, wetland drainage patterns
W409	emergent	PEM	P-WL2a	Canada reed grass, sensitive fern, red raspberry, crested wood fern, fringed sedge, barber-pole bulrush, star sedge, rosy meadowsweet, long-beaked willow, yellow birch	variable: areas with up to 6" organic soil material to refusal and areas with 6-8" organic soil material over depleted B-horizon with 5-10% redoximorphic features	soil saturated to surface, free water to surface, areas with ~9" of inundation, wetland drainage patterns
W410	emergent/scrub-shrub	PEM/PSS	P-WL2a	red maple, yellow birch, northern white-cedar, barber- pole bulrush, Canada reed, nodding sedge, sensitive fern, royal fern, slender lady fern	12-16" organic soil material over rock with depleted B-horizon between rocks	soil saturated to surface, areas of shallow inundation, wetland drainage patterns
W411	scrub-shrub	PSS	P-WL2a	red maple, green ash, red spruce, yellow birch, eastern hemlock, hobblebush, Canada reed grass, cinnamon fern, dwarf raspberry, wild sarsaparilla	~12" organic soil material to refusal	soil saturated to surface, free water to surface
W412	emergent/scrub-shrub	PEM/PSS	P-WL2a	red maple, yellow birch, green ash, nodding sedge, fowl mannagrass, Canada reed grass, sensitive fern	15-18" organic soil material over rock	soil saturate to surface, wetland drainage patterns
W413	forested	PFO	P-WL3	yellow birch, red maple, black ash, green ash, witch- hazel, balsam fir, sensitive fern, bristly blackberry, three- seeded sedge, Canada reed grass, cinnamon fern	8" organic soil material over a shallow dark A-horizon and depleted B-horizon with 5% redoximorphic features	soil saturated to surface, wetland drainage patterns, water-stained leaves

Resource Identification Number	General Wetland Type	Cowardin Classification of Wetlands ¹	Wetland Protection Subdistrict ^{2, 3}	Dominant Vegetation	Hydric Soil Indicators	Evidence of Hydrology
W414	forested/emergent	PFO/PEM	P-WL2a P-WL3	yellow birch, northern white- cedar, balsam fir, black ash, cinnamon fern, fowl mannagrass, Canada reed grass, wood horsetail, fringed sedge, barber-pole bulrush, red raspberry, peat moss	shallow layer of organic soil material over rock	soil saturated to surface, free water to surface, areas of shallow inundation, water- stained leaves
W415	forested	PFO	P-WL3	red maple, yellow birch, sensitive fern, fringed sedge, three-seeded sedge, wood horsetail, peat moss	8-10" organic soil material over depleted B-horizon with 25% redoximorphic features	soil saturated to surface, water-stained leaves
W416	forested	PFO	P-WL3	red maple, yellow birch, northern white-cedar, sensitive fern, fringed sedge, three-seeded sedge, wood horsetail, peat moss	8-10" organic soil material over depleted B-horizon with 25% redoximorphic features	soil saturated to surface, water-stained leaves
W417	forested	PFO	P-WL3	northern white-cedar, red maple, yellow birch, red spruce, paper birch, green ahs, beaked hazelnut, sensitive fern, currant, fringed sedge, wood horsetail, dwarf raspberry	variable: areas with 6-8"organic soil material over depleted B- horizon with 10-15% redoximorphic features and areas with 8-12" organic soil material over rock	soil saturated to surface, free water to surface and areas of shallow inundation
W418	emergent	PEM	P-WL2a	spikesedge, soft rush, sedge, barber-pole bulrush, narrow-leaved speedwell, old-field cinquefoil	depleted B-horizon	soil saturated to surface, free water to surface, wetland drainage patterns
W419	forested	PFO	P-WL3	red maple, black ash, yellow birch, green ash, witch- hazel, northern white-cedar, sensitive fern, narrow lady fern, three-seeded sedge, peat moss	variable: areas with up to 20" organic soil material and areas with 8-10" organic soil material over depleted B-horizon with 5- 10% redoximorphic features	soil saturated to surface, wetland drainage patterns, water-stained leaves
W420	emergent/forested	PEM/PFO	P-WL2a, P-WL3	barber-pole bulrush, fringed rush, sensitive fern, Canada reed grass, wood horsetail, yellow birch, red maple, three-seeded sedge, dwarf raspberry	depleted B-horizon	soil saturated to surface, free water to surface, wetland drainage patterns
W421	emergent/forested	PEM/PFO	P-WL2a, P-WL3	barber-pole bulrush, sensitive fern, fringed sedge, interrupted fern, blue iris, cinnamon fern, awl-fruited sedge, arrow-leaved tearthumb, yellow birch, striped maple	variable: areas with 12-18" organic soil material to refusal, areas with ~2" organic soil material to refusal and areas with 12+" organic soil material over depleted B-horizon with 25-30% redoximorphic features	soil saturated to surface, free water to surface, wetland drainage patterns

Resource Identification Number	General Wetland Type	Cowardin Classification of Wetlands ¹	Wetland Protection Subdistrict ^{2, 3}	Dominant Vegetation	Hydric Soil Indicators	Evidence of Hydrology
W422	emergent	PEM	P-WL2a	Canada reed grass, interrupted fern, barber-pole bulrush, red raspberry, spikesedge, sensitive fern, fringed sedge, awl-fruited sedge	4-6" organic soil material over shallow depleted B-horizon	soil saturated to surface, free water to surface, areas of shallow inundation
W423	emergent	PEM	P-WL2a	sensitive fern, star sedge, soft rush, Canada reed grass, barber-pole bulrush, Virginia strawberry, northern white-cedar	organic soil maternal over shallow depleted B-horizon	soil saturated to surface, free water to surface, wetland drainage patterns
W424	forested	PFO	P-WL3	northern white-cedar, balsam fir, red maple, nodding sedge, spotted touch-me- not, peat moss	6-8" organic soil material over depleted B-horizon with 5% redoximorphic features	soil saturated to surface, wetland drainage patterns, water-stained leaves
W425	forested	PFO	P-WL3	black ash, northern white- cedar, sugar maple, interrupted fern, wood horsetail, nodding sedge, awl-fruited sedge, greater bladder sedge, red raspberry	~9" thick A-horizon with redoximorphic depletion to refusal	soil saturated to surface, free water to surface, wetland drainage patterns
W426	emergent	PEM	P-WL2a	Canada reed grass, cinnamon fern, interrupted fern, field horsetail, soft rush, barber-pole bulrush, broad- leaved cat-tail, fringed sedge, pussy willow, white meadowsweet	~6-9" organic soil material over shallow depleted B-horizon	soil saturated to surface, free water to surface, areas of shallow inundation, wetland drainage patterns
W427	emergent	PEM	P-WL2a	awl-fruited sedge, fowl manna grass, soft rush, nodding sedge, common woolsedge, interrupted fern green ash, red raspberry	8-10 " organic soil material over depleted B-horizon with 10-20% redoximorphic features	soil saturated to surface, areas of shallow inundation, water-stained leaves
W428	forested	PFO	P-WL3	balsam fir, black ash, beaked hazelnut, green ash, fowl manna grass, red raspberry, dwarf raspberry	~18 " organic soil material over shallow depleted B-horizon with redoximorphic concentrations	soil saturated to surface, free water to surface
W429	forested	PFO	P-WL3	green ash, balsam fir, yellow birch, black ash, fowl mannagrass, sensitive fern, water avens, interrupted fern, greater bladder sedge, awl-fruited sedge, dwarf raspberry	variable: some places up to 18 " organic soil material to refusal and other areas organic soil material overlies depleted B- horizon	soil saturated to surface, free water to surface

Resource Identification Number	General Wetland Type	Cowardin Classification of Wetlands ¹	Wetland Protection Subdistrict ^{2, 3}	Dominant Vegetation	Hydric Soil Indicators	Evidence of Hydrology
W430	forested	PFO	P-WL3	balsam fir, green ash, eastern hemlock, witch hazel, red maple, fowl mannagrass, soft rush, awl- fruited sedge, nodding sedge, sensitive fern	variable: some areas of 8-12 " organic soil material over rock and some areas 8-12 " organic soil material over depleted B- horizon with 15% redoximorphic features	soil saturated to surface, water-stained leaves
W431	forested	PFO	P-WL3	balsam fir, red maple, northern white-cedar, yellow birch, green ash, balsam poplar, quaking poplar, fowl mannagrass, three-seeded sedge, nodding sedge, sensitive fern, royal fern, soft rush, bristly blackberry	variable: areas with 12-18 " organic soil material over rock and areas with 8-14 " organic soil material over depleted B-horizon with 5-10% redoximorphic features	soil saturated to surface, wetland drainage patterns, water-stained leaves
W432	forested	PFO	P-WL3	northern white-cedar, yellow birch, balsam fir, red maple, balsam poplar, green ash, sensitive fern, fowl mannagrass, three-seeded sedge, royal fern, cinnamon fern	variable: areas with 12-18 " organic soil material over rock and areas with 8-14 " organic soil material over depleted B-horizon with 5-10% redoximorphic features	soil saturated to surface, wetland drainage patterns, water-stained leaves
W433	forested	PFO	P-WL3	balsam fir, northern white- cedar, green ash, black ash, red maple, long-beaked willow, yellow birch, sensitive fern, cinnamon fern, royal fern, greater bladder sedge	6-10" organic soil material over shallow dark A-horizon and depleted B-horizon with 15% redoximorphic features	soil saturated to surface, free water within 4" of surface, wetland drainage patterns, water-stained leaves
W434	forested	PFO	P-WL3	green ash, black ash, paper birch, speckled alder, balsam fir, northern white-cedar, sensitive fern, dwarf raspberry, barber-pole bulrush, interrupted fern	~4" organic soil material to refusal	soil saturated to surface, free water to surface
W435	forested	PFO	P-WL3	northern white-cedar, balsam fir, red maple, quaking poplar, green ash, black ash, long-beaked willow, sensitive fern, fowl mannagrass, Canada reed grass, cinnamon fern, royal fern	variable: areas with 8-10" organic soil material over rock and areas with 6-8" organic soil material over dark A-horizon and depleted B-horizon with 1015% redoximorphic features	soil saturated to surface, wetland drainage patterns, water-stained leaves
W436	forested	PFO	P-WL3	northern white-cedar, balsam fir, yellow birch, green ash, witch-hazel, interrupted fern, cinnamon fern, sensitive fern, three-seeded sedge, peat moss	variable: areas of 12-15" organic soil material over dark A-horizon to refusal and areas with a depleted B-horizon with 5% redoximorphic features	soil saturated to surface, wetland drainage patterns

Resource Identification Number	General Wetland Type	Cowardin Classification of Wetlands ¹	Wetland Protection Subdistrict ^{2, 3}	Dominant Vegetation	Hydric Soil Indicators	Evidence of Hydrology
W437	forested	PFO	P-WL3	balsam fir, cinnamon fern, marsh fern, bristly blackberry, northern wood sorrel	10-12" organic soil material over depleted B-horizon with 25% redoximorphic features	soil saturated to surface, water-stained leaves
W438	forested	PFO	P-WL3	balsam fir, cinnamon fern, marsh fern, bristly blackberry, northern wood sorrel	10-12" organic soil material over depleted B-horizon with 25% redoximorphic features	soil saturated to surface, water-stained leaves
W439	forested	PFO	P-WL3	red maple, green ash, yellow birch, American elm, balsam fir, witch-hazel, sensitive fern, Canada reed grass, three-seeded sedge, bristly blackberry, cinnamon fern	8-10" organic soil material over dark A-horizon to a depleted B- horizon with 10% redoximorphic features	soil saturated to surface, wetland drainage patterns, water-stained leaves
W440	forested/emergent	PFO/PEM	P-WL2a, P-WL3	balsam fir, paper birch, red maple, yellow birch, white meadowsweet, long-beaked willow, cinnamon fern, barber-pole bulrush, Canada reed grass, sensitive fern, star sedge, water avens	variable: areas of 8-10" organic soil material over rock and areas of 8-10" organic soil material over depleted B-horizon with 5- 10% redoximorphic features	soil saturated to surface, sediment deposition, wetland drainage patterns
W441	forested	PFO	P-WL3	green ash, red maple, black ash, yellow birch, paper birch, balsam fir, speckled alder, long-beaked willow, greater bladder sedge, fowl mannagrass, sensitive fern, starflower, bristly blackberry	8-10" organic soil material over depleted B-horizon with 15% redoximorphic concentrations	soil saturated to surface, free water at ~6" below surface, wetland drainage patterns
W442	forested	PFO	P-WL3	black ash, green ash, yellow birch, red maple, balsam fir, northern white-cedar, speckled alder, witch-hazel, cinnamon fern, slender lady fern, currant, dwarf raspberry, fowl mannagrass, sensitive fern, awl-fruited sedge, marsh fern	6-8" organic soil material over depleted B-horizon with 15-20% redoximorphic concentrations	soil saturated to surface, free water to surface, wetland drainage patterns

Resource Identification Number	General Wetland Type	Cowardin Classification of Wetlands ¹	Wetland Protection Subdistrict ^{2, 3}	Dominant Vegetation	Hydric Soil Indicators	Evidence of Hydrology
W443	forested, emergent, scrub- shrub, perennial streams, intermittent streams	PFO, PEM, PSS	P-WL1c3, P-WL1c6 P-WL2a, P-WL3	black ash, yellow birch, green ash, balsam fir, northern white-cedar, red maple, beaked hazelnut, cinnamon fern, sensitive fern, fowl mannagrass, eastern rough sedge, foam flower, speckled alder, white meadowsweet, rosy meadowsweet, Canada reed grass, barber-pole bulrush, mosquito bulrush, awl-fruited sedge	variable: areas with ~9" organic soil material to refusal, areas with ~9" organic soil material over depleted B-horizon and areas with 18+" organic soil material	soil saturated to surface, free water at 9" below ground surface, areas of shallow inundation, wetland drainage patterns
W444	forested	PFO	P-WL3	yellow birch, red maple, black ash, green ash, marsh fern, slender lady fern, sensitive fern, cinnamon fern, nodding sedge	8" organic soil material over a thin dark A-horizon to a depleted B-horizon with 10-15% redoximorphic features	soil saturated to surface, wetland drainage patterns
W445	forested	PFO	P-WL3	northern white-cedar, balsam fir, red maple, sensitive fern, dwarf raspberry	depleted B-horizon	soil saturated to surface, free water to surface
W446	emergent	PEM	P-WL2a	star sedge, common wrinkle- leaved goldenrod, sensitive fern, fowl manna grass, cinnamon fern, Canada reed grass, awl-fruited sedge, white meadowsweet, long- beaked willow, speckled alder	~16" organic soil material to refusal	soil saturated to surface, free water to surface
W447	scrub-shrub, perennial streams	PSS	P-WL1c3, P-WL1c6	speckled alder, balsam fir, northern white-cedar, choke cherry, sensitive fern, tall meadow rue, fowl mannagrass, crested wood fern	alluvial soils closest to streams; depleted B-horizon with redoximorphic concentrations	soil saturated to surface, wetland drainage patterns
W448	scrub-shrub	PSS	P-WL1c3	speckled alder, common winterberry, with-rod, fowl mannagrass, fringed sedge, sallow sedge, tussock sedge	depleted B-horizon with redoximorphic concentrations	areas with ~6" of inundation, soil saturated to surface
W449	scrub-shrub	PSS	P-WL1c3	speckled alder, sensitive fern, fowl mannagrass, fiddlehead fern, tall meadow rue, bristly blackberry	alluvial soil: 2% redoximorphic features within 4" of surface	soil saturated in upper 12", water-stained leaves

Resource Identification Number	General Wetland Type	Cowardin Classification of Wetlands ¹	Wetland Protection Subdistrict ^{2, 3}	Dominant Vegetation	Hydric Soil Indicators	Evidence of Hydrology
W450	forested	PFO	P-WL1c3	yellow birch, sugar maple, green ash, sensitive fern, fiddlehead fern, tall meadow rue, fowl mannagrass, Canada reed grass	alluvial soil: 2% redoximorphic features within 4" of surface	areas with shallow inundation, soil saturated to surface, water-stained leaves
W485	scrub-shrub	PSS	P-WL2a	common winterberry, cinnamon fern	4" organic soil material over depleted B-horizon	soil saturated to surface, wetland drainage patterns
W486	scrub-shrub	PSS	P-WL2a	balsam fir, cinnamon fern, northern wood sorrel , sedge	disturbed soil	shallow inundation
W469	scrub-shrub	PSS	P-WL1c3	speckled alder, sensitive fern, tall meadow rue, large- leaved avens, calico American-aster, purple- stemmed American-aster	some areas of alluvial deposition; depleted B-horizon with 3% redoximorphic features	soil saturated to surface, water-stained leaves, water- marks
W470	scrub-shrub	PSS	P-WL2a	speckled alder, sensitive fern, large-leaved avens, tussock sedge	dark A-horizon over depleted B- horizon with 7% redoximorphic features	soil saturated to within 1" of surface
W471	scrub-shrub, emergent	PSS, PEM	P-WL1c3, P-WL2a	speckled alder, white meadowsweet, fowl mannagrass, fringed sedge, fringed willow-herb, sensitive fern, swamp yellow- loosestrife	dark A-horizon over depleted B- horizon with redoximorphic concentrations	soil saturated to surface, water-stained leaves, wetland drainage patterns
W451	scrub-shrub	PSS	P-WL1c3	speckled alder, sensitive fern, bedstraw, pointed broom sedge, common yellow wood sorrel	alluvial soil: stratified sands with redoximorphic concentrations	shallow inundation, soil saturated to surface
W452	forested/emergent	PFO/PEM	P-WL1c3, P-WL2a, P-WL3	northern white-cedar, yellow birch, eastern hemlock, red maple, speckled alder, barber-pole bulrush, mosquito bulrush, Canada reed grass, common woolsedge, sensitive fern, pointed broom sedge, nodding sedge, common grass-leaved-goldenrod	variable: histosol predominate in areas of lower topography; other areas shallow organic material over rock	areas of shallow inundation, soil saturated to surface, free water to surface, water- stained leaves
W454	emergent	PEM	P-WL2a	Canada reed grass, interrupted fern, common wrinkle-leaved goldenrod, dwarf raspberry, nodding sedge, red maple, white meadowsweet, speckled alder	depleted B-horizon	soil saturated to surface, free water to surface

Resource Identification Number	General Wetland Type	Cowardin Classification of Wetlands ¹	Wetland Protection Subdistrict ^{2, 3}	Dominant Vegetation	Hydric Soil Indicators	Evidence of Hydrology
W455	scrub-shrub	PSS	P-WL2a	red maple, speckled alder yellow birch, pussy willow, common woolsedge, nodding sedge, sensitive fern, soft rush, bristly blackberry, peat moss	6-8" organic soil material over dark A-horizon to a depleted B- horizon with 5% redoximorphic features	water-stained leaves, soil saturated to surface
W456	emergent	PEM	P-WL2a	Canada reed grass, sensitive fern, soft rush, awl-fruited sedge, barber-pole bulrush, pointed broom sedge, white meadowsweet, rosy meadowsweet	shallow soil over rock; areas with depleted B-horizon	shallow inundation in ruts, soil saturated to surface, free water to surface
W457	emergent, scrub-shrub	PEM, PSS	P-WL2a	Canada reed grass, sensitive fern, water avens, common woolsedge, common wrinkle- leaved goldenrod, white meadowsweet, red raspberry	dark A-horizon over depleted B- horizon	soil saturated to surface, wetland drainage patterns
W458	scrub-shrub	PSS	P-WL2a	red maple, white meadowsweet, witch-hazel, nodding sedge, sensitive fern, cinnamon fern, red raspberry, bristly blackberry, peat moss	8-10" organic soil material over dark A-horizon to a depleted B- horizon with 5% redoximorphic features	areas of shallow inundation, soil saturated to surface, water-stained leaves
W459	forested, intermittent stream	PFO	P-WL1c6 P-WL3	northern white-cedar, balsam fir, red maple, eastern hemlock, green ash, nodding sedge, sensitive fern, fowl manna grass	18-20" organic soil material over a depleted B-horizon with 5% redoximorphic features	soil saturated in upper 12"
W460	emergent	PEM	P-WL2a	Canada reed grass, sensitive fern, mosquito bulrush, common wrinkle-leaved goldenrod, soft rush, awl- fruited sedge, white meadowsweet	variable: generally shallow soils with dark A-horizon over rock or dark A-horizon over depleted B- horizon	shallow inundation in ruts, soil saturated to surface, free water at ~4" below ground surface
W461	emergent	PEM	P-WL2a	Canada reed grass, sensitive fern, cinnamon fern, nodding sedge, marsh fern, white meadowsweet	depleted B-horizon with redoximorphic concentrations	soil saturated to surface, wetland drainage patterns
W462	scrub-shrub, perennial stream	PSS	P-WL1c6 P-WL2a	speckled alder, sensitive fern, dwarf raspberry, red raspberry, tall meadow rue, Canada reed grass, fiddlehead fern	dark A-horizon over depleted B- horizon	soil saturated to surface, wetland drainage patterns

emergent

W481

Resource Identification Number	General Wetland Type	Cowardin Classification of Wetlands ¹	Wetland Protection Subdistrict ^{2, 3}	Dominant Vegetation	Hydric Soil Indicators	Evidence of Hydrology
W472	emergent	PEM	P-WL1c3	sensitive fern, common wrinkle-leaved goldenrod, tall white-aster, purple-stemmed American-aster	dark A-horizon over depleted B- horizon with 5% redoximorphic features	soil saturated within 3" of ground surface
W474	forested	PFO	P-WL1c3	northern white-cedar, red maple, red spruce, black ash, evergreen wood fern, greater bladder sedge, sensitive fern, hoary sedge	dark A-horizon over depleted B- horizon with 10% redoximorphic features	soil saturated within 1" of ground surface
W475	emergent	PEM	P-WL2a	sallow sedge, common woolsedge, common wrinkle- leaved goldenrod, red raspberry, stalked woolsedge, pussy willow	dark A-horizon over depleted B- horizon with redoximorphic features	soil saturated to surface, wetland drainage patterns
W476	forested, intermittent stream	PFO	P-WL1c6 P-WL3	green ash, balsam fir, red maple, speckled alder, greater bladder sedge, dwarf raspberry, tall meadow rue, evergreen wood fern, sensitive fern	dark A-horizon over depleted B- horizon with redoximorphic concentrations	soil saturated to surface, water-stained leaves, wetland drainage patterns
W477	emergent	PEM	P-WL2a	sensitive fern, evergreen wood fern	dark A-horizon over depleted B- horizon	soil saturated to surface, water-stained leaves, wetland drainage patterns
W478	emergent	PEM	P-WL2a	eastern rough sedge, crested wood fern, narrow lady fern	depleted B-horizon with 3-15% redoximorphic features	soil saturated in upper 12"
W479	forested	PFO	P-WL3	red maple, speckled alder, American elm, sensitive fern, greater bladder sedge, evergreen wood fern, dwarf raspberry	dark A-horizon over depleted B- horizon	soil saturated to surface, water-stained leaves
W480	forested	PFO	P-WL3	yellow birch, red maple, balsam fir, sensitive fern, cinnamon fern, evergreen wood fern, dwarf raspberry	dark, mucky A-horizon over depleted B-horizon with 10% redoximorphic features	soil saturated within 1" of ground surface, wetland drainage patterns
				fringed sedge, Canada reed grass, wood horsetail, constitue for Canadian	dark A-horizon over depleted B-	acil acturated to surface

sensitive fern, Canadian

leaved goldenrod, sallow sedge

rush, common wrinkle-

PEM

P-WL2a

dark A-horizon over depleted Bhorizon with redoximorphic

features

soil saturated to surface,

water-stained leaves

Resource Identification Number	General Wetland Type	Cowardin Classification of Wetlands ¹	Wetland Protection Subdistrict ^{2, 3}	Dominant Vegetation	Hydric Soil Indicators	Evidence of Hydrology
W463	scrub-shrub	PSS	P-WL2a	green ash, red maple, yellow birch, witch-hazel, hobblebush, sensitive fern, nodding sedge, Canada reed grass, soft rush, common woolsedge, common wrinkle- leaved goldenrod	4-8 " organic soil material over dark A-horizon to a depleted B- horizon with 5- 10% redoximorphic features	areas of shallow inundation, soil saturated to surface, water-stained leaves
W464	emergent, perennial stream	PEM	P-WL1c6	sensitive fern, wood horsetail, nodding sedge	B-horizon with redoximorphic concentrations	soil saturated to surface, free water to surface
W482	emergent/forested, intermittent stream	PEM/PFO	P-WL2a, P-WL3	yellow birch, red spruce, red maple, Canada reed grass, cinnamon fern, spotted touch-me-not, red raspberry, eastern rough sedge, northern water-horehound	variable: 10-14" dark, mucky A- horizon over bedrock; some areas with depleted B-horizon under the A-horizon	soil saturated within 2" of ground surface
W483	emergent/forested	PEM/PFO	P-WL2a, P-WL3	yellow birch, red maple, fringed sedge, dwarf raspberry, evergreen wood fern, spotted touch-me-not, fowl manna grass	8 " organic soil material over rock	soil saturated to surface, water-stained leaves
W484	emergent	PEM	P-WL2a	common wrinkle-leaved goldenrod, nodding sedge, red raspberry, sensitive fern, fringed willow-herb, long- beaked willow, pussy willow, yellow birch	6-8 " organic soil material over bedrock	soil saturated to surface, wetland drainage patterns
W465	scrub-shrub	PSS	P-WL2a	speckled alder, green ash, red maple, fowl mannagrass, common wrinkle-leaved goldenrod, bristly blackberry, three-seeded sedge	4-5 " organic soil material over a dark A-horizon to a depleted B- horizon with 25% redoximorphic features	shallow inundation, soil saturated to surface, water- stained leaves
W466	scrub-shrub	PSS	P-WL2a	speckled alder, green ash, red maple, white meadowsweet, fowl mannagrass, sensitive fern, wood horsetail, marsh fern, spotted touch-me-not	5-6 " organic soil material over a dark A-horizon to a depleted B- horizon with 25-30% redoximorphic features	soil saturated to surface, water-stained leaves
W467	emergent	PEM	P-WL2a	Canada reed grass, sensitive fern, mosquito bulrush, swamp yellow-loosestrife, soft rush, star sedge, smooth goldenrod, white meadowsweet, red-osier dogwood	variable: apparent gravel fill in places; limited areas with redoximorphic concentrations	shallow inundation, soil saturated to surface, free water to surface

Resource Identification Number	General Wetland Type	Cowardin Classification of Wetlands ¹	Wetland Protection Subdistrict ^{2, 3}	Dominant Vegetation	Hydric Soil Indicators	Evidence of Hydrology
W468	forested	PFO	P-WL3	green ash, red maple, yellow birch, black ash, speckled alder, white meadowsweet, fowl mannagrass, sensitive fern, three-seeded sedge, Canada reed grass, northeastern mannagrass	3-4 " organic soil material over a dark A-horizon to a depleted B- horizon with 15% redoximorphic features	shallow inundation, soil saturated to surface, water- stained leaves, wetland drainage patterns

¹Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. *Classification of Wetlands and Deepwater Habitats of the United States*. U. S. Fish & Wildlife Service Publication Number FWS/OBS-79/31.

² P-WL1: Wetland Protection Subdistrict

- a) Areas enclosed by the normal high water mark of flowing waters, stream channels, and bodies of standing water, except for constructed ponds less than 10 acres in size which are not fed or drained by flowing waters;
- b) Coastal wetlands, together with areas below the high water mark of tidal waters and extending seaward to the limits of the State's jurisdiction; or
- c) Freshwater wetlands, as follows:
 - I. Within 250' of a coastal wetland or of the normal high water mark of any body of standing water greater than 10 acres;
 - II. Containing at least 20,000 square feet in total of the following: aquatic vegetation, emergent marsh vegetation, or open water, unless the wetlands are the result of constructed ponds less than 10 acres in size which are not fed or drained by flowing waters;
 - III. That are inundated with floodwater during a 100 year flood event;
 - IV. Containing significant wildlife habitat;
 - V. Consisting of, or containing, peatlands, except that LURC may determine that a previously mined, peatland or portion thereof, is not a wetland of special significance; or
 - VI. Within 25' of a stream channel.

P-WL2:

a)

- Scrub shrub and other non-forested freshwater wetlands, excluding those covered under P-WL1;
- b) Constructed ponds less than 10 acres in size which are not fed or drained by flowing waters.

P-WL3: Forested freshwater wetlands, excluding those covered under P-WL1 and P-WL2.

P- SL2 : Areas within 75 feet, measured as a horizontal distance landward, of (a) the normal high water mark of stream channels upstream for the point where such channels drain 50 square miles; (b) the upland edge of those coastal and inland wetlands identified in Section 10.23, N, 2, a, (1)(b) and (c) and (2) and (3); and (c) the normal high water mark of bodies of standing water less than 10 acres in size, but excluding bodies of standing water which are less than three acres in size and which are not fed or drained by a flowing water.

³ Wetlands and some streams identified within the Project area have an associated Shoreland Protection Subdistrict, P-SL2. P-SL2 includes: areas within 75 feet, measured as a horizontal distance landward, of (a) the normal high water mark of stream channels upstream for the point where such channels drain 50 square miles; (b) the upland edge of those coastal and inland wetlands identified in Section 10.23, N, 2, a, (1)(b) and (c) and (2) and (3); and (c) the normal high water mark of bodies of standing water less than 10 acres in size, but excluding bodies of standing water which are less than three acres in size and which are not fed or drained by a flowing water.

Appendix D Vernal Pool Summary Table

			M	DIFW	Corps		Nu	mber of	Egg Ma	asses ¹		
Map ² #	Wetland ID	Vernal Pool #	Vernal Pool	Significant Vernal Pool	Regulated Vernal Pool	Wo Fro			otted nander	Blue-s salam		Comments ³
2	W011	01KW	Y	Ν	Y	4	0	0	0	0	0	Naturally occurring pool within large forested wetland. Large animal had wallowed or foraged in pool prior to second visit, and no egg masses were visible.
2	W038	02KW	N	N	Y	1	—	0	—	0		Pool within a skidder trail.
3	W057	03KW	N	N	Y	5	—	0	_	0	-	Pool within a skidder trail.
4	W067	04KW	N	N	Y	2	—	0	_	0	_	Pool within a skidder trail.
4	W067	05KW	N	N	Y	2	—	1	_	0	-	Pool within a skidder trail.
4	W067	06KW	N	N	Y	1	—	0	_	0	_	Pool within a skidder trail.
4	W067	35KW	Y	N	Y	0	4	0	0	0	0	Egg masses deposited in very shallow depression in peat moss mat.
4	W067	36KW	Y	Ν	Y	0	1	0	0	0	0	Egg masses deposited in very shallow depression in peat moss mat.
4	W067	37KW	Y	Ν	Y	0	2	0	2	0	0	Egg masses deposited in very shallow depression in peat moss mat.
4	W069	07KW	N	N	Y	66	—	0	_	0	-	Pool within a skidder trail.
4	W072	03AA	Y	Ν	Y	2	0	2	0	0	0	Naturally occurring pool at the base of a wind thrown tree in a forested wetland.
4	W072	08KW	Y	Ν	Y	12	12	0	0	0	0	Pool in a naturally occurring depression in a forested wetland.
4	W072	09KW	Ν	Ν	Y	1	_	0	_	0		Pool within a skidder rut at edge of a forested wetland.
4	W072	10KW	N	N	Y	5	—	0	_	0	_	Pool within a skidder trail.
4	W072	11KW	N	N	Y	1	—	0	—	0		Pool within a skidder trail.
4	W073	13KW	N	N	Y	9	—	0	_	0	-	Pool within a skidder trail.
4	W073	14KW	N	N	Y	8	—	0	—	0		Pool within a skidder trail.
4	W073	15KW	N	N	Y	18	—	0	—	0		Pool within a skidder trail.
4	W074	12KW	N	N	Y	11	—	0	_	0	—	Pool within a skidder trail.
5	W321	30KW	N	N	Y	1	—	0	_	0	_	Pool within a skidder trail.
5	W079	29KW	Ν	Ν	Y	14	_	0	_	0	_	Man-made pool in wetland adjacent to access road. Occurs at the culvert inlet.
5	W080	01JR	N	N	Y	5	11	2	0	0	0	Pool within a skidder rut.
6	W101	01AA	Y	N	Y	1	0	0	0	0	0	Natural pool within a forested wetland.
7	W134	06AA	Y	Ν	Y	1	0	0	0	0	0	Natural depression in peat moss mat. Dry on second visit.
7	W134	17KW	Y	N	Y	3	4	0	0	0	0	Natural depression in peat moss mat. Almost dry on second visit.
10	W163	16KW	Ν	N	Y	50+	—	105	—	0		Deep, man-made pool adjacent to access road within a log yard.

			M	DIFW	Corps		Nu	mber of	Egg Ma	asses ¹			
Map ² #	Wetland ID	Vernal Pool #	Vernal Pool	Significant Vernal Pool	Regulated Vernal Pool	Wo Fro	og	Salan	otted nander	salam	potted ander	Comments ³	
11	W169	04AA	Y	Y	Y	65	65	5	5	0	0	Natural pool in scrub-shrub wetland.	
11	W170	05AA	N	N	Y	2	—	0	—	0	—	Man-made pool adjacent to access road.	
12 & 20	W179	31KW	N	N	Y	2	—	0	—	0	—	Pool within a skidder trail.	
13	W222	23KW	N	N	Y	9	—	0	—	0	—	Pool within a skidder trail.	
13	W223	24KW	N	N	Y	4		0	_	0		Pool within a skidder trail.	
13	W224	27KW	N	N	Y	2		0	_	0		Pool within a skidder trail.	
13	W224	28KW	N	N	Y	1		0	_	0		Pool within a skidder trail.	
15	W252	19KW	N	N	Y	3	—	0		0	—	Pool within a skidder trail.	
15	W254	18KW	N	N	Y	3		0	_	0	—	Pool within a skidder trail.	
15	W258	20KW	N	N	Y	1		0		0	—	Pool within a skidder trail.	
15	W263	21KW	Y	Ν	Y	1	1	0	0	0	0	Naturally occurring pool at the base of a wind thrown tree within a forested wetland.	
15	W265	22KW	Y	Ν	Y	24	24	0	0	0	0	Naturally occurring depression within a forested wetland.	
16	W282	03ED	N	N	Y	10		0	_	0	—	Pool within a skidder trail.	
16	W282	04ED	N	N	Y	9		0	_	0	—	Pool within a skidder trail.	
17	W295	05ED	Y	Y	Y	47	47	0	0	0	0	Natural pool in forested wetland.	
17	W304	01ED	N	N	Y	4		0	_	0	—	Pool within a skidder trail.	
18	W307	02ED	N	N	Y	3		0	_	0	—	Pool within a skidder trail.	
18	W315	08ED	Y	Y	Y	54	54	0	0	0	0	Natural pool in the footprint of wind-thrown trees.	
18	W317	07ED	Y	N	Y	4	0	0	0	0	0	Natural pool in small isolated wetland.	
18	W318	06ED	N	N	Y	47		0		0	—	Man-made pool in area of timber harvesting.	
21	W384	20ED	N	N	Y	0		4	_	0	_	Man-made pool in roadside ditch.	
22	W388	45KW	N	Ν	Y	~1	_	6	_	0		Man-made pool within existing transmission line. Wood frog egg masses had hatched prior to first site visit.	
22	W392	11ED	N	Ν	Y	0	_	6	_	0	—	Man-made pool within wetland adjacent to gravel access road.	
24	W414	44KW	N	Ν	Y	4	_	1	_	0	_	Small excavation adjacent to utility pole within existing transmission line.	
24	W426	43KW	N	Ν	Y	~1	_	0		0	_	Rut within the existing transmission line. Wood frog egg masses had hatched prior to first site visit.	
24	W431	10ED	N	N	Y	28	—	0	_	0	_	Man-made excavation in a forested wetland.	
26	W443	42KW	N	N	Y	1	_	2	_	0	_	Small excavation within existing transmission line.	
26	W443	38KW	N	N	Y	~6	_	11	_	0	_	Rut within the existing transmission line. Wood frog egg masses had hatched prior to first site visit.	

			М	DIFW	Corps		Number of Egg Masses ¹			asses ¹		
Map ² #	Wetland ID	Vernal Pool #	Vernal Pool	Significant Vernal Pool	Regulated Vernal Pool	Wo Fro			Spotted Salamander		potted ander	Comments ³
26	W443	39KW	N	N	Y	~1	_	0	_	0	_	Rut within the existing transmission line. Wood frog egg masses had hatched prior to first site visit.
26	W443	40KW	N	N	Y	~1	_	1	_	0	_	Rut within the existing transmission line. Wood frog egg masses had hatched prior to first site visit.
26	W443	41KW	N	N	Y	~1	_	2	_	0	_	Rut within the existing transmission line. Wood frog egg masses had hatched prior to first site visit.
28	W463	09ED	N	N	Y	1		0	—	0	—	Rut within a skidder trail.

¹Number of egg masses represented with "—" indicates that the pool was not surveyed on the second site visit.

² Map number corresponds to maps provided in Appendix B of this report. Vernal pools below bold line are located within the generator lead corridor.

³ During delineations conducted in September and November 2009 along the proposed electrical generator lead corridor, three naturally occurring potential vernal pools were identified. For the purposes of the December 2009 permit application submission, these three potential vernal pools will be treated as Significant Vernal Pools; however, seasonally appropriate surveys will be completed in 2010 to determine their actual status.

Appendix E U.S. Army Corps of Engineers Wetland Delineation Data Forms

Project Title: H	ighland Wind	Transect Numb	per: W008 F	Plot Number: U	oland		
Delineators: ET	D, DMD	Date: 9/16/08					
VEGETATION	Stratum and Species		Dominance Ratio	Percent Dominance	NWI Status		
Trees:							
	rch (Betula cordifolia)		4/9	44	FACU		
balsam fir (Abies k			4/9	44	FAC		
red spruce (Picea	rubens)		1/9	11	—		
Poles:			40/40	400	540		
balsam fir (Abies I	palsamea)		40/40	100	FAC		
Shrubs:	w.(ho.po)		60/90	07	FACU		
red spruce (<i>Picea</i> balsam fir (<i>Abies</i> k			30/90	67 33	FACO		
Herbs:	Jaisanieaj		30/90	33	FAC		
bunchberry (Corn	us canadonsis)		40/82	49	FAC-		
wild sarsaparilla (15/82	18	FACU		
	rn (Dryopteris campylotera)		10/82	12	_		
	rrel (Oxalis montana)		15/82	18	FAC-		
goldthread (Coptis			2/82	2	_		
goldinoud (oopiid			2,02	-			
Plants reco Note 2: Species wit	Hydrophytes Subtotal: <u>3</u>	other hydrophytes" ir lculated in the tally b DROPHYTES	elow. 2 FAC- Non-hydrop	 FACU bhytes Subtotal: _			
5	<u>100 x Subtotal Hydrophytes</u> ubtotal Hydrophytes + Subtotal Non-Hydrophy	=	37.5	= Percent	Hydropnytes		
Describe Vegetation	Disturbance: None observed						
2. 3. □ RECORDE	D DATA e, or tidal gage Identification:	servation in light of the observations over mor	e than one seaso	n.			
Other Identification: □ NO RECORDED DATA ☑ OBSERVATIONS:							
Altered Hyd	drology (explain):nor	ne observed					
 □ Inundated □ S □ Drainage Pattern 		Drift Lines	liment Deposits				

SOIL	Sketch Lar	ndscape Positio	on		
**	9+F #	UP PLOT	WOO	18 下 不 (1)	A REFERENCE
Depth	Horizon	Matrix Color	Redoximorphic Color, Abundance, S	c Features Size & Contrast	USDA Texture and nodules, concretions, masses, pore linings, restrictive layers, root distribution, soil water, etc.
9"-0"	0		_		—
0"-5"	A	10YR 3/1	-		Sandy loam, granular structure, small
5"-20"	В	2.5YR 2.5/1	-		course fragments Fine sandy loam, sub-angular blocky structure, roots to 12"
REFERENCE: England Intersta	te Water Pollution			ed., Field Indicate	ors for Identifying Hydric Soils in New England. New
OPTIONAL SOIL					
CONCLUSIO	NS	YES NC			
Greater than	50% Hydrophy				
	Criterion Met?			IS THIS DA	TAPOINT WITHIN A WETLAND?
Wetland Hydr					YES NO
, i i i i i i i i i i i i i i i i i i i				REMARKS:	\Box
PROJECT TI	TLE: Highland	Wind TF	RANSECT: W008		PLOT: Upland
<u> </u>					ST A

Delineators: ETD, DMD Date: 9/10/08 VEGETATION Stratum and Species Dominance Ratio Percent Percent NWI Status Trees: None	Project Title: Hi	ghland Wind	Transect Numb	er: W041	Plot Number:	Upland
VEGETATION Stratum and Species Dominance Ratio Percent Dominance NWI Status Trees: None — …			_			
Ratio Dominance NWI Status Trees: None — = …	Delineators: ET	D, DMD	Date: 9/10/08		1	
Trees: None — = … <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
Ratio Dominance NWI Status Trees: None — = …	VEGETATION	Stratum and Species		Deminence	Dereent	
Trees: None						NIM/L Status
Poles: None Shrubs: 3773 4 Shrubs: 3773 4 Stiple maple (Acer saccharum) 3773 4 Stiple maple (Acer saccharum) 1273 16 Stiple maple (Acer saccharum) 1273 16 Opebacked willow (Salix bebbiana) 8/73 11 Ing-backed willow (Salix bebbiana) 8/73 11 red raspberry (Rubus ideaus) 60/146 5 common flat-topped goldenrod (Euthamia graminfolia) 8/746 5 whored aster (Oclemena acuminata) 10/146 7 common flat-topped goldenrod (Euthamia graminfolia) 8/146 3 sugar maple (Acer saccharum) 5/146 3 yellow birch (Betula alleghaniensis) 1/146 1 sugar maple (Acer saccharum) 5/146 3 wool grass (Scipus cypenerins) <td< td=""><td>Traca, Nana</td><td></td><td></td><td></td><td>Dominance</td><td></td></td<>	Traca, Nana				Dominance	
Shrubs:						—
sugar maple (Acer saccharum) 2773 4						
striped maple (Acer pensylvaricum) 12/73 16 — hobblebush (Viburnum lantanoides) 10/73 14 — yellow birch (Batula alleghaniensis) 40/73 55 FAC long-beaked willow (Salix bebbiana) 8/73 11 — red raspberry (Rubus idaeus) 60/146 55 FAC common flat-loopped goldentod (Euthamia graminitolia) 8/146 5 — whorled aster (Oclemena acuminata) 10/146 7 — common horsetall (Equisetum arvense) 10/146 7 — vellow birch (Betula alleghaniensis) 20/146 14 — sugar maple (Acer saccharum) 5/146 3 — veragreen wood fern (Dryopteris intermedia) 3/146 2 — red-berried elder (Sambucus racemosa) 1/146 1 — wild-oats (Uvularia asssillolia) 1/146 1 — wool-grass (Scirpus cyperinus) 1/146 1 — spotted joe-pye weed (Equatorium maculatum) 1/146 1 — vool-grass (Scirpus cyperinus) 1/146 1 —		r ac acharum)		2/72	4	
hobblebush (<i>Viburnum</i> lantanoides) 10/73 14						—
yellow birch (Betula alleghaniensis) 40/73 55 FAC Iong-beaked willow (Salix bebbiana) 8/73 11	sinped maple (Ace	er perisylvanicum)				—
Interploaked willow (Salix bebbiana) 8/73 11						
Herbs: medical set medical set red raspberry (<i>Rubus idaeus</i>) 80/146 55 FAC- common flat-topped goldenrod (<i>Euthamia graminifolia</i>) 8/146 5 - whorted aster (<i>Oclemena acuminata</i>) 10/146 7 - common horsetail (<i>Equiseum arvense</i>) 10/146 7 - yellow birch (<i>Betula alleghaniensis</i>) 20/146 14 - sugar maple (<i>Acer saccharum</i>) 5/146 3 - evergreen wood fern (<i>Dryopteris intermedia</i>) 3/146 2 - wild sarsaparilla (<i>Aralia nudicaulis</i>) 1/146 1 - wild-oats (<i>Uvularia sessilitolia</i>) 5/148 3 - spotted joe-pye weed (<i>Eupatorium maculatum</i>) 1/146 1 - woolgrass (<i>Scirpus cyperinus</i>) 1/146 1 - Plants recorded with asterisks should be considered as "other hydrophytes" in the tally below. Not 1: Use asterisk* to indicate plants with adaptations to wetland hydrology. Plants recorded with asterisks should be considered as "other hydrophytes" in the tally below. Not 2: Species with NA or NI status are reported, but are not calculated in the tally below. Not 2: <td></td> <td></td> <td></td> <td></td> <td></td> <td>FAC</td>						FAC
red raspberry (<i>Rubus idaeus</i>) 80/146 55 FAC- common filat-lopped goldenrod (<i>Euthamia graminifolia</i>) 8/146 55 - whorled aster (<i>Oclemena acuminata</i>) 10/146 7 - common horsetail (<i>Equisetum arvense</i>) 10/146 7 - yellow birch (<i>Betula alleghaniensis</i>) 20/146 14 - sugar maple (<i>Acer saccharum</i>) 5/146 3 - evergreen wood fern (<i>Dryopteris intermedia</i>) 3/146 2 - wild sarsaparilla (<i>Aralia nudicaulis</i>) 1/146 1 - wild sarsaparille (<i>Acer saccharum</i>) 5/146 3 - wool-grass (<i>Scripus cyperinus</i>) 1/146 1 - spotted joe-pye weed (<i>Eupatorium maculatum</i>) 1/146 1 - vool-grass (<i>Scripus cyperinus</i>) 1/146 1 - spotted joe-pye weed (<i>Eupatorium maculatum</i>) 1/146 1 - Note 1: Use asterisk 't indicate plants with adaptations to wetland hydrology. 1 14 0 - OBL -0 -1 -0 -1 0 - 0 -				8/13	11	—
common flat-topped goldenrod (<i>Euthamia graminifolia</i>) 8/146 5 whorled aster (<i>Oclomena acuminata</i>) 10/146 7 common horstall (<i>Equisietum arvense</i>) 10/146 7 yellow birch (<i>Betula alleghaniensis</i>) 20/146 14 sugar maple (<i>Acer saccharum</i>) 6/146 3 evergreen wood fern (<i>Dryopteris intermedia</i>) 3/146 2 wild sarsaparilla (<i>Aralia nudicaulis</i>) 1/146 1 wild-oats (<i>Uvularia sessilifolia</i>) 5/146 3 wool-grass (<i>Scirpus cyperinus</i>) 1/146 1 wool-grass (<i>Scirpus cyperinus</i>) 1/146 1 wool-grass (<i>Scirpus cyperinus</i>) 1/146 1 Note 1: Use asterisk * to indicate plants with adaptations to wetland hydrology. Plants recorded with asterisks should be considered as "other hydrophytes" in the tally below. Note : Note 2: Species with NA or NI status are reported, but are not calculated in the tally below. 0 OBL 0 0 <		hua ida aua)		00/4.40	55	
whotled aster (Öclemena acuminata) 10/146 7 common horsetail (Equisetum arvense) 10/146 7 yellow birch (Betula alleghaniensis) 20/146 14 sugar maple (Acer saccharum) 5/146 3 evergreen wood fern (Dryopteris intermedia) 3/146 2 wild-oast (Uvularia sessilifolia) 5/146 3 wool-grass (Scipus cyperinus) 11/146 1 woodland horsetail (Equisetum sylvaticum) 11/146 1 woodland horsetail (Equisetum sylvaticum) 11/146 1 Note 1: Use asterisk * to indicate plants with adaptations to wetland hydrology. Plants recorded with asterisks should be considered as "other hydrophytes" in the tally below. Note 2: Subtotal Hydrophytes Subtotal:						FAC-
common horsetail (Equisetum arvense) 10/146 7 yellow birch (Betula alleghaniensis) 20/146 14 sugar maple (Acer saccharum) 5/146 3 evergreen wood fern (Dryopteris intermedia) 3/146 2 evergreen wood fern (Carbon accemosa) 1/146 1 wild sarsaparilla (Aralia nuclicaulis) 1/146 1 wild-oats (Uvularia sessilifolia) 5/146 3 wool-grass (Scirpus cyperinus) 1/146 1 spotted joe-pye weed (Equisetum maculatum) 1/146 1 wooland horsetail (Equisetum sylvaticum) 1/146 1 Note 1: Use asterisk * to indicate plants with adaptations to wetland hydrology. Nath a storded with asterisks should be considered as "other hydrophytes" in the tally below. Note 2: Species with NA or NI status are reported, but are not calculated in the tally below. 0 0 OBL FAC TAC FAC VDFL						—
yellow birch (Betula alleghaniensis) 20/146 14						
sugar maple (Acer saccharum) 5/146 3						—
evergreen wood fern (Dryopteris intermedia) 3/146 2						—
red-berried elder (Sambucus racemosa) 1/146 1						
wild sarsaparilla (Aralia nudicaulis) 1/146 1						—
wild-oats (Uvularia sessilifolia) 5/146 3 wool-grass (Scirpus cyperinus) 1/146 1 spotted joe-pye weed (Eupatorium maculatum) 1/146 1 wooland horsetail (Equisetum sylvaticum) 1/146 1 Note 1: Use asterisk * to indicate plants with adaptations to wetland hydrology. Plants recorded with asterisks should be considered as "other hydrophytes" in the tally below. Note 2: Note 2: Species with NA or NI status are reported, but are not calculated in the tally below. Note 2: 0		,				—
wool-grass (Scirpus cyperinus) 1/146 1 spotted joe-pye weed (Eupatorium maculatum) 1/146 1 woodland horsetail (Equisetum sylvaticum) 1/146 1 Note 1: Use asterisk 'to indicate plants with adaptations to wetland hydrology. Plants recorded with asterisks should be considered as "other hydrophytes" in the tally below. Note 2: Species with NA or NI status are reported, but are not calculated in the tally below. 0 0 0 0 0 0 OBL FACW FAC OTHER HYDROPHYTES FAC- FACU UPL Hydrophytes Subtotal: _1						—
spotted joe-pye weed (Eupatorium maculatum) 1/146 1 — woodland horsetail (Equisetum sylvaticum) 1/146 1 — Note 1: Use asterisk * to indicate plants with adaptations to wetland hydrology. Plants recorded with asterisks should be considered as "other hydrophytes" in the tally below. 1/146 1 — Note 2: Species with NA or NI status are reported, but are not calculated in the tally below. 0 <td< td=""><td></td><td></td><td></td><td></td><td></td><td>—</td></td<>						—
woodland horsetail (Equisetum sylvaticum) 1/146 1 — Note 1: Use asterisk * to indicate plants with adaptations to wetland hydrology. Plants recorded with asterisks should be considered as "other hydrophytes" in the tally below. Note 2: Species with NA or NI status are reported, but are not calculated in the tally below. 0 0						—
Note 1: Use asterisk * to indicate plants with adaptations to wetland hydrology. Plants recorded with asterisks should be considered as "other hydrophytes" in the tally below. Note 2: Species with NA or NI status are reported, but are not calculated in the tally below. 0 0BL 0 1 0 0 0 0BL FACW FAC OTHER HYDROPHYTES FAC- FACU UPL Hydrophytes Subtotal: 1 Non-hydrophytes Subtotal: 1 0						—
Plants recorded with asterisks should be considered as "other hydrophytes" in the tally below. Note 2: Species with NA or NI status are reported, but are not calculated in the tally below. 0				1/146	1	—
Note 2: Species with NA or NI status are reported, but are not calculated in the tally below.						
0 0 -1 0					•	
OBL FACW FAC OTHER HYDROPHYTES FAC- FACU UPL Hydrophytes Subtotal: _1 Non-hydrophytes Subtotal: _1 100 x Subtotal Hydrophytes = _50 = Percent Hydrophytes Describe Vegetation Disturbance: None observed = _50 = Percent Hydrophytes HYDROLOGY 1. Hydrology is often the most difficult feature to observe. 2. Interpretation must consider the validity of the observation in light of the season, recent weather conditions, watershed alterations, etc. 3. Interpretation of hydrology may require repeated observations over more than one season. Image: RECORDED DATA Stream, lake, or tidal gage Identification: Aerial photography Identification: Other Identification: Image: No RECORDED DATA Stream, lake, or tidal gage OBSERVATIONS: Depth to Free Water: Depth to Free Water: >20" Depth to Saturation (including capillary fringe): <u>upper 12" (rain previous day)</u> Altered Hydrology (explain): none observed	-	•		elow.		
Hydrophytes Subtotal: _1				1	<u>0</u>	
100 x Subtotal Hydrophytes = 50 = Percent Hydrophytes Subtotal Hydrophytes + Subtotal Non-Hydrophytes = 50 = Percent Hydrophytes Describe Vegetation Disturbance: None observed = 50 = Percent Hydrophytes HYDROLOGY 1. Hydrology is often the most difficult feature to observe. = 50 = Percent Hydrophytes HYDROLOGY 1. Hydrology is often the most difficult feature to observe. = - = 100 x Subtotal Non-Hydrology may require repeated observation in light of the season, recent weather conditions, watershed alterations, etc. - - Interpretation of hydrology may require repeated observations over more than one season. RECORDED DATA Stream, lake, or tidal gage Identification:	OBL FA		DROPHYTES	-		
Subtotal Hydrophytes + Subtotal Non-Hydrophytes Describe Vegetation Disturbance: None observed HYDROLOGY 1. Hydrology is often the most difficult feature to observe. 2. Interpretation must consider the validity of the observation in light of the season, recent weather conditions, watershed alterations, etc. 3. Interpretation of hydrology may require repeated observations over more than one season. □ RECORDED DATA Stream, lake, or tidal gage Identification: Aerial photography Identification: Other Identification: □ NO RECORDED DATA □ OBSERVATIONS: Depth to Free Water: >20" Depth to Saturation (including capillary fringe): upper 12" (rain previous day) Altered Hydrology (explain): none observed		Hydrophytes Subtotal: <u>1</u>		Non-nyarop	onytes Subtotal: _	_ <u>1</u>
Describe Vegetation Disturbance: None observed HYDROLOGY 1. Hydrology is often the most difficult feature to observe. 2. Interpretation must consider the validity of the observation in light of the season, recent weather conditions, watershed alterations, etc. 3. Interpretation of hydrology may require repeated observations over more than one season. □ RECORDED DATA Stream, lake, or tidal gage Identification:		100 x Subtotal Hydrophytes		50	= Percent	Hydrophytes
HYDROLOGY 1. Hydrology is often the most difficult feature to observe. 2. Interpretation must consider the validity of the observation in light of the season, recent weather conditions, watershed alterations, etc. 3. Interpretation of hydrology may require repeated observations over more than one season. □ RECORDED DATA Stream, lake, or tidal gage Identification:	Su	ubtotal Hydrophytes + Subtotal Non-Hydrophyte	es			
2. Interpretation must consider the validity of the observation in light of the season, recent weather conditions, watershed alterations, etc. 3. Interpretation of hydrology may require repeated observations over more than one season. RECORDED DATA Stream, lake, or tidal gage Identification:	Describe Vegetation	Disturbance: None observed				
2. Interpretation must consider the validity of the observation in light of the season, recent weather conditions, watershed alterations, etc. 3. Interpretation of hydrology may require repeated observations over more than one season. RECORDED DATA Stream, lake, or tidal gage Identification:	Ĵ					
2. Interpretation must consider the validity of the observation in light of the season, recent weather conditions, watershed alterations, etc. 3. Interpretation of hydrology may require repeated observations over more than one season. RECORDED DATA Stream, lake, or tidal gage Identification:	HYDROLOGY 1.	Hydrology is often the most difficult feature to observ	ve.			
3. Interpretation of hydrology may require repeated observations over more than one season. RECORDED DATA Stream, lake, or tidal gage Identification:		Interpretation must consider the validity of the obs		season, recent w	eather conditions, w	atershed
 RECORDED DATA Stream, lake, or tidal gage Identification:	2		haar ationa ayar mar	than and access	~	
Stream, lake, or tidal gage Identification: Aerial photography Identification: Other Identification: NO RECORDED DATA OBSERVATIONS: Depth to Free Water: >20" Depth to Saturation (including capillary fringe): upper 12" (rain previous day) Altered Hydrology (explain): none observed	3.	interpretation of hydrology may require repeated c	observations over more	e than one seaso	n.	
Stream, lake, or tidal gage Identification: Aerial photography Identification: Other Identification: NO RECORDED DATA OBSERVATIONS: Depth to Free Water: >20" Depth to Saturation (including capillary fringe): upper 12" (rain previous day) Altered Hydrology (explain): none observed	RECORDE	D DATA				
Aerial photography Identification: Other Identification: NO RECORDED DATA OBSERVATIONS: Depth to Free Water: >20" Depth to Saturation (including capillary fringe): upper 12" (rain previous day) Altered Hydrology (explain): none observed Inundated ☑ Saturated in upper 12" □ Water Marks □ Drift Lines □ Sediment Deposits						
Other Identification: □ NO RECORDED DATA □ OBSERVATIONS: Depth to Free Water: >20" Depth to Saturation (including capillary fringe): upper 12" (rain previous day) Altered Hydrology (explain): none observed □ Inundated ☑ Saturated in upper 12" □ Water Marks □ □ Init Lines □		ography Identification:				
OBSERVATIONS: Depth to Free Water:		Identification:				
Depth to Free Water: >20" Depth to Saturation (including capillary fringe): upper 12" (rain previous day) Altered Hydrology (explain): none observed □ Inundated ☑ Saturated in upper 12" □ Water Marks □ Drift Lines □ Sediment Deposits						
Depth to Saturation (including capillary fringe): upper 12" (rain previous day) Altered Hydrology (explain): none observed □ Inundated ☑ Saturated in upper 12" □ Water Marks □ Drift Lines □ Sediment Deposits						
Altered Hydrology (explain):	Depth to Fr	ee water: <u>>20°</u>	upper 12" (rain pro			
□ Inundated ☑ Saturated in upper 12" □ Water Marks □ Drift Lines □ Sediment Deposits	Altered Hvo	trology (explain):	none observe	d		_
	/ itered rije		1010 0000146	<u>×</u>		
			Drift Lines 🛛 🗆 Sec	liment Deposits	6	
				-		

SOIL	Sketch Landscap	e Position			
YAG	\$ \$ \$\$\$\$\$\$	14994	WO41	a Au	2 9 999 69
		VP-1	LOT OWET-	PLOT	
Depth	Horizon	Matrix Color	Redoximorpl Color, Abundance		USDA Texture and nodules, concretions, masses, pore linings, restrictive layers, root distribution, soil water, etc.
2"-0"	Oi	_	_	_	Fibric
0"-13"	B	7.5YR3/	3 –	_	Sandy loam
					Refusal @ 13"
HYDRIC SOIL IN	IDICATOR(S): Non-h	ydric			
REFERENCE: N	New England Hydric Soi	ils Technical Co	mmittee. 2004. 3rd ed., Fiel	d Indicators for Iden	tifying Hydric Soils in New England. New England
Interstate Water Po	ollution Control Commi	ssion, Lowell, N	IA.		
OPTIONAL SOIL E	DATA:				
TAXONOMIC SL					
SOIL DRAINAGE	E CLASS: IVE WATER TABLE:				
NTCHS HYDRIC	SOIL CRITERION:				
CONCLUSION					
		ES NO			
Greater than 50	0% Hydrophytes?□	\checkmark			
Hydric Soils Cr	iterion Met?	\checkmark	IS T	HIS DATAPOINT	WITHIN A WETLAND?
Wetland Hydro	logy Met?	\checkmark		YES	NO
			REM	IARKS:	
PROJECT TITI	E: Highland Wind		TRANSECT: W041		PLOT: Upland
	<u>.</u>				
					ST C

Project Title: Hi	ghland Wind	Transect Numb	er: W051	Plot Number: U	Jpland		
Delineators: DM	D	Date: 9/18/08					
VEGETATION	Stratum and Species			_			
			Dominance Ratio	Percent Dominance	NWI Status		
Trees:			40/40	70	54011		
sugar maple (Acer			13/18	72	FACU-		
American beech (<i>Poles:</i>			5/18	28	FACU		
American beech (Fagus grandifolia)		7/7	100	FACU		
Shrubs:							
American beech (40/42	95	FACU		
	ogwood (Cornus alternifolia)		1/42	2	—		
yellow birch (Betu	a alleghaniensis)		1/42	2	—		
Herbs:							
	lemena acuminata)		3/40	8	—		
American beech (15/40	38	FACU		
sugar maple (Acer			15/40	38	FACU-		
	ogwood (Cornus alternifolia)		5/40	13	—		
mountain maple (A			1/40	3	—		
red spruce (Picea	rubens)		1/40	3	—		
Plants reco	k * to indicate plants with adaptations to wetlan rded with asterisks should be considered as "ot h NA or NI status are reported, but are not calc	ther hydrophytes" ir		ι.			
OBL FA	CW FAC OTHER HYD Hydrophytes Subtotal: 0	ROPHYTES	0 FAC- Non-hydrop	<u>6</u> FACU phytes Subtotal: _	0 UPL _6		
Su	100 x Subtotal Hydrophytes ibtotal Hydrophytes + Subtotal Non-Hydrophyte	=	<u> 0 </u>	= Percent	Hydrophytes		
	Disturbance: None observed.						
HYDROLOGY 1. 2. 3.	Hydrology is often the most difficult feature to observe Interpretation must consider the validity of the observe alterations, etc. Interpretation of hydrology may require repeated o	ervation in light of the			atershed		
 □ RECORDED DATA Stream, lake, or tidal gage Aerial photography Other □ NO RECORDED DATA ☑ OBSERVATIONS: Depth to Free Water:							
Depth to Saturation (including capillary fringe):							
 Inundated Same Same Same Same Same Same Same Same		Drift Lines □ Sed	liment Deposits				

SOIL	Sketch Lar	ndscape Positio	n		
रिककव.	LOGGING PC	399	A CP	ę	POO WOSI N
	and Physics (1997)	UP-PLOT	WET-PLAT	KILKAN KIL	BILLYS
Depth	Horizon	Matrix Color	Redoximorphic Color, Abundance, S	c Features Size & Contrast	USDA Texture and nodules, concretions, masses, pore linings, restrictive layers, root distribution, soil water, etc.
1"	Duff				
0"-2" 2"-8"	A B1	10YR 2/1 7.5YR 2.5/2			Granular structure Granular structure, roots to 10"
8"-20"	B2	7.5YR 3/3			Granular structure, some small coarse fragments
HYDRIC SOIL	INDICATOR(S):	: Non-hydric			
REFERENCE: England Intersta	New England Hy ate Water Pollution	dric Soils Technical n Control Commissio	Committee. 2004. 3 rd e n, Lowell, MA.	ed., Field Indicate	ors for Identifying Hydric Soils in New England. New
OPTIONAL SOI	L DATA:				
CONCLUSIC	NS	YES NO			
Greater than	50% Hydrophy				
	Criterion Met?			IS THIS DA	TAPOINT WITHIN A WETLAND?
Wetland Hyd					YES NO
volana riyu	logy met:				
				REMARKS:	
PROJECT TI	TLE: Highland	Wind TR	ANSECT: W051		PLOT: Upland
L					I A A A A A A A A A A A A A A A A A A A

Project Title: Hig	mber: W066 F	Plot Number: U	pland		
Delineators: MP	A. DMD	Date: 9/22/0	8		
	.,				
VEGETATION	Stratum and Specie	Dominance Ratio	Percent Dominance	NWI Status	
Trees:					
mountain paper bi	rch (<i>Betula cordifolia</i>)		1/2	50	FACU
red spruce (Picea	rubens)		1/2	50	FACU
Poles:					
red spruce (Picea	rubens)		80/80	100	FACU
Shrubs:					
red spruce (Picea	rubens)		10/23	43	FACU
hobblebush (Vibur	num lantanoides)		5/23	22	FAC
balsam fir (Abies l			3/23	13	—
showy mountain-a	sh (Sorbus decora)		3/23	13	—
mountain holly (Ne	emopanthus mucronatus)		1/23	4	—
striped maple (Ace	er pensylvanicum)		1/23	4	—
Herbs:					
showy mountain-a	sh (Sorbus decora)		1/1	100	FAC
	k * to indicate plants with adaptations to we				
	rded with asterisks should be considered as				
-	h NA or NI status are reported, but are not	calculated in the tall	y below.		
	<u>0 </u>		0	<u>4</u>	0
OBL FA		HYDROPHYTES	FAC-	FACU	UPL
	Hydrophytes Subtotal: <u>2</u>		Non-nyarop	ohytes Subtotal: _	_4
	100 x Subtotal Hydrophytes	=	<u>33</u>	= Percent	Hydrophytes
Su	ibtotal Hydrophytes + Subtotal Non-Hydrop	hytes			
Describe Vegetation	Disturbance: None observed				
HYDROLOGY 1.	Hydrology is often the most difficult feature to ob	oserve.			
2.	Interpretation must consider the validity of the		the season, recent w	eather conditions, w	atershed
	alterations, etc.				
3.	Interpretation of hydrology may require repeat	ed observations over r	nore than one seaso	n.	
	η ματα				
Aerial phote					
Other	Identification:				
	RDED DATA				
Ø OBSERVATI					
Depth to Fr	ee Water: <u>>20"</u>	00"			
Depth to Sa	aturation (including capillary fringe):	>20"			
Altered Hyd	Irology (explain): <u>r</u>	none observed			
□ Inundated □ S	aturated in upper 12"	Drift Lines	Sediment Deposits		
 Drainage Pattern 					
	· · · · · · · · · · · · · · · · · ·				
1					

SOIL	Sketch Lar	ndscape Positio	n	
		Wood		ROT WET PLOT
Depth	Horizon	Matrix Color	Redoximorphic Feat Color, Abundance, Size & C	
3"-O"	0			
0"-2"	А	10YR 2/1	_	Fine sandy loam, loose blocky structure
2"-4"	E	2.5Y 5/1	_	Fine sandy loam, loose blocky structure
4"-7"	Bs	7.5YR 2.5/2	—	Fine sandy loam, loose blocky structure
7"-13"	B2	7.5YR 3/4	—	Fine sandy loam, loose blocky structure
13"-20"	B3	10YR 3/6	—	Fine sandy loam, loose blocky structure
HYDRIC SOIL I	NDICATOR(S):	: Non-hydric		
		dric Soils Technical n Control Commissio		ld Indicators for Identifying Hydric Soils in New England. New
OPTIONAL SOIL	DATA:			
TAXONOMIC S SOIL DRAINAG DEPTH TO AC NTCHS HYDRI	E CLASS: TIVE WATER T			
CONCLUSION	NS			
		YES NO		
Greater than 5	50% Hydrophy			
Hydric Soils C	riterion Met?		IS T	THIS DATAPOINT WITHIN A WETLAND?
Wetland Hydro	ology Met?	\Box \checkmark		YES NO
				\Box ∇
			REN	MARKS:
				······································
PROJECT TIT	LE: Highland	Wind TR	ANSECT: W066	PLOT: Upland

Project Title: Hi	ighland Wind	Transect Numb	er: W087 F	Plot Number: Up	oland
Delineators: DM	D, EID	Date: 9/30/08			
VEGETATION	Stratum and Species		Dominance	Percent	
			Ratio	Dominance	NWI Status
Trees:					
yellow birch (Betu	la alleghaniensis)		3/9	33	FAC
American beech (5/9	56	FACU
sugar maple (Ace	r saccharum)		1/9	11	_
Poles:					
American beech (Fagus grandifolia)		30/30	100	FACU
Shrubs:					
American beech (35/43	81	FACU
sugar maple (Ace			5/43	12	—
red spruce (Picea			1/43	2	
striped maple (Ace	er pensylvanicum)		2/43	5	—
Herbs:	Fogue grandifalia)		7/33	21	FACU
American beech (sugar maple (Ace			7/33	21	FACU-
patridgeberry (<i>Mite</i>			3/33	9	FACU
wild-oats (Uvularia			2/33	6	-
	ern (Dryopteris intermedia)		4/33	12	FACU
	n (<i>Phegopteris connectilis</i>)		3/33	9	FACU
wild sarsaparilla (A			2/33	6	_
Indian pipe (Mono	, , , , , , , , , , , , , , , , , , ,		1/33	3	
beechdrops (<i>Epifa</i>			1/33	3	
	(Huperzia lucidula)		3/33	9	FACW
	k * to indicate plants with adaptations to wetlan	nd hydrology.	0,00	0	
Plants reco	rded with asterisks should be considered as "o	ther hydrophytes" in			
Note 2: Species wit	th NA or NI status are reported, but are not calc	culated in the tally be	elow.		
	<u>1 </u>		0	9	0
OBL FA		DROPHYTES	FAC-	FACU	UPL
	Hydrophytes Subtotal: <u>2</u>		Non-hydrop	ohytes Subtotal: _	9
	100 x Subtotal Hydrophytes	=	<u>18.2</u>	= Percent	Hydrophytes
Su	ubtotal Hydrophytes + Subtotal Non-Hydrophyte	es			
Describe Vegetation	Disturbance: None observed				
C C					
HYDROLOGY 1.	Hydrology is often the most difficult feature to observ	ve.			
2.	Interpretation must consider the validity of the obs	ervation in light of the	season, recent w	eather conditions, w	atershed
3.	alterations, etc. Interpretation of hydrology may require repeated c	observations over more	than one seaso	n	
0.	interpretation of hydrology may require repeated e			•	
RECORDE					
	e, or tidal gage Identification:				
Aerial photo					
Other	Identification:				
☐ NO RECON Ø OBSERVATI					
Depth to Fr	ee Water: >20"				
Depth to Sa	aturation (including capillary fringe):	>20"			
Altered Hyd	drology (explain):none	e observed			
🗆 Inundated 🗖 S	aturated in upper 12" 🛛 Water Marks 🗠 I	Drift Lines 🛛 Sed	iment Deposits		
	is within Wetland \Box OTHER (explain):				
l					

SOIL	Sketch La	ndscape Positio	n		
		W087	3 3 9 9 6	C) C	B YX B B B Wet plot STREAM
Depth	Horizon	Matrix Color	Redoximorphi Color, Abundance, S		USDA Texture and nodules, concretions, masses, pore linings, restrictive layers, root distribution, soil water, etc.
1"	Duff				
4"-0" 0"-2" 2"-12"	0 A B1	10YR 2/1 10YR 3/2			— Loam, granular structure Fine sandy loam, sub-angular blocky structure, roots to 12"
12"-16"	B2	2.5Y 4/2	—		· · · · · · · · · · · · · · · · · · ·
HYDRIC SOI	L INDICATOR(S)	: Non-hydric			
REFERENCE England Interst	: New England Hy tate Water Pollutio	ydric Soils Technical n Control Commissio	Committee. 2004. 3 rd e on, Lowell, MA.	ed., Field Indicate	ors for Identifying Hydric Soils in New England. New
OPTIONAL SO	IL DATA:				
SOIL DRAINA DEPTH TO A	SUBGROUP: AGE CLASS: CTIVE WATER ⁻ RIC SOIL CRITE				
CONCLUSI	ONS	YES NO			
Greater thar	n 50% Hydroph	ytes?□ ☑			
Hydric Soils	Criterion Met?			IS THIS DA	TAPOINT WITHIN A WETLAND?
Wetland Hyd	drology Met?				YES NO □ ☑
				REMARKS:	
PROJECT T	TTLE: Highland	l Wind TR	ANSECT: W087		PLOT: Upland
<u></u>					S

Project Title: Hig	hland Wind	Transect Numb	oer: W172	Plot Number	: Upland		
Delineators: CW	E ALS	Date: 11/14/20	08				
Denneators. Gw		Date. 11/14/200					
VEGETATION	Stratum and Species		Dominance Ratio	Percent Dominance	NWI Status		
Trees:			4/0	4.4			
balsam fir (Abies I	/		1/9	11 22			
black cherry (Prur paper birch (Betul			2/9 2/9	22	FACU FACU		
red maple (Acer ru			2/9	22	FAC		
	opulus tremuloides)		1/9	11	—		
red spruce (<i>Picea</i>			1/9	11			
Poles:	10010)		170				
red maple (Acer ru	ıbrum)		25/50	50	FAC		
balsam fir (Abies I			10/50	20	FAC		
black cherry (Prur			15/50	30	FACU		
Shrubs:							
balsam fir (Abies I	palsamea)		20/55	36	FAC		
red maple (Acer ru			15/55	27	FAC		
yellow birch (Betu			5/55	9	—		
beaked hazelnut (10/55	18	—		
speckled alder (Al	nus incana)		5/55	9	—		
Herbs:			0 /0	~-	51011		
	s (Calamagrostis canadensis)		2/8	25	FACW+		
	ern (Dryopteris intermidia)		5/8	63	FACU		
prickly tree clubmo	oss (Lycopodium dendroideum)		1/8	13	—		
Plants reco	k * to indicate plants with adaptations to wetland rded with asterisks should be considered as "ot	ther hydrophytes" in					
-	th NA or NI status are reported, but are not calc	culated in the tally b					
	<u>1</u> <u>5</u> O ACW FAC OTHER HYD Hydrophytes Subtotal: <u>6</u>	ROPHYTES	<u>0</u> FAC- Non-hydrop	<u>4</u> FACU hytes Subtotal: _	0 UPL _ <u>4</u>		
S	100 x Subtotal Hydrophytes ubtotal Hydrophytes + Subtotal Non-Hydrophyte	=	60	= Percent	Hydrophytes		
	Disturbance: Evidence of timber harvesting						
HYDROLOGY 1. Hydrology is often the most difficult feature to observe. 2. Interpretation must consider the validity of the observation in light of the season, recent weather conditions, watershed alterations, etc. 3. Interpretation of hydrology may require repeated observations over more than one season.							
 RECORDED DATA Stream, lake, or tidal gage Identification:							
<u>.</u>	- (-1)						

SOIL	Sketch Lands	cape Pos	sition						
E JAR	C	al w	e ven	A Carlor	W A	P	Larry SA	W 172	i An
Depth	Horizon	Mat Col			phic Features ce, Size & Contras		USDA Texture a masses, pore linin distributio		yers, root
3-0"	0		-		_				
0-5"	A/E	7.5YR					ine silt loam		
5-7"	B ₁	10YR 3					Fine silt loam		
7-13"+	B ₂	10YR -	4/4			F	Fine silt loam		
England Interstate	ew England Hydric Water Pollution Co	Soils Tech			., Field Indicators	s for Identi	ifying Hydric Soil.	s in New Englar	nd. New
OPTIONAL SOIL D	DATA:								
TAXONOMIC SU SOIL DRAINAGE DEPTH TO ACTI NTCHS HYDRIC	E CLASS: IVE WATER TABI								
CONCLUSION	S								
Greater than 50)% Hydrophytes		NO □						
Hydric Soils Cri	terion Met?		\checkmark		IS THIS DATA	APOINT	WITHIN A WE	ETLAND?	
Wetland Hydrol			\checkmark			YES	NO		
							\checkmark		
					REMARKS:				
PROJECT TITL	E: Highland Wi	nd	TR/	ANSECT: W172			PLOT: Upla	nd	
									-

Project Title: Hig	hland Wind	Transect Numb	oer: W008	Plot Number: W	Vetland	
Delineators: ET	D. DMD	Date: 9/16/08				
	,					
VEGETATION	Stratum and Species		Dominance Ratio	Percent Dominance	NWI Status	
Trees:			A/A	400	FACU	
red spruce (<i>Picea</i> Poles:	rubens)"		4/4	100	FACU	
red spruce (<i>Picea</i>	rubens)*		10/11	91	FACU	
balsam fir (Abies k			1/11	9	_	
Shrubs:						
red spruce (Picea	rubens)		3/11	27	FACU	
balsam fir (Abies k	palsamea)		7/11	64	FAC	
	rch (<i>Betula cordifolia</i>)		1/11	9	—	
Herbs:						
	ge (Carex trisperma)		75/81	93	OBL	
bunchberry (Corne	/		2/81	2	—	
	lew (Drosera rotundifolia)		2/81	2	—	
	-grass (Scirpus atrocinctus)		1/81	1	—	
snort-tailed rush (luncus brevicaudatus)		1/81	1	—	
Bryoid layer – 95%	sphagnum moss					
Note 1: Use asteris	k * to indicate plants with adaptations to wetlar	nd hydrology.				
	rded with asterisks should be considered as "o h NA or NI status are reported, but are not calo			Ι.		
$-\frac{1}{OBL}$ \overline{F}	02 ACW FAC OTHER HYD	DROPHYTES	0 FAC-	<u>1</u> FACU	<u> </u>	
	Hydrophytes Subtotal: <u>4</u>		-	ohytes Subtotal: _	- · -	
S	<u>100 x Subtotal Hydrophytes</u> ubtotal Hydrophytes + Subtotal Non-Hydrophyte	=	00		nyuropriytes	
Describe vegetation	Disturbance: None observed					
HYDROLOGY 1. 2. 3.	Hydrology is often the most difficult feature to obser Interpretation must consider the validity of the obs alterations, etc. Interpretation of hydrology may require repeated of	servation in light of the			atershed	
			5 man one sedsu			
	e, or tidal gage Identification:					
Aerial photography Identification: Other Identification:						
	RDED DATA					
Ø OBSERVATI						
	ee Water: <u>not recorded</u>					
	aturation (including capillary fringe): <u>surface</u>					
Altered Hyd	drology (explain): <u>none observed</u>					
□ Inundated ØSa	iturated in upper 12"	Drift Lines 🛛 🗆 Sedi	iment Deposits			
Drainage Pattern						

SOIL	Sketch Lan	dscape Positio	n		
**	PAFF	AF ALA	WOO	18 Fur 年w	A REFERENCE
Depth	Horizon	Matrix Color	Redoximorphic Color, Abundance, S	c Features Bize & Contrast	USDA Texture and nodules, concretions, masses, pore linings, restrictive layers, root distribution, soil water, etc.
22+"	0	_	_		
REFERENCE:	te Water Pollution		Committee. 2004. 3 rd e on, Lowell, MA.	d., Field Indicato	rs for Identifying Hydric Soils in New England. New
NTCHS HYDR	GE CLASS: TIVE WATER TA IC SOIL CRITER	ABLE: RION:			
CONCLUSIO	NS 50% Hydrophy				
Hydric Soils C Wetland Hydr				IS THIS DA	TAPOINT WITHIN A WETLAND? YES NO ☑ □
PROJECT TI	TLE: Highland	Wind TR	ANSECT: W008		PLOT: Wetland
<u>I</u>					In the second se

Project Title: Hig	ghland Wind Transec	t Number: W041 P	lot Number: We	etland
Delineators: DM	D, ETD Date: 9/	10/08		
VEGETATION	Stratum and Species	Dominance Ratio	Percent Dominance	NWI Status
Trees:	(brum)	1/2	50	FAC
red maple (Acer ru yellow birch (Betu		1/2	50	FAC
Poles:		1/2	50	170
red maple (Acer ru	ıbrum)	15/15	100	FAC
Shrubs:				
red maple (Acer ru	ıbrum)	3/7	43	FAC
black ash (Fraxinu		1/7	14	—
balsam fir (Abies k		2/7	29	FAC
striped maple (Ace	er pensylvanicum)	1/7	14	—
Herbs: rough sedge (Care	av scabrata)	80/87	92	OBL
	ed goldenrod (<i>Euthamia graminifolia</i>)	2/87	2	
wool-grass (Scirpu		5/87	6	_
		0/01		
Noto 1: Lleo actorio	k * to indicate plants with adaptations to wetland hydrolog			
	rded with asterisks should be considered as "other hydroid			
	h NA or NI status are reported, but are not calculated in th			
<u>1</u> 0	<u> </u>	0	0	0
OBL FA	CW FAC OTHER HYDROPHYTE		FACU	UPL
	Hydrophytes Subtotal:6	Non-nyarop	ohytes Subtotal: _	_0
_	100 x Subtotal Hydrophytes	= <u>100</u>	= Percent	Hydrophytes
Su	ubtotal Hydrophytes + Subtotal Non-Hydrophytes			
Describe Vegetation	Disturbance: None observed			
HYDROLOGY 1. 2.	Hydrology is often the most difficult feature to observe. Interpretation must consider the validity of the observation in lig	abt of the season recent w	anthar conditions w	atorshod
۷.	alterations, etc.	grit of the season, recent w		alersneu
3.	Interpretation of hydrology may require repeated observations	over more than one seaso	n.	
	η η ατα			
	e, or tidal gage Identification:			
Aerial photo				
Other	Identification:			
□ NO RECOR Ø OBSERVATI	RDED DATA			
	ee Water:surface			
	aturation (including capillary fringe): <u>surface</u>			
Altered Hyd	rology (explain): <u>none observed</u>			
☑ Inundated ☑ S	Saturated in upper 12"	Sediment Deposit	e	
 Drainage Pattern 			3	
1				(San

SOIL	Sketch Lar	ndscape Positio	n		
YAE3	~ 0016	0.0000-0.A	W04		S IN
	4444	VP-	PLOT OWN	T-PLOT	W 99998
Depth	Horizon	Matrix Color	Redoximorphic Color, Abundance, S		USDA Texture and nodules, concretions, masses, pore linings, restrictive layers, root distribution, soil water, etc.
4"-0"	Oe		_		_
0"-3"	A	10YR 3/2	—		Loam, mucky, sub-angular blocky structure
3"-20"	В	2.5Y 4/2	5%, few, distinct		Fine sandy loam, sub-angular blocky structure
REFERENCE England Intersta	New England Hy ate Water Pollution	: VI. Depleted or G dric Soils Technical n Control Commission	Committee. 2004. 3 rd e	ed., Field Indicate	ors for Identifying Hydric Soils in New England. New
	SUBGROUP:				
CONCLUSIC	DNS	YES NO			
Greater than	50% Hydrophy				
	Criterion Met?	\checkmark		IS THIS DA	TAPOINT WITHIN A WETLAND?
Wetland Hyd	rology Met?	\checkmark			YES NO
				REMARKS:	
PROJECT T	ITLE: Highland	Wind TR	ANSECT: W041		PLOT: Wetland

Project Title: H	ighland Wind	Transect Number: W051 Plot Number: Wetland			
Delineators: DM	D	Date: 9/18/08			
VEGETATION	Stratum and Species		Dominance Ratio	Percent Dominance	NWI Status
Trees:					
	Fagus grandifolia)*		2/6	25	FACU
sugar maple (Ace Poles:	r saccharum)*		4/6	75	FACU-
yellow birch (Betu			5/7	71	FAC
sugar maple (Ace	r saccharum)		2/7	29	FACU-
Shrubs: none					
Herbs:					
	/sosplenium americanum)		20/65	31	OBL
lake bank sedge (25/65	38	OBL
fowl mannagrass			3/65	5	—
heal-all (Prunella			5/65	8	—
whorled aster (Oc.	lemena acuminata)		5/65	8	—
	ern (Dryopteris intermedia)		1/65	2	—
lady fern (Athyriun			3/65	5	—
common wood-so	rrel (Oxalis montana)		2/65	3	—
zigzag goldenrod	(Solidago flexicaulis)		1/65	2	—
Note 1: Use asteris	k * to indicate plants with adaptations to wetlar	nd hydroloay.			
Plants reco	rded with asterisks should be considered as "c th NA or NI status are reported, but are not cal	other hydrophytes" ir			
2) 1 2		0	1	0
OBL F/		DROPHYTES	FAC-	FACU	UPL
	Hydrophytes Subtotal: <u>5</u>		Non-hydrop	ohytes Subtotal: _	<u>1</u>
	100 x Subtotal Hydrophytes	=	83	= Percent	Hydrophytes
Su	ubtotal Hydrophytes + Subtotal Non-Hydrophyt		00		i i julopi i julo
Describe vegetation	Disturbance: None observed				
HYDROLOGY 1.	Hydrology is often the most difficult feature to obser	'Ve.			ato vola o d
Ζ.	Interpretation must consider the validity of the obs alterations, etc.	servation in light of the	season, recent w	eather conditions, w	atersned
3.		observations over more	e than one seaso	n.	
Stream, lake, or tidal gage Identification: Aerial photography Identification:					
Aerial photo Other	ography Identification: Identification:				
	RDED DATA		· · · · · · · · · · · · · · · · · · ·		
Ø OBSERVATI					
Depth to Fr	ee Water: surface				
Depth to Sa	aturation (including capillary fringe):	within upper 12	,,,		
Altered Hyd	drology (explain):	none obsei	rved		
		Drift Line	diment D in	_	
 ☑ Inundated ☑ Drainage Pattern 		Drift Lines D Se		5	

SOIL	SOIL Sketch Landscape Position								
9000	LOGGING PS	UP-PLOT	WET-PLAT .	MUKALON VIL	POS WOSI N				
Depth	Horizon	Matrix Color	Redoximorphi Color, Abundance, S		USDA Texture and nodules, concretions, masses, pore linings, restrictive layers, root distribution, soil water, etc.				
7"-0"	Oa	_	_		Sapric				
0"-11"	A	10YR 2/1			Loam, mucky, granular structure				
11"-20"	В	Gley1 5/10GY	<2%, few, distinc	t	Sandy clay loam, some medium coarse fragments, sub-angular blocky structure				
REFERENCE	New England Hy	V. Mineral Histic dric Soils Technica n Control Commiss	ll Committee. 2004. 3 rd e	ed., Field Indicate	ors for Identifying Hydric Soils in New England. New				
OPTIONAL SOI	L DATA:								
TAXONOMIC SOIL DRAINA DEPTH TO AC NTCHS HYDR		ABLE: RION:							
CONCLUSIC	DNS								
Greater than	50% Hydrophy	YES NO /tes?☑ □)						
	Criterion Met?				TAPOINT WITHIN A WETLAND?				
Wetland Hyd					YES NO				
				REMARKS:					
PROJECT T	ITLE: Highland	Wind T	RANSECT: W051		PLOT: Wetland				
					(Second				

Project Title: Hig	ghland Wind	Transect Number: W066 Plot Number: Wetland				
Delineators: MP	A, DMD	Date: 9/22/08				
VEGETATION	Stratum and Species		Dominance Ratio	Percent Dominance	NWI Status	
Trees:			0/0	100	51011	
red spruce (Picea	rubens)*		2/2	100	FACU	
Poles:	w.(h.o.n.o.) *		20/44	70		
red spruce (Picea			30/41	73	FACU	
balsam fir (Abies k			1/41 5/41	2		
yellow birch (Betu paper birch (Betul		5/41	12	—		
Shrubs:	a papymera)		5/41	12		
speckled alder (Al	nus incana)		50/74	68	FACW	
balsam fir (Abies k			1/74	1	—	
paper birch (Betul	,		1/74	1		
red spruce (<i>Picea</i>			20/74	27	FACU	
	sh (Sorbus decora)		1/74	1	_	
	emopanthus mucronatus)		1/74	1		
Herbs:			.,			
	ge (Carex trisperma)		85/86	98	OBL	
speckled alder (Al			1/86	1		
· · · · · ·						
Note 1: Use asteris	k * to indicate plants with adaptations to wetlan	d hydrology.	1	l	1	
	rded with asterisks should be considered as "of					
Note 2: Species wit	h NA or NI status are reported, but are not calc	culated in the tally be	elow.			
	1 0 2 ACW FAC OTHER HYD Hydrophytes Subtotal: 4	ROPHYTES	0 FAC- Non-hydrop	_ <u>1</u> FACU bhytes Subtotal: _	0 UPL _1	
Su	100 x Subtotal Hydrophytes ubtotal Hydrophytes + Subtotal Non-Hydrophyte	=	80	= Percent	Hydrophytes	
	Disturbance: None observed					
	Hydrology is often the most difficult feature to observ Interpretation must consider the validity of the observations, etc. Interpretation of hydrology may require repeated o	ervation in light of the	,		atershed	
Aerial phote Other □ NO RECOF ☑ OBSERVATI Depth to Fr Depth to Sa Altered Hyd	e, or tidal gage Identification: ography Identification: Identification: RDED DATA ONS:	<u>.</u>				
	s within Wetland D OTHER (explain):			,		

SOIL	Sketch Lan	dscape Posit	ion		
		Wo	* ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	UP PLOT	WET PLOT
Depth	Horizon	Matrix Colo	. Redoximorphi Color, Abundance, S	c Features Size & Contrast	USDA Texture and nodules, concretions, masses, pore linings, restrictive layers, root distribution, soil water, etc.
14"	0				Over rock
HYDRIC SOIL redoximorphic		XIII. "Problem"	Soil Areas: closely rese	embles histric e	bipedon, but lacks underlying "horizon with
REFERENCE: England Intersta	te Water Pollution	dric Soils Technic Control Commis	al Committee. 2004. 3 rd e sion, Lowell, MA.	ed., Field Indicate	ors for Identifying Hydric Soils in New England. New
TAXONOMIC S SOIL DRAINAG DEPTH TO AC	SUBGROUP:				
CONCLUSIO	NS	YES N	0		
Greater than	50% Hydrophy				
Hydric Soils C			l	IS THIS DA	TAPOINT WITHIN A WETLAND?
Wetland Hydr	ology Met?		l		YES NO
					\square
				REMARKS:	
PROJECT TI	TLE: Highland	Wind	RANSECT: W066		PLOT: Wetland
					5

Project Title: H	ighland Wind Transe	ect Number: W087 F	Plot Number: We	etland
Delineators: DN	ID. ETD Date: 9	9/30/08		
VEGETATION	Stratum and Species	Dominance Ratio	Percent Dominance	NWI Status
Trees:				
	Fagus grandifolia)*	3/4	75	FACU
yellow birch (Betu	la alleghaniensis)	1/4	25	FAC
Poles:				
	Fagus grandifolia)*	5/10	50	FACU
	er pensylvanicum)	5/10	50	FACU
Shrubs:				
	Fagus grandifolia)*	10/22	45	FACU
striped maple (Ac	er pensylvanicum)	5/22	23	FACU
hobblebush (Vibu	rnum lantanoides)	2/22	9	—
sugar maple (Ace	r saccharum)	5/22	23	FACU-
Herbs:				
wild white violet (/iola macloskeyi)	20/54	37	OBL
dwarf raspberry (Rubus pubescens)	10/54	19	—
	smunda cinnamomea)	2/54	4	—
dewdrop (Rubus	dalibarda)	20/54	37	FAC
American willow-h	erb (<i>Epilobium ciliatum</i>)	2/54	4	—
Plants reco	sk * to indicate plants with adaptations to wetland hydrolo orded with asterisks should be considered as "other hydro th NA or NI status are reported, but are not calculated in	ophytes" in the tally below the tally below.		
OBL F	0 <u>2</u> <u>3</u> ACW FAC OTHER HYDROPHYT Hydrophytes Subtotal: <u>6</u>		_ <u>3</u> FACU phytes Subtotal: _	
s	100 x Subtotal Hydrophytes ubtotal Hydrophytes + Subtotal Non-Hydrophytes	= <u>67</u>	_ = Percent	Hydrophytes
Describe Vegetation	Disturbance: None observed			
HYDROLOGY 1. 2. 3.	alterations, etc.			ratershed
Aerial phot Other □ NO RECO ☑ OBSERVA Depth to F Depth to S	ke, or tidal gage Identification: ography Identification:			
		<u>ed</u> es □ Sediment Deposi [.]	s	

SOIL	Sketch Lar	ndscape Positio	n	
		W087	S S G G C	3 0 0 Nrs
Depth	Horizon	Matrix Color	Redoximorphic Features Color, Abundance, Size & Contrast	USDA Texture and nodules, concretions, masses, pore linings, restrictive layers, root distribution, soil water, etc.
2"-0"	0	<u> </u>	<u> </u>	<u> </u>
0"-2"	А	10YR 2/2		Clay loam
2"-10"	B1	10YR 5/1	7.5YR 3/4, 2%, prominent	Sandy loam
10"-22"	B2	10YR 4/1	10YR 5/6, 5%, prominent	Clay loam
l	-			Refusal @ 22"
	-	-		
	-	-		+
				-
	-			-
	-	-		-
	-	-		+
		-	+	
HYDRIC SOIL	INDICATOR(S)	: VI. Depleted or G	leved Matrix	
REFERENCE:	New England Hy		Committee. 2004. 3 rd ed., <i>Field Indica</i>	ttors for Identifying Hydric Soils in New England. New
OPTIONAL SOIL	DATA:			
CONCLUSIO				
		YES NO		
Greater than	50% Hydrophy	ytes?		
	Criterion Met?		IS THIS D	ATAPOINT WITHIN A WETLAND?
2				
Wetland Hydi	fology lviet?			YES NO
			REMARKS	
PROJECT TI	TLE: Highland	Wind TR	ANSECT: W087	PLOT: Wetland

Project Title: Hig	hland Wind	Transect Number: W172 Plot Number: Wetlan				
Delineators: CWF	ALS	Date: 11/14/20	08			
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Bato: 11/14/200				
VEGETATION	Stratum and Species		Dominance Ratio	Percent Dominance	NWI Status	
Tree				2 0111101100		
green ash (Fraxini	ıs pennsylvanica)		1/4	25	FACW	
	saccharum): on wetland/upland edge		2/4	50	FACU-	
yellow birch (Betu	a alleghaniensis)		1/4	25	FAC	
Pole						
balsam fir (Abies k	palsamea)		10/10	100	FAC	
Shrub						
	nus incana sp. rugosa)	55/92	60	FACW+		
balsam fir (Abies k			20/92	22	FAC	
red osier dogwood			5/92	5		
red maple (Acer ru	ibrum)		12/92	13		
Herb			05/50		54014	
sensitive fern (One	/		25/50	50	FACW	
	ern (Dryopteris intermidia)		5/50	10	—	
	oldenrod (Solidago rugosa) (Scutellaria lateriflora)		10/50	20 10	FAC	
	ehound (Lycopus uniflorus)		5/50 5/50	10		
nonnenn water nor	enound (Lycopus uninorus)		5/50	10		
Plants reco	k * to indicate plants with adaptations to wetlan rded with asterisks should be considered as "ot h NA or NI status are reported, but are not calc	ther hydrophytes" in				
-	-			1	0	
OBL FA	<u>3</u> ACW FAC OTHER HYD Hydrophytes Subtotal: <u>7</u>	ROPHYTES	_ <u>0</u> FAC- Non-hydror	FACU FACU hytes Subtotal: _	_ <u>0</u> UPL 1	
				-	_	
SI	100 x Subtotal Hydrophytes ibtotal Hydrophytes + Subtotal Non-Hydrophyte	=	<u>88</u>	= Percent	Hydrophytes	
Describe Vegetation	Disturbance: None observed					
HYDROLOGY 1. 2. 3.	Hydrology is often the most difficult feature to observ Interpretation must consider the validity of the observ alterations, etc. Interpretation of hydrology may require repeated o	ervation in light of the			atershed	
Aerial photo Other □ NO RECOF ☑ OBSERVATI Depth to Fr Depth to Sa Altered Hyd	e, or tidal gage Identification: ography Identification: Identification: RDED DATA ONS: ee Water: <u>one inch below ground surface</u> aturation (including capillary fringe): <u>surface</u> Irology (explain):	none o	observed			
□ Inundated ☑ S ☑ Drainage Patterr		Drift Lines	diment Deposits			

SOIL	Sketch Landscap	e Position		
E piki	9.6	WP ROT	Jule Que with the	WITZ A
Depth	Horizon	Matrix Color	Redoximorphic Features Color, Abundance, Size & Contrast	USDA Texture and nodules, concretions, masses, pore linings, restrictive layers, root distribution, soil water, etc.
17-15" 15-0" 0-9"	duff O B	— — 5Y 5/3	— — 10YR 5/8, 30% concentrations	— — Fine silt loam
REFERENCE: No	DICATOR(S): IV: Hi ew England Hydric Soi Vater Pollution Control	ls Technical	Committee. 2004. 3 rd ed., Field Indicators for	or Identifying Hydric Soils in New England. New
NTCHS HYDRIC S	BGROUP: CLASS: /E WATER TABLE: SOIL CRITERION:			
CONCLUSIONS	YE	,		
Hydric Soils Crite	% Hydrophytes? ☑ erion Met? ☑		IS THIS DATAP	OINT WITHIN A WETLAND?
Wetland Hydrolo		,		YES NO
			REMARKS:	—
PROJECT TITLE	E: Highland Wind	Т	RANSECT: W172	PLOT: Wetland

Project Title: Highlar	nd Wind	Plot Location:	04KWE14	Upland/Wetl	and: Wetland
Delineators: KAW		Date: June 29,	2009		1
VEGETATION	Stratum and Species		Dominance Ratio	Percent Dominance	NWI Status
Tree: None					
Poles: None					
Shrubs:					
rosy meadowsweet (Sp	piraea tomentosa)		1/2	50	FACW
mountain holly (Ilex mu	icronata)		1/2	50	OBL
Herb:					
Canada reed grass (Ca	alamagrostis canadensis)		10/34	29	FACW
cinnamon fern (Osmun			5/34	15	FACW
woolsedge (Scirpus cf			3/34	9	FACW
Virginia strawberry (Fra			2/34	6	
smooth goldenrod (Sol			2/34	6	1
wood horsetail (Equise			2/34	6	
pointed broom sedge (2/34	6	_
wrinkle-leaved goldenr			1/34	3	
	b (Persicaria sagittata)		1/34	3	_
	aianthemum canadense)		1/34	3	
crested wood fern (Dry			1/34	3	
northern white-cedar (1/34	3	
red maple (Acer rubrur			1/34	3	
American twinflower (L			1/34	3	
orange hawkweed (Hie			1/34	3	
	(<i>Sphagnum</i> sp.) throughout plot		1/34	3	
Note 1: Use asterisk * to Plants recorded	indicate plants with adaptations to wetland with asterisks should be considered as "othe or NI status are reported, but are not calcul	er hydrophytes" ir			
1 4 OBL FACW	FAC 0 THER HYDR Hydrophytes Subtotal: 5	OPHYTES	0 FAC- Non-hydrop	0 FACU hytes Subtotal:	0 UPL 0
Subtota	<u>100 x Subtotal Hydrophytes</u> al Hydrophytes + Subtotal Non-Hydrophytes	=	100	= Percent	Hydrophytes
Describe Vegetation Dist	urbance: Plot is located in an existing transm	hission line that u	nder goes perio	dic control of woo	dy vegetation.
HYDROLOGY 1. Hydr 2. Inte alte	ology is often the most difficult feature to observe. erpretation must consider the validity of the observ arations, etc. erpretation of hydrology may require repeated obs	, vation in light of the	season, recent w	eather conditions, v	
 RECORDED DA Stream, lake, or Aerial photograp Other NO RECORDED OBSERVATIONS Depth to Free W Depth to Satural 	tidal gage Identification: hy Identification: Identification: D DATA				
Altered Hydrolog	gy (explain): <u>Some soil compaction and ruttir</u> ated in upper 12" □ Water Marks □ D	ng as a result of c	onstruction and diment Deposit		ivities.
					6

SOIL	Sketch Lan	dscape Po	sition		
			Į	8	
				(X)	
Depth	Horizon	Matrix C	olor	Redoximorphic Features Color, Abundance, Size & Contrast	USDA Texture and nodules, concretions, masses, pore linings, restrictive layers, root distribution, soil water, etc.
					1" of peat moss over rock
YDRIC SOIL I	NDICATOR(S):	XIII – Proble	em soil		
REFERENCE: I	New England Hy	dric Soils Te	echnica	l Committee. 2004. 3 rd ed., <i>Field I</i> Control Commission, Lowell, MA.	Indicators for Identifying Hydric Soils in New
OPTIONAL SOIL	DATA:				
CONCLUSION			(000151)		
		YES	NO		
	50% Hydrophyt				
Hydric Soils C		X		IS THIS DA	TAPOINT WITHIN A WETLAND?
Vetland Hydro	ology Met?	X			YES NO
				REMARKS	
	LE: Highland	Wind	PLO	T LOCATION: 04KWE14	UPLAND/WETLAND: Wetland

Project Title: High	nland Wind	Plot Location:	04KWE14	Upland/Wet	and: Upland
Delineators: KAW	1	Date: June 29	, 2009		
VEGETATION	Stratum and Spec	les	Dominance Ratio	Percent Dominance	NWI Status
Trees: None					
Poles: None					
Shrubs: None					
Herbs:					
bracken fern (Pterio	dium aquilinum)		50/83	60	FACU
	d fern (Dennstaedtia punctilobula)		10/83	12	
graceful sedge (Ca			10/83	12	_
	(Hieracium aurantiacum)		5/83	6	
	(Maianthemum canadense)		3/83	4	_
	Hieracium caespitosum)		1/83	1	_
	(Fragaria virginiana)		1/83	1	
paper birch (Betula			1/83	1	
balsam fir (Abies ba			1/83	1	_
	(Rubus allegheniensis)		1/83	1	
Note 1: Use asterisk	* to indicate plants with adaptations to w	vetland hydrology.			
Note 2: Species with	ded with asterisks should be considered NA or NI status are reported, but are no 0 CW FAC 0 Hydrophytes Subtotal: 0	as "other hydrophytes" it calculated in the tally HYDROPHYTES	0 FAC-	1 FACU	UPL
	100 x Subtotal Hydrophytes		Non-nyarop	hytes Subtotal: _	
Sul	ototal Hydrophytes + Subtotal Non-Hydro		0	= Percent	Hydrophytes
Describe Vegetation	Disturbance: Plot is located in an existing	transmission line that u	under goes perio	dic control of woo	dy vegetation.
HYDROLOGY 1. 1 2. 3.	Hydrology is often the most difficult feature to a Interpretation must consider the validity of th alterations, etc. Interpretation of hydrology may require repea	e observation in light of the			vatershed
 RECORDED Stream, lake Aerial photos 	, or tidal gage Identification:				
Other	Identification:				
I OBSERVATIO					
Depth to Sat	uration (including capillary fringe): <u>To gro</u> ology (explain): <u>Some soil compaction ar</u>	ound surface	construction and	maintenance acti	ivities
 □ Inundated ⊠ Sa □ Drainage Patterns 	aturated in upper 12"		ediment Deposits		initia.

	GREEGH Lai	ndscape Positio		
		(× ×	
	-		8	
Depth	Horizon	Matrix Color	Redoximorphic Features Color, Abundance, Size & Contrast	USDA Texture and nodules, concretions, masses pore linings, restrictive layers, root distribution, soi water, etc.
3-0"	Oa	_		_
0-0.5"	E	10YR4/1		Very fine sandy loam
0.5-3"	В	10YR4/3	10YR4/6, 30%, F, D	Very fine sandy loam
				Refusal at 6" below surface with hand
				auger.
HYDRIC SOIL	INDICATOR(S)	: Non-hydric		
			cal Committee. 2004. 3 rd ed., <i>Field I</i> o Control Commission, Lowell, MA.	ndicators for Identifying Hydric Soils in New
OPTIONAL SO	L DATA:			
OPTIONAL SO				
TAXONOMIC	SUBGROUP:			
TAXONOMIC SOIL DRAINA	SUBGROUP: GE CLASS:	ABI E-		
TAXONOMIC SOIL DRAINA DEPTH TO AG	SUBGROUP: GE CLASS: CTIVE WATER T			
TAXONOMIC SOIL DRAINA DEPTH TO AG NTCHS HYDF	SUBGROUP: GE CLASS: CTIVE WATER T RIC SOIL CRITE!			
TAXONOMIC SOIL DRAINA DEPTH TO AG NTCHS HYDF	SUBGROUP: GE CLASS: CTIVE WATER T RIC SOIL CRITE!	RION:		
TAXONOMIC SOIL DRAINA DEPTH TO AO NTCHS HYDE CONCLUSIC	SUBGROUP: GE CLASS: CTIVE WATER T RIC SOIL CRITEI	RION: YES NO		
TAXONOMIC SOIL DRAINA DEPTH TO AO NTCHS HYDE CONCLUSIC	SUBGROUP: GE CLASS: CTIVE WATER T RIC SOIL CRITE!	RION: YES NO		
TAXONOMIC SOIL DRAINA DEPTH TO AG NTCHS HYDF CONCLUSIC	SUBGROUP: GE CLASS: CTIVE WATER T RIC SOIL CRITED DNS 50% Hydrophy	RION: YES NO ∕tes?□ ⊠	IS THIS DA	TAPOINT WITHIN A WETLAND?
AXONOMIC SOIL DRAINA DEPTH TO AG NTCHS HYDF CONCLUSIC Greater than Hydric Soils	SUBGROUP: GE CLASS: CTIVE WATER T RIC SOIL CRITED DNS 50% Hydrophy Criterion Met?	YES NO ∕tes?□ ⊠	IS THIS DA	TAPOINT WITHIN A WETLAND?
AXONOMIC SOIL DRAINA DEPTH TO AG ITCHS HYDF CONCLUSIC Greater than Hydric Soils	SUBGROUP: GE CLASS: CTIVE WATER T RIC SOIL CRITED DNS 50% Hydrophy Criterion Met?	RION: YES NO ∕tes?□ ⊠	IS THIS DA	TAPOINT WITHIN A WETLAND? YES NO
AXONOMIC SOIL DRAINA DEPTH TO AG NTCHS HYDF CONCLUSIC Greater than Hydric Soils	SUBGROUP: GE CLASS: CTIVE WATER T RIC SOIL CRITED DNS 50% Hydrophy Criterion Met?	YES NO ∕tes?□ ⊠	IS THIS DA	YES NO
TAXONOMIC SOIL DRAINA DEPTH TO AG NTCHS HYDF CONCLUSIC Greater than Hydric Soils	SUBGROUP: GE CLASS: CTIVE WATER T RIC SOIL CRITED DNS 50% Hydrophy Criterion Met?	YES NO ∕tes?□ ⊠		YES NO
TAXONOMIC SOIL DRAINA DEPTH TO AC NTCHS HYDF CONCLUSIC Greater than Hydric Soils	SUBGROUP: GE CLASS: CTIVE WATER T RIC SOIL CRITED DNS 50% Hydrophy Criterion Met?	YES NO ∕tes?□ ⊠		YES NO
TAXONOMIC SOIL DRAINA DEPTH TO AG NTCHS HYDF CONCLUSIC Greater than Hydric Soils Wetland Hyd	SUBGROUP: GE CLASS: CTIVE WATER T RIC SOIL CRITED DNS 50% Hydrophy Criterion Met?	RION: YES NO /tes?□ ⊠ □ ⊠ ☑ □		YES NO

Project Title: Highland Wind		Plot Location:	04KW021	Upland/Wetland: Wetland		
Delineators: KAW		Date: June 29, 2009				
VEGETATION	Stratum and Species		Dominance Ratio	Percent Dominance	NWI Status	
Tree:						
balsam fir (Abies balsamea)			6/10	60	FAC	
ellow birch (Betula alleghaniensis)			1/10	10		
northern white-cedar (Thuja occidenta		1/10	10			
green ash (Fraxinus pennsylvanica)		1/10	10			
ed spruce (Picea rubens)		1/10	10			
Poles:						
black ash (<i>Fraxinus nigra</i>)			15/22	68	FACW	
striped maple (Acer pensylvanicum)			5/22	23	FACU	
sugar maple (Acer saccharum)			2/22	9		
Shrubs:			nim 7 Suc Suit	-		
black ash (<i>Fraxinus nigra</i>)			2/9	22	FACW	
palsam fir (Abies balsamea)			2/9	22	FAC	
ed maple (Acer rubrum)			2/9	22	FAC	
ed maple (Acer rubrum) /ellow birch (Betula alleghaniensis)			2/9	22	FAC	
striped maple (Acer pensylvanicum)			1/9	11	FAG	
Herbs:			1/9	311		
			00/444	70	0.01	
northeastern manna grass (Glyceria m			80/111	72	OBL	
spotted touch-me-not (Impatiens cape	nsis)		20/111	18		
plue marsh violet (Viola cuculatta)			10/111	9	-	
ringed sedge (Carex crinita)			1/111	1		
pointed broom sedge (Carex scoparia)			1/111	1	_	
Note 1: Use asterisk * to indicate plants w Plants recorded with asterisks sho Note 2: Species with NA or NI status are i	ould be considered as "c	other hydrophytes" ir		ŝ.		
1 2 4	0		0	1	0	
OBL FACW FAC	OTHER HYI	DROPHYTES	FAC-	FACU	UPL	
Hydrophytes St			Non-hydrop	hytes Subtotal:	1	
100 x Subtotal	Hydrophytes	=	88	= Percent	Hydrophytes	
Subtotal Hydrophytes +			00	- 1 010011	riyuropriytes	
Describe Vegetation Disturbance: No appa						
HYDROLOGY 1. Hydrology is often the m 2. Interpretation must cor alterations, etc. 3. Interpretation of hydrol	ost difficult feature to obser nsider the validity of the obs logy may require repeated o	servation in light of the			vatershed	
 RECORDED DATA Stream, lake, or tidal gage Aerial photography Other 	Identification:					
 NO RECORDED DATA OBSERVATIONS: Depth to Free Water: at 8" below 	Identification:					
Depth to Saturation (including cap Altered Hydrology (explain): <u>No a</u>		SUNACE				
□ Inundated ⊠ Saturated in upper 12" □ Drainage Patterns within Wetland □	 Water Marks OTHER (explain): 	Drift Lines 🛛 Se	diment Deposits	S		

SOIL	Sketch Lan	dscape Pos	tion	
			8	
	_			(x)
Depth	Horizon	Matrix Cold	Or Redoximorphic Features Color, Abundance, Size & Contrast	USDA Texture and nodules, concretions, masses, pore linings, restrictive layers, root distribution, soil water, etc.
18"	Oa	—		Sapric organic horizon to refusal with hand auger
REFERENCE:	INDICATOR(S): New England H England Intersta	ydric Soils Teo	hnical Committee. 2004. 3 rd ed., <i>Fiel</i> d tion Control Commission, Lowell, MA.	d Indicators for Identifying Hydric Soils in New
OPTIONAL SOIL	DATA:			
NTCHS HYDR	GE CLASS: TIVE WATER TA IC SOIL CRITER			
CONCLUSIO	NS	YES N	VO	
Greater than	50% Hydrophyl			
Hydric Soils C	Criterion Met?	\mathbf{X}	IS THIS D	ATAPOINT WITHIN A WETLAND?
Wetland Hydr	ology Met?	X]	YES NO
			REMARKS	∑ □ S:
	TLE: Highland	Wind	PLOT LOCATION: 04KW021	UPLAND/WETLAND: Wetland

Project Title: Highland Wind Delineators: KAW			ocation: 04KW021	opiana/wea	and: Upland
Delineators: K	AW	Date:	June 29, 2009	1	1
VEGETATION	s	tratum and Species	Dominance Ratio	Percent Dominance	NWI Status
Trees:					
alsam fir (Abies			7/18	39	FAC
ed spruce (Pice			4/18	22	FAC
	edar (<i>Thuja occidentali</i>	s)	4/18	6	
	(Tsuga canadensis)	1/18	6		
ellow birch (Bet	ula alleghaniensis)	1/18	6	(—)	
ugar maple (Ac	er saccharum)	1/18	6		
Poles:					
triped maple (A	cer pensylvanicum)		10/10	100	FACU
Shrubs:					
alsam fir (Abies	halsamea)		20/22	91	FAC
	cer pensylvanicum)		1/22	5	
ed maple (Acer			1/22	5	
lerbs:	rasianij		1/22	5	
alsam fir (Abies	(balaamaa)		5/13	38	EAC
the two evidences in the second se					FAC
	(Aralia nudicaulis)		3/13	23	FACU
tarflower (Trien			1/13	8	
	orrel (Oxalis montana)		1/13	8	2
	rillium erectum)		1/13	8	
ed maple (Acer			1/13	8	_
	er (Maianthemum can	adense) th adaptations to wetland hydrole	1/13	8	· · · · · ·
0	0 4 FACW FAC Hydrophytes Sul	eported, but are not calculated in0 OTHER HYDROPHY ptotal:4	TES FAC-	FACU FACU phytes Subtotal:	 UPL 2
		ubtotal Non-Hydrophytes	= <u>67</u>	= Percent	Hydrophytes
IYDROLOGY	 Interpretation must cons alterations, etc. 	ent alteration. st difficult feature to observe. sider the validity of the observation ir gy may require repeated observation			vatershed
Stream, la	ED DATA ake, or tidal gage				
NO RECO OBSERV Depth to Depth to	Free Water: At 18" below	ground surface llary fringe): <u>To ground surface f</u>	ollowing recent rains		
	Saturated in upper 12" ns within Wetland 🛛 🛛	□ Water Marks □ Drift Line OTHER (explain):	es 🛛 Dediment Deposit	S	

		\otimes		
		Q	(x)	
			6	iner i
Depth	Horizon	Matrix Color	Redoximorphic Features Color, Abundance, Size & Contrast	USDA Texture and nodules, concretions, masses pore linings, restrictive layers, root distribution, soi water, etc.
10-2"	Oe			
2-0"	Oa	-	—	
)-2"	E	10YR3/1		Fine sandy loam
2-8"	В	10YR4/4		Loamy sand
	INDICATOR(S)			
REFERENCE: England. New	New England H	ydric Soils Technic ate Water Pollution	al Committee. 2004. 3 rd ed., <i>Field I</i> Control Commission, Lowell, MA.	ndicators for Identifying Hydric Soils in New
REFERENCE: England. New	/ England Interst	ydric Soils Technic ate Water Pollution	al Committee. 2004. 3 rd ed., <i>Field I</i> . Control Commission, Lowell, MA.	ndicators for Identifying Hydric Soils in New
England. New OPTIONAL SOIL FAXONOMIC SOIL DRAINA	/ England Interst: <i>L DATA:</i> SUBGROUP:	ate Water Pollution	al Committee. 2004. 3 rd ed., <i>Field I</i> Control Commission, Lowell, MA.	ndicators for Identifying Hydric Soils in New
England. New DPTIONAL SOL AXONOMIC SOIL DRAINA DEPTH TO AC ITCHS HYDR	V England Interst L DATA: SUBGROUP: GE CLASS: CTIVE WATER T RIC SOIL CRITER	Ate Water Pollution	al Committee. 2004. 3 rd ed., <i>Field I</i> . Control Commission, Lowell, MA.	
England. New DPTIONAL SOL AXONOMIC SOIL DRAINA DEPTH TO AC ITCHS HYDR	V England Interst L DATA: SUBGROUP: GE CLASS: CTIVE WATER T RIC SOIL CRITER	ABLE: RION:	al Committee. 2004. 3 rd ed., <i>Field I</i> . Control Commission, Lowell, MA.	
England. New OPTIONAL SOLO CAXONOMIC SOIL DRAINA OEPTH TO AC ITCHS HYDR CONCLUSIO	V England Interst L DATA: SUBGROUP: GE CLASS: CTIVE WATER T RIC SOIL CRITER DNS	ABLE: RION: YES NO	al Committee. 2004. 3 rd ed., <i>Field I</i> . Control Commission, Lowell, MA.	
England. New OPTIONAL SOLO CAXONOMIC SOIL DRAINA OEPTH TO AC ITCHS HYDR CONCLUSIO	V England Interst L DATA: SUBGROUP: GE CLASS: CTIVE WATER T RIC SOIL CRITER DNS	ABLE: RION: YES NO	al Committee. 2004. 3 rd ed., <i>Field I</i> . Control Commission, Lowell, MA.	
England. New DPTIONAL SOIL CAXONOMIC SOIL DRAINA DEPTH TO AC NTCHS HYDR CONCLUSIO Greater than	V England Interst L DATA: SUBGROUP: GE CLASS: CTIVE WATER T RIC SOIL CRITER	ABLE: RION: YES NO	Control Commission, Lowell, MA.	
England. New DPTIONAL SOL GOIL DRAINA DEPTH TO AC ITCHS HYDR CONCLUSIO Greater than Hydric Soils (v England Interst <i>L DATA:</i> SUBGROUP: GE CLASS: CTIVE WATER T RIC SOIL CRITER DNS 50% Hydrophy Criterion Met?	ABLE: RION: YES NO	Control Commission, Lowell, MA.	
England. New DPTIONAL SOL GOIL DRAINA DEPTH TO AC ITCHS HYDR CONCLUSIO Greater than Hydric Soils (v England Interst <i>L DATA:</i> SUBGROUP: GE CLASS: CTIVE WATER T RIC SOIL CRITER DNS 50% Hydrophy Criterion Met?	ABLE: RION: YES NO rtes? X □	Control Commission, Lowell, MA.	TAPOINT WITHIN A WETLAND? YES NO
England. New DPTIONAL SOIL CAXONOMIC SOIL DRAINA DEPTH TO AC NTCHS HYDR CONCLUSIO Greater than	v England Interst <i>L DATA:</i> SUBGROUP: GE CLASS: CTIVE WATER T RIC SOIL CRITER DNS 50% Hydrophy Criterion Met?	ABLE: RION: YES NO rtes? X □	Control Commission, Lowell, MA.	TAPOINT WITHIN A WETLAND?

	cifile. Highi	and Wind		Plot Location:	: 03TTS07	Upland/Wet	and: Wetland
Deline	ators: TT			Date: June 29	9, 2009		
20233	TATION		Stratum and Specie	9S	Dominance Ratio	Percent Dominance	NWI Status
Trees:							
		(Thuja occident	talis)		11/26	42	FACW
	fir (Abies bal				5/26	19	FAC
		uga canadensis			5/26	19	FACU
		pennsylvanica)	4/26	15	-		
		alleghaniensis)			1/26	4	_
Poles:	and the second s						
	n fir (Abies bal				20/48	42	FAC
		pennsylvanica)			10/48	21	FACW
		(Thuja occident	talis)		5/48	10	-
	ish (<i>Fraxinus i</i>				5/48	10	-
	ple (Acer rubr				5/48	10	—
		alleghaniensis)			3/48	6	—
Shrubs							
green a	ash (Fraxinus	pennsylvanica)			10/28	36	FACW
balsam	n fir (Abies bal	samea)			5/28	18	FAC
black a	ish (<i>Fraxinus i</i>	nigra)			5/28	18	FACW
easterr	hemlock (Tsi	uga canadensis)		3/28	11	
	ple (Acer rubr				3/28	11	
witch-h	azel (Hamam	elis virginiana)			1/28	4	
	ain ash (Sorbu				1/28	4	_
Note 2:	Plants recorde Species with N	ed with asterisks s NA or NI status are	with adaptations to we hould be considered a e reported, but are not	s "other hydrophytes"	below.		
	6	N FAC		HYDROPHYTES	<u>, 1</u> FAC- Non-hydrog	FACU hytes Subtotal:	
OBL	FAC	Hydrophytes	Subtotal: <u>10</u>			inytes oubtotal.	2
the second se	FAC	Hydrophytes		=	83		
the second se		Hydrophytes 100 x Subtota	Subtotal: <u>10</u> <u>Il Hydrophytes</u> + Subtotal Non-Hydrop				 Hydrophytes
OBL	Subto	Hydrophytes 100 x Subtota otal Hydrophytes	I Hydrophytes				
OBL Describ	Subto e Vegetation Di DLOGY 1. Hy 2. 1	Hydrophytes <u>100 x Subtota</u> otal Hydrophytes sturbance: No app drology is often the nterpretation must c alterations, etc.	il Hydrophytes + Subtotal Non-Hydrop	hytes oserve. observation in light of th	83e season, recent w	= Percent	Hydrophytes
OBL Describ	Subte e Vegetation Di DLOGY 1. Hy 2. 1 3. 1 RECORDED I Stream, lake, d	Hydrophytes 100 x Subtota otal Hydrophytes sturbance: No app drology is often the nterpretation must c alterations, etc. nterpretation of hydrophyte DATA or tidal gage	 Hydrophytes Subtotal Non-Hydrop barent disturbance. most difficult feature to ot ionsider the validity of the rology may require repeat Identification: 	hytes oserve. observation in light of th ed observations over mo	<u>83</u> e season, recent w	= Percent	Hydrophytes vatershed
OBL Describ	Subte e Vegetation Di DLOGY 1. Hy 2. 1 3. 1 RECORDED I Stream, lake, o Aerial photogr	Hydrophytes <u>100 x Subtota</u> otal Hydrophytes - sturbance: No app drology is often the nterpretation must c alterations, etc. nterpretation of hydrophyte DATA or tidal gage	Il Hydrophytes + Subtotal Non-Hydrop parent disturbance. most difficult feature to ob consider the validity of the rology may require repeat Identification:	hytes oserve. observation in light of th ed observations over mo	<u>83</u> e season, recent w	= Percent	Hydrophytes vatershed
OBL Describ HYDR(Subte e Vegetation Di DLOGY 1. Hy 2. 1 2. 1 3. 1 RECORDED I Stream, lake, a Aerial photogr Other	Hydrophytes 100 x Subtota otal Hydrophytes sturbance: No app drology is often the nterpretation must c alterations, etc. nterpretation of hydrophyte DATA or tidal gage aphy	Il Hydrophytes + Subtotal Non-Hydrop parent disturbance. most difficult feature to ob consider the validity of the rology may require repeat Identification:	hytes oserve. observation in light of th ed observations over mo	<u>83</u> e season, recent w	= Percent	Hydrophytes vatershed
OBL Describ HYDR(Subtr e Vegetation Di DLOGY 1. Hy 2. 1 3. 1 RECORDED I Stream, lake, Aerial photogr Other NO RECORDI OBSERVATION Depth to Free	Hydrophytes : <u>100 x Subtota</u> otal Hydrophytes - sturbance: No app drology is often the nterpretation must of alterations, etc. nterpretation of hydr DATA or tidal gage aphy ED DATA IS: Water: To ground	Il Hydrophytes + Subtotal Non-Hydrop parent disturbance. most difficult feature to ob posider the validity of the rology may require repeat Identification: Identification: Identification:	hytes oserve. observation in light of th ed observations over mo	<u>83</u> e season, recent w	= Percent	Hydrophytes vatershed
OBL Describ HYDR(Subtr e Vegetation Di DLOGY 1. Hy 2. 1 3. 1 RECORDED I Stream, lake, o Aerial photogr Other NO RECORDED OBSERVATION Depth to Free Depth to Satur	Hydrophytes : <u>100 x Subtota</u> otal Hydrophytes - sturbance: No app drology is often the alterations, etc. nterpretation of hydr DATA or tidal gage aphy ED DATA IS: Water: <u>To ground</u> ration (including ci	Il Hydrophytes + Subtotal Non-Hydrop parent disturbance. most difficult feature to ob posider the validity of the rology may require repeat Identification: Identification:	hytes oserve. observation in light of th ed observations over mo	<u>83</u> e season, recent w	= Percent	Hydrophytes vatershed

Project Title: Highland Wind		Plot	Location:	03TTS07	Upland/Wetland: Wetland		
Delineators: T	т		Date	e: June 29	2009		
VEGETATION		Stratum and	Species		Dominance Ratio	Percent Dominance	NWI Status
(cont.)							
Herb:							
	sorrel (Oxalis montar	na)			15/56	27	FAC-
marsh fern (The	elypteris palustris)				10/56	18	FACW
three-seeded se	edge (Carex trisperm	a)			10/56	18	OBL
	y (Rubus hispidus)				10/56	18	FACW
	sedge (Carex intum	escens)			5/56	9	
	cedar (Thuja occiden				3/56	5	_
	Dnoclea sensibilis)	tunoj			3/56	5	
					0/00	·	
Plants re Note 2: Species	erisk * to indicate plants ecorded with asterisks s with NA or NI status ar	should be consid e reported, but a	lered as "other hy are not calculated	drophytes" in the tally b	elow.	_	
Plants re Note 2: Species	with NA or NI status ar	should be consid e reported, but a	lered as "other hy	drophytes" in the tally b	FAC-	FACU	UPL
Plants re Note 2: Species	FACW FAC Hydrophytes	should be consid e reported, but a ; OT Subtotal: al Hydrophytes	lered as "other hy are not calculated	drophytes" in the tally b	FAC-	FACU	
Plants re Note 2: Species	FACW FAC Hydrophytes Subtotal Hydrophytes	should be consid e reported, but a ; OT Subtotal: al Hydrophytes	lered as "other hy are not calculated	vdrophytes" in in the tally b IYTES	FAC-	FACU	
Plants re Note 2: Species OBL Describe Vegetati	FACW FAC Hydrophytes Subtotal Hydrophytes	should be consid e reported, but a Subtotal: al Hydrophytes + Subtotal Non-h most difficult featu consider the validit	lered as "other hy are not calculated THER HYDROPH Hydrophytes ure to observe. y of the observation	rdrophytes" in in the tally b IYTES =	elow. FAC- Non-hydrop season, recent w	FACU hytes Subtotal: _ _ = Percent eather conditions, w	Hydrophytes
Plants re Note 2: Species OBL Describe Vegetati	Ecorded with asterisks s with NA or NI status ar FACW FAC Hydrophytes <u>100 x Subtota</u> Subtotal Hydrophytes ion Disturbance: 1. Hydrology is often the 2. Interpretation must o alterations, etc.	should be consid e reported, but a Subtotal: al Hydrophytes + Subtotal Non-h most difficult featu consider the validit	lered as "other hy are not calculated THER HYDROPH Hydrophytes ure to observe. y of the observation	rdrophytes" in in the tally b IYTES =	elow. FAC- Non-hydrop season, recent w	FACU hytes Subtotal: _ _ = Percent eather conditions, w	Hydrophytes
Plants re Note 2: Species	Ecorded with asterisks s with NA or NI status ar FACW FAC Hydrophytes 100 x Subtota Subtotal Hydrophytes ion Disturbance: 1. Hydrology is often the 2. Interpretation must of alterations, etc. 3. Interpretation of hyd	should be consid e reported, but a Subtotal: al Hydrophytes + Subtotal Non-h most difficult featu consider the validit rology may require	lered as "other hy are not calculated THER HYDROPH Hydrophytes ure to observe. y of the observation e repeated observat	rdrophytes" in in the tally b IYTES = n in light of the tions over mor	elow. FAC- Non-hydrop season, recent w e than one seasor	FACU hytes Subtotal: _ _ = Percent eather conditions, w	Hydrophytes vatershed
Plants re Note 2: Species	Ecorded with asterisks s with NA or NI status ar FACW FAC Hydrophytes <u>100 x Subtota</u> Subtotal Hydrophytes ion Disturbance: 1. Hydrology is often the 2. Interpretation must of alterations, etc. 3. Interpretation of hyd DED DATA	should be consid e reported, but a Subtotal: al Hydrophytes + Subtotal Non-h most difficult featu consider the validit rology may require Identification	lered as "other hy are not calculated THER HYDROPH Hydrophytes ure to observe. y of the observation e repeated observation	rdrophytes" in in the tally b IYTES = n in light of the tions over mor	elow. FAC- Non-hydrop season, recent w e than one seasor	FACU hytes Subtotal: _ _ = Percent eather conditions, w	Hydrophytes
Plants re Note 2: Species	Ecorded with asterisks s with NA or NI status ar FACW FAC Hydrophytes <u>100 x Subtota</u> Subtotal Hydrophytes ion Disturbance: 1. Hydrology is often the 2. Interpretation must of alterations, etc. 3. Interpretation of hyd DED DATA lake, or tidal gage notography	should be consid e reported, but a Subtotal: al Hydrophytes + Subtotal Non-h most difficult featu consider the validit rology may require Identification	lered as "other hy are not calculated THER HYDROPH Hydrophytes ure to observe. y of the observation e repeated observation	rdrophytes" in in the tally b IYTES = n in light of the tions over mor	elow. FAC- Non-hydrop season, recent w e than one seasor	FACU hytes Subtotal: _ _ = Percent eather conditions, w	Hydrophytes
Plants re Note 2: Species	Ecorded with asterisks s with NA or NI status ar FACW FAC Hydrophytes <u>100 x Subtota</u> Subtotal Hydrophytes ion Disturbance: 1. Hydrology is often the 2. Interpretation must of alterations, etc. 3. Interpretation of hyd DED DATA lake, or tidal gage notography ORDED DATA	should be consid e reported, but a Subtotal: al Hydrophytes + Subtotal Non-h most difficult featu consider the validit rology may require Identification Identification	lered as "other hy are not calculated THER HYDROPH Hydrophytes ure to observe. y of the observation e repeated observation	rdrophytes" in in the tally b IYTES = n in light of the tions over mor	elow. FAC- Non-hydrop season, recent w e than one seasor	FACU hytes Subtotal: _ _ = Percent eather conditions, w	Hydrophytes
Plants re Note 2: Species	Ecorded with asterisks s with NA or NI status ar FACW FAC Hydrophytes <u>100 x Subtota</u> Subtotal Hydrophytes ion Disturbance: 1. Hydrology is often the 2. Interpretation must of alterations, etc. 3. Interpretation of hyd DED DATA lake, or tidal gage notography ORDED DATA STIONS:	should be consid e reported, but a Subtotal: al Hydrophytes + Subtotal Non-h most difficult featu consider the validit rology may require Identification Identification	lered as "other hy are not calculated THER HYDROPH Hydrophytes ure to observe. y of the observation e repeated observation	rdrophytes" in in the tally b IYTES = n in light of the tions over mor	elow. FAC- Non-hydrop season, recent w e than one seasor	FACU hytes Subtotal: _ _ = Percent eather conditions, w	Hydrophytes
Plants re Note 2: Species OBL Describe Vegetati HYDROLOGY HYDROLOGY B RECORI Stream, Aerial ph Other NO REC OBSERVA Depth to	Ecorded with asterisks s with NA or NI status ar FACW FAC Hydrophytes <u>100 x Subtota</u> Subtotal Hydrophytes ion Disturbance: 1. Hydrology is often the 2. Interpretation must of alterations, etc. 3. Interpretation of hyd DED DATA lake, or tidal gage notography ORDED DATA STIONS: Free Water:	should be consid e reported, but a Subtotal: al Hydrophytes + Subtotal Non-h most difficult featu consider the validit rology may require Identification Identification Identification	lered as "other hy are not calculated THER HYDROPH Hydrophytes ure to observe. y of the observation e repeated observation a:	rdrophytes" in in the tally b IYTES =	elow. FAC- Non-hydrop season, recent w e than one seasor	FACU hytes Subtotal: _ _ = Percent eather conditions, w	Hydrophytes
Plants re Note 2: Species	Ecorded with asterisks s with NA or NI status ar FACW FAC Hydrophytes <u>100 x Subtota</u> Subtotal Hydrophytes ion Disturbance: 1. Hydrology is often the 2. Interpretation must of alterations, etc. 3. Interpretation of hyd DED DATA lake, or tidal gage notography ORDED DATA STIONS:	should be consid e reported, but a Subtotal: al Hydrophytes + Subtotal Non-h most difficult featu consider the validit rology may require Identification Identification Identification	lered as "other hy are not calculated THER HYDROPH Hydrophytes ure to observe. y of the observation e repeated observation a:	rdrophytes" in in the tally b IYTES =	elow. FAC- Non-hydrop season, recent w e than one seasor	FACU hytes Subtotal: _ _ = Percent eather conditions, w	Hydrophytes
Plants re Note 2: Species	CRDED DATA lake, or tidal gage lotography CRDED DATA Saturation (including of lydrology (explain):	should be consid e reported, but a Subtotal: al Hydrophytes + Subtotal Non-h most difficult featu consider the validit rology may require Identification Identification Identification	Pered as "other hy are not calculated THER HYDROPH Hydrophytes ure to observe. y of the observation e repeated observation e repeated observation arks	rdrophytes" in in the tally b IYTES = n in light of the tions over mor	elow. FAC- Non-hydrop season, recent w e than one seasor	FACU hytes Subtotal: _ _ = Percent eather conditions, w	Hydrophytes

SOIL	Sketch Lan	dscape Posit	ion		
			Ø		
				(X)	
Depth	Horizon	Matrix Color	Redoximor Color, Abundanc	ohic Features e, Size & Contrast	USDA Texture and nodules, concretions, masses, pore linings, restrictive layers, root distribution, soil water, etc.
15+"	0				
		III Listand			
	INDICATOR(S):			a and a married	
England. New	New England Hy England Intersta	ydric Soils Tech ate Water Polluti	nical Committee. 20 on Control Commiss	04. 3 ^{.9} ed., <i>Field Ir</i> sion, Lowell, MA.	ndicators for Identifying Hydric Soils in New
OPTIONAL SOIL	L DATA:				
TAXONOMIC	SUBGROUP:				
SOIL DRAINA	GE CLASS: TIVE WATER TA	ABLE:			
NTCHS HYDR	IC SOIL CRITER				
CONCLUSIO	113	YES N	C		
Greater than	50% Hydrophy	tes? 🗵 🗆			
	Criterion Met?	\mathbf{X}		IS THIS DAT	TAPOINT WITHIN A WETLAND?
Wetland Hydr	rology Met?	\mathbf{X}			YES NO
					\boxtimes \Box
				REMARKS:	
PROJECT TI	TLE: Highland	Wind F	LOT LOCATION:	03TTS07	UPLAND/WETLAND: Wetland

Delineators: TT Date: June	29, 2009		
VEGETATION Stratum and Species	Dominance Ratio	Percent Dominance	NWI Status
Tree:	45/05	00	FAOL
eastern hemlock (Tsuga canadensis)	15/25	60	FACU
northern white-cedar (Thuja occidentalis)	8/25	32	FACW
red maple (Acer rubrum) Poles:	2/25	8	-
	E 10		FAOL
eastern hemlock (Tsuga canadensis)	5/6	83	FACU
northern white-cedar (<i>Thuja occidentalis</i>)	1/6	17	
Shrubs:	00/00	05	FAOL
striped maple (Acer pensylvanicum)	30/86	35	FACU
eastern hemlock (Tsuga canadensis)	30/86	35	FACU
red spruce (Picea rubens)	15/86	17	
balsam fir (Abies balsamea)	5/86	6	-
hobblebush (Viburnum lantanoides)	5/86	6	-
red maple (Acer rubrum)	1/86	1	-
Herbs:	101110		
Canada dwarf-dogwood (Chamaepericlymenum candense)	40/116	34	FAC-
three-leaved goldthread (Coptis trifolia)	40/116	34	FACW
common lowbush blueberry (Vaccinium angustifolium)	20/116	17	-
starflower (Trientalis borealis)	5/116	4	-
sharp-toothed nodding aster (Oclemena acuminata)	3/116	3	
northern wood sorrel (Oxalis montana)	3/116	3	-
red maple (Acer rubrum)	3/116	3	-
snowberry (Symphoricarpos albus)	1/116	1	
bluebead-lily (Clintonia borealis)	1/116	1	-
Note 1: Use asterisk * to indicate plants with adaptations to wetland hydrology. Plants recorded with asterisks should be considered as "other hydrophytes Note 2: Species with NA or NI status are reported, but are not calculated in the tall	ly below.		
0 2 0 0 OBL FACW FAC OTHER HYDROPHYTES	FAC-	4 FACU	0 UPL
Hydrophytes Subtotal: 2		hytes Subtotal:	
			State of the second second second
<u>100 x Subtotal Hydrophytes</u> = Subtotal Hydrophytes + Subtotal Non-Hydrophytes	29	= Percent	Hydrophytes
Describe Vegetation Disturbance: No apparent disturbance			
HYDROLOGY 1. Hydrology is often the most difficult feature to observe. 2. Interpretation must consider the validity of the observation in light of alterations, etc. 3. Interpretation of hydrology may require repeated observations over n			vatershed
 RECORDED DATA Stream, lake, or tidal gage Identification:			
Altered Hydrology (explain): No apparent alteration	Sediment Deposits	_	

SOIL	Sketch La	ndscape Positio	n	
			(S)	
	1	1	Ø	
Depth	Horizon	Matrix Color	Redoximorphic Features Color, Abundance, Size & Contrast	USDA Texture and nodules, concretions, masses, pore linings, restrictive layers, root distribution, soil water, etc.
8-0"	0	_	_	_
0-4"	E	7.5YR7/1		Fine sand
4-8"	В	2.5YR3/6		Loamy sand
				Refusal with hand auger at 16" below
				surface
	1			
		Non hudelo		
HTDRIG SOIL	INDICATOR(S)	. Non-nyanc		
REFERENCE: England. New	New England H England Interst	lydric Soils Technic ate Water Pollution	cal Committee. 2004. 3 rd ed., <i>Field</i> Control Commission, Lowell, MA.	Indicators for Identifying Hydric Soils in New
OPTIONAL SOIL	DATA			
TAXONOMIC S				<i>A</i> .
SOIL DRAINAG				
	TIVE WATER T			
	IC SOIL CRITE	RION:		
CONCLUSIO	NS			
		YES NO		
Greater than	50% Hydrophy	/tes?□ 🗙		
Hydric Soils (criterion Met?			ATAPOINT WITHIN A WETLAND?
Wetland Hydr	ology Met?			YES NO
10.69777777777777777777777777777777777777		1		
			REMARKS	2
PROJECT TI	TLE: Highland	Wind PL	OT LOCATION: 03TTS07	UPLAND/WETLAND: Upland
		A MARCELER DATES		

Project Title: Highland Wind			Plot Location:	03TTS10	Upland/Wetland: Wetland		
Delineators: TT			Date: June 29	, 2009			
VEGETATION	s	Stratum and Species		Dominance Ratio	Percent Dominance	NWI Status	
Trees: None							
Poles: None							
Shrubs:							
white meadowswee	t (<i>Spiraea alba</i> var	latifolia)		40/45	89	FAC	
rosy meadowsweet			5/45	11	_		
Herbs:	X-1	-/					
barber-pole bulrush	(Scirpus microcart	ous)		35/105	33	OBL	
sensitive fern (Onoc				25/105	24	FACW	
bristly blackberry (R				20/105	19		
nodding sedge (Car				10/105	10		
wrinkle-leaved golde		(ean		5/105	5		
red raspberry (Rubi		<i>j</i> 05 <i>aj</i>		5/105	5		
three-seeded sedge				5/105	5		
Bryophyte:	(Galex Insperina)			5/105	5		
peat moss (Sphagn							
pour mood (opingin	ani op./ anougrout						
1 OBL FAC	1		ROPHYTES	FAC-	FACU FACU phytes Subtotal:	0 UPL 0	
Sub	100 x Subtotal I		=	100		Hydrophytes	
		cated in an existing tran		inder goes perio	dic control of woo	dy vegetation.	
2.	Interpretation must con alterations, etc.	ost difficult feature to obser isider the validity of the obs ogy may require repeated o	ervation in light of the			vatershed	
 RECORDED Stream, lake, Aerial photog 	or tidal gage	Identification: Identification:					
Other NO RECORE OBSERVATI		Identification:					
Depth to Free Depth to Sate	e Water: <u>To ground s</u> uration (including cap	illary fringe): To ground	surface				
		e soil compaction and ru		construction and		ivities	
🗵 Inundated 🖾 S	aturated in upper 12"	Water Marks					

Depth H 15+" O	orizon	Matrix Color	Redoximorphic Features	USDA Texture and nodules, concretions, masses,
Store to the store of the store	orizon M	25 0 2 1 55 - X	Redoximorphic Features	
Steves tennety 200.	orizon M	25 0 2 1 55 - X	Redoximorphic Features	
5755-535 million (1997)	orizon M	Matrix Color	Redoximorphic Features	
5755-535 million (1997)	orizon M	Matrix Color	Redoximorphic Features	LISDA Touture and nodulas, severalizes, messes
15+" O			Color, Abundance, Size & Contrast	pore linings, restrictive layers, root distribution, soil water, etc.
		_	—	—
HYDRIC SOIL INDIC	ATOR(S): III ·	- Histosol		
REFERENCE: New E England. New Engla	ngland Hydri nd Interstate	c Soils Technic Water Pollution	al Committee. 2004. 3 rd ed., <i>Field In</i> Control Commission, Lowell, MA.	dicators for Identifying Hydric Soils in New
OPTIONAL SOIL DATA				
TAXONOMIC SUBGE	ROUP:			
SOIL DRAINAGE CL		E.		
NTCHS HYDRIC SOI				
CONCLUSIONS		VE0 110		
-		YES NO		
Greater than 50% H				
Hydric Soils Criteric	on Met?	\square	IS THIS DAT	TAPOINT WITHIN A WETLAND?
Wetland Hydrology	Met?	\mathbf{X}		YES NO
				\boxtimes
			REMARKS:	
PROJECT TITLE: H	lighland Wi	ind PL	OT LOCATION: 03TTS10	UPLAND/WETLAND: Wetland

Project Title: Highland Wind		Plot Loca	tion: 03TTS10	Upland/Wetland: Upland	
Delineators: TT		Date: Jur	ne 29, 2009		
VEGETATION		Stratum and Species	Dominance Ratio	Percent Dominance	NWI Status
Tree: None					
Poles: None					
Shrubs:			10/13	77	FAC
white meadowswee	et (Spiraea alba va	3/13	23	FAC	
ed maple (Acer rul					
lerbs:	2001-00-00-00-00-00-00-00-00-00-00-00-00-				
	d fern (Dennstaed	ia punctilobula)	70/168	42	UPL
		clymenum candense)	40/168	24	FAC-
iolet (Viola sp.)	ine a Centania epon		30/168	18	
	(Maianthemum ca	nadense)	15/168	9	
ed raspberry (Rub		naderise)	5/168	3	
	lenrod (Solidago ru	5/168	3		
	smunda claytonian		3/168	2	
Plants recor	ded with asterisks sh	vith adaptations to wetland hydrology. ould be considered as "other hydrophy reported, but are not calculated in the			
0 DBL FA) <u>2</u> CW FAC Hydrophytes S	OTHER HYDROPHYTES		FACU bhytes Subtotal:	UPL 2
Sul	100 x Subtotal btotal Hydrophytes +	Hydrophytes Subtotal Non-Hydrophytes	= <u>50</u>	= Percent	Hydrophytes
Describe Vegetation	Disturbance: Plot is le	ocated in an existing transmission line	that under goes perio	dic control of woo	dy vegetation.
	Interpretation must co alterations, etc.	nost difficult feature to observe. nsider the validity of the observation in light logy may require repeated observations ov			vatershed
3.					
		Identification			
RECORDED Stream, lake	e, or tidal gage	Identification:			
 RECORDED Stream, lake Aerial photo Other NO RECOR 	e, or tidal gage graphy DED DATA	Identification: Identification: Identification:			_
 RECORDED Stream, lake Aerial photo Other NO RECOR OBSERVATIO Depth to Free Depth to Sat 	e, or tidal gage graphy DED DATA DNS: e Water: <u>More than '</u> turation (including ca	Identification:	und surface		

SOIL	Sketch Landscape Position						
			à				
			0				
Depth	Horizon	Matrix Color	Redoximorphic Features Color, Abundance, Size & Contrast	USDA Texture and nodules, concretions, masses, pore linings, restrictive layers, root distribution, soil water, etc.			
4-2"	Duff						
2-0"	0	<u>0-0</u>					
0-3"	E	7.5YR6/1		Loamy fine san			
3-7"	B	7.5YR3/4	()	Fine sandy loam			
				Refusal at 11" with hand auger			
		-					
HYDRIC SOIL	INDICATOR(S)	· Non-hydric					
In Drug Cole		. Hon Hydno					
REFERENCE	: New England H	lydric Soils Techni	cal Committee. 2004. 3 rd ed., Field I	ndicators for Identifying Hydric Soils in New			
			Control Commission, Lowell, MA.				
OPTIONAL SOI	L DATA:						
TAXONOMIC	SUBGROUP:			A.			
SOIL DRAINA							
	CTIVE WATER T						
the state of the second s	RIC SOIL CRITE	RION:					
CONCLUSIC	DNS						
		YES NO					
Greater than	50% Hydrophy	/tes?□ X					
Greater than	50% Hydrophy						
Hydric Soils Criterion Met?			IS THIS DATAPOINT WITHIN A WETLAND?				
Wetland Hydrology Met?				YES NO			
	3,			1			
			REMARKS:				
PROJECT T	ITLE: Highland	Wind PI	OT LOCATION: 03TTS10	UPLAND/WETLAND: Upland			
I TOOLOT II	in Least inginant	FL.		or childriver child. Opland			

Project Title: Hi	ghland Wind	Plot Location:	04TTN18	Upland/Wetl	and: Wetland
Delineators: TT	, KAW	Date: June 30,	2009		-
VEGETATION	Stratum and Species		Dominance Ratio	Percent Dominance	NWI Status
Trees:					
ed spruce (Picea			6/11	55	FACU
	ula alleghaniensis)		3/11	27	FAC
eastern hemlock	(Tsuga canadensis)		1/11	9	(<u> </u>
paper birch (<i>Betu</i> Poles:	la papyrifera)		1/11	9	-
ellow birch (Beti	ıla alleghaniensis)		30/50	60	FAC
ed spruce (Picea			20/50	40	FACU
Shrubs:	(100010)		20,00	10	17100
speckled alder (A	Inus incana)		30/63	48	FACW
			20/63	32	and the second design of the s
	Irnum lantanoides)			and the state of the	FAC
ed maple (Acer i			10/63	16	1
the first of the second s	dar (<i>Thuja occidentalis</i>)		3/63	5	-
lerbs:					
	nna grass (<i>Glyceria melicaria</i>)		80/153	52	OBL
	oldenrod (Solidago rugosa)		40/153	26	FAC
sharp-tooted nod	ding aster (Oclemena acuminata)		10/153	7	
vood horsetail (E	quisetum sylvaticum)		8/153	5	-
odding sedge (C	Carex gynandra)		5/153	3	_
	smunda cinnamomea)		5/153	3	_
bristly blackberry (<i>Rubus hispidus</i>)			5/153	3	
1	ith NA or NI status are reported, but are not calc <u>1</u> <u>4</u> <u>0</u> FAC <u>0</u> THER HYD Hydrophytes Subtotal: <u>6</u>	ROPHYTES	FAC-	FACU	 UPL 2
	<u>100 x Subtotal Hydrophytes</u> Subtotal Hydrophytes + Subtotal Non-Hydrophyte n Disturbance: No apparent disturbance	=	75	-	Hydrophytes
3	,	ervation in light of the			vatershed
Aerial pho Other ON RECC	ke, or tidal gage Identification: tography Identification: Identification: RDED DATA				
Depth to S	TONS: Free Water: <u>To ground surface</u> Saturation (including capillary fringe): <u>To ground s</u> drology (explain): <u>No apparent alteration.</u>	surface			
	Saturated in upper 12" Water Marks Saturated in upper 12" Saturated in upp	Drift Lines 🛛 Se	ediment Deposi	ts	
					140

	Sketch Lar	idscape Positi	on	
		(8	
		1	8	
Depth	Horizon	Matrix Color	Redoximorphic Features Color, Abundance, Size & Contrast	USDA Texture and nodules, concretions, masses, pore linings, restrictive layers, root distribution, soil water, etc.
16+"	0			
REFERENCE:	INDICATOR(S): New England H	ydric Soils Techn	ical Committee. 2004. 3rd ed., Field II	ndicators for Identifying Hydric Soils in New
England. New	England Intersta	ate water Pollutic	n Control Commission, Lowell, MA.	
OPTIONAL SOI	L DATA:			
TAVONOLIO	SUBGROUP:			
SOIL DRAINA				
SOIL DRAINA DEPTH TO AC NTCHS HYDR	GE CLASS: CTIVE WATER T. IC SOIL CRITEF	RION:		
SOIL DRAINA DEPTH TO AC NTCHS HYDR CONCLUSIO	GE CLASS: CTIVE WATER T. IC SOIL CRITER	NON: YES NO)	
SOIL DRAINA DEPTH TO AC NTCHS HYDR CONCLUSIO Greater than	GE CLASS: TIVE WATER T. IC SOIL CRITEF NS 50% Hydrophy	NON: YES NO		TAPOINT WITHIN A WETLAND?
SOIL DRAINA DEPTH TO AC NTCHS HYDR CONCLUSIO Greater than Hydric Soils (GE CLASS: CTIVE WATER T. IC SOIL CRITEF NS 50% Hydrophy Criterion Met?	YES NO		TAPOINT WITHIN A WETLAND? YES NO
SOIL DRAINA DEPTH TO AC <u>NTCHS HYDR</u> CONCLUSIO Greater than	GE CLASS: CTIVE WATER T. IC SOIL CRITEF NS 50% Hydrophy Criterion Met?	YES NO tes? X		YES NO

Project Title: Hig Delineators: TT, I		ot Location: 04TTN18 ate: June 30, 2009	Upland/wet	and: Wetland
VEGETATION	Stratum and Species	Dominance Ratio	Percent Dominance	NWI Statu
rees:				
ed spruce (Picea i	rubens)	6/11	55	FACU
ellow birch (Betula	a alleghaniensis)	3/11	27	FAC
astern hemlock (7	suga canadensis)	1/11	9	
aper birch (<i>Betula</i> Poles:		1/11	9	
ellow birch (Betula	a alleghaniensis)	30/50	60	FAC
ed spruce (Picea i		20/50	40	FACU
hrubs:	aberraj	20/30	40	1700
peckled alder (Alr	us incono)	30/63	48	FACW
				and the second
obblebush (Viburi		20/63	32	FAC
ed maple (Acer ru	brum)	10/63	16	-
	ar (<i>Thuja occidentalis</i>)	3/63	5	
lerbs:				
	a grass (<i>Glyceria melicaria</i>)	80/153	52	OBL
	lenrod (Solidago rugosa)	40/153	26	FAC
harp-tooted noddi	ng aster (Oclemena acuminata)	10/153	7	_
ood horsetail (Eq	uisetum sylvaticum)	8/153	5	-
odding sedge (Ca		5/153	3	
	munda cinnamomea)	5/153	3	
ristly blackberry (I		5/153	3	
1	NA or NI status are reported, but are not calculat	PHYTES FAC-	FACU FACU	UPL 2
	100 x Subtotal Hydrophytes	_ =75		Hydrophytes
escribe Vegetation	btotal Hydrophytes + Subtotal Non-Hydrophytes Disturbance: No apparent disturbance			
11 1: 2: 3:	Hydrology is often the most difficult feature to observe. Interpretation must consider the validity of the observat alterations, etc. Interpretation of hydrology may require repeated obser			vatershed
RECORDED				
Aerial photo	graphy Identification:			
Other	Identification:			
NO RECOR OBSERVATION				
	e Water: <u>To ground surface</u>			
Depth to Sa	turation (including capillary fringe): <u>To ground surfa</u> rology (explain): <u>No apparent alteration.</u>	ace		
CONTRACTOR STOLEN. 197 Mar	Saturated in upper 12" 🛛 Water Marks 🗠 Dr	ift Lines 🛛 🗆 Sediment Depos	its	
				1.0

	Sketch Lar	ndscape Positi	on		
			(S)		
Depth	Horizon	Matrix Color	Redoximorphic Features Color, Abundance, Size & Contrast	USDA Texture and nodules, concretions, masses pore linings, restrictive layers, root distribution, soi water, etc.	
16+"	0	-			
HYDRIC SOIL	INDICATOR(S):	III - Histosols			
REFERENCE: England. New	New England H England Intersta	ydric Soils Techn ate Water Pollutic	ical Committee. 2004. 3 rd ed., <i>Field Ir</i> on Control Commission, Lowell, MA.	ndicators for Identifying Hydric Soils in New	
OPTIONAL SOI	L DATA:				
				*	
CONCLUSIC	and the second se				
		YES NO)		
Greater than 50% Hydrophytes? 🔀		tes? 🗵 🗆			
Hydric Soils Criterion Met?		\mathbf{X}	IS THIS DATAPOINT WITHIN A WETLAND?		
Wetland Hydrology Met?		\square		YES NO	
			REMARKS:		

Appendix F Representative Site Photographs

Photo 1. Wetland altered by timber harvesting activity and currently characterized as emergent. Stantec Consulting, September 22, 2008.

Photo 2. Wetland altered by timber harvesting activity and currently characterized as emergent. Stantec Consulting, September 24, 2008.

Photo 3. Forested wetland altered by timber harvesting activity . Stantec Consulting, September 30, 2008.

Photo 4. Scrub-shrub wetland altered by timber harvesting activity. Stantec Consulting, October 21, 2008.

Photo 5. Emergent wetland. Stantec Consulting, September 18, 2008.

Photo 6 Forested wetland. Stantec Consulting, September 22, 2008.

Photo 7. Scrub-shrub wetland. Stantec Consulting, October 6, 2008.

Photo 8. Intermittent stream. Stantec Consulting, November 11, 2008.

Photo 9. Intermittent stream. October 14, 2008.

Photo 10. Intermittent stream. Stantec Consulting, September 26, 2008.

Photo 11. Intermittent stream. Stantec Consulting, September 29, 2008.

Photo 12. Intermittent stream. Stantec Consulting, September 20, 2008.

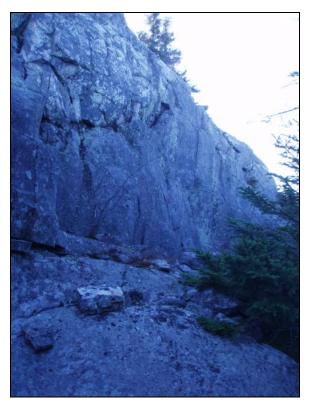

Photo 13. Sandy stream. Stantec Consulting, November 14, 2008.

Photo 14. Perennial stream. Stantec Consulting, November 14, 2008.

Photo 15. Bald upland. Stantec Consulting, October 7, 2008.

Photo 16. Rock face upland. Stantec Consulting, October 7, 2008.

Photo 17. Spruce fir-higher elevation upland. Stantec Consulting, September 9, 2008.

Photo 18. Beech-birch-maple upland. Stantec Consulting, September 8, 2008.

Photo 19. Mixed woods upland. Stantec Consulting, September 8, 2008.

Photo 20. Upland clear cut. Stantec Consulting, October 27, 2008.

Photo 21. Cleared upland. Stantec Consulting, September 10, 2008.

Appendix G Agency Correspondence

STATE OF MAINE DEPARTMENT OF ENVIRONMENTAL PROTECTION

JOHN ELIAS BALDACCI

DAVID P. LITTELL COMMISSIONER

September 9, 2008

Lisa MacDonald Stantec Consulting 30 Park Drive Topsham, ME 04086

Request for Significant Wildlife Habitat Information Re: **Highland** Plantation

Dear Ms. MacDonald:

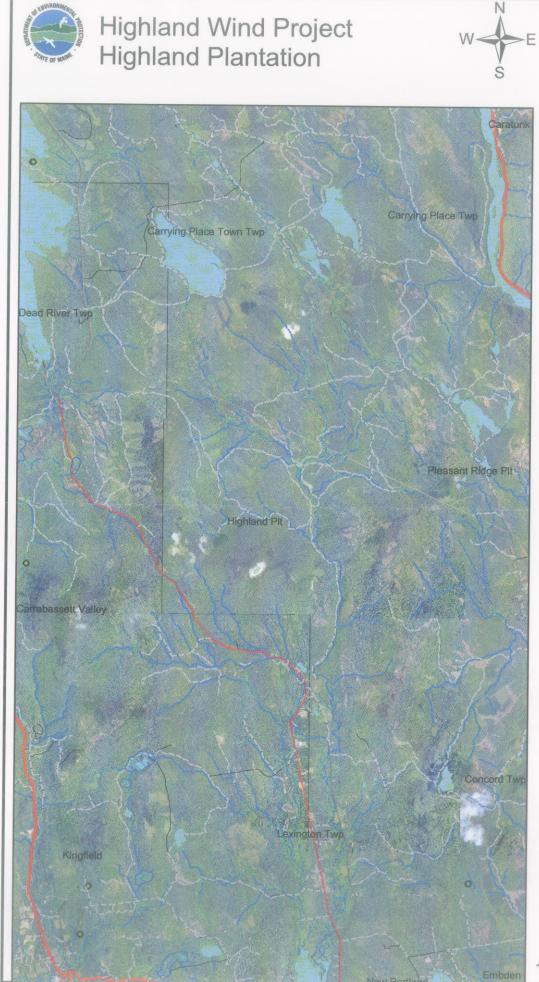
Enclosed please find a map in response to your request for information regarding Significant Wildlife Habitat in Highland Plantation, Maine. The map shows your approximate project area and was generated from Maine Geographic Information System (GIS) data layers maintained by the Maine Department of Environmental Protection (DEP) and the Maine Department of Inland Fisheries and Wildlife (IF&W). Based on this information, it appears that no Significant Wildlife Habitats or other habitat features have been identified within the project area

Please note that GIS datalayers for Vernal Pools are not currently available. The project area should be screened by a qualified professional during the appropriate identification period to determine if significant vernal pools are present

Thank you for consulting the Department during the project planning process. Please feel free to contact the Department if you have questions or require additional information.

Sincerely,

Amy Lend


Amy Lemelin Bureau of Land and Water Quality

AUGUSTA **17 STATE HOUSE STATION** AUGUSTA, MAINE 04333-0017 106 HOGAN ROAD (207) 287-7688 FAX: (207) 287-7826 BANGOR, MAINE 04401 RAY BLDG., HOSPITAL ST.

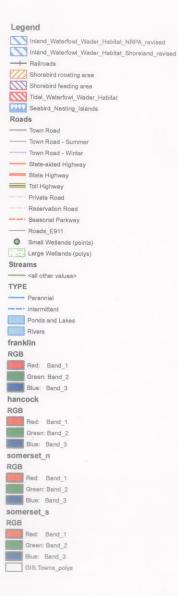
BANGOR

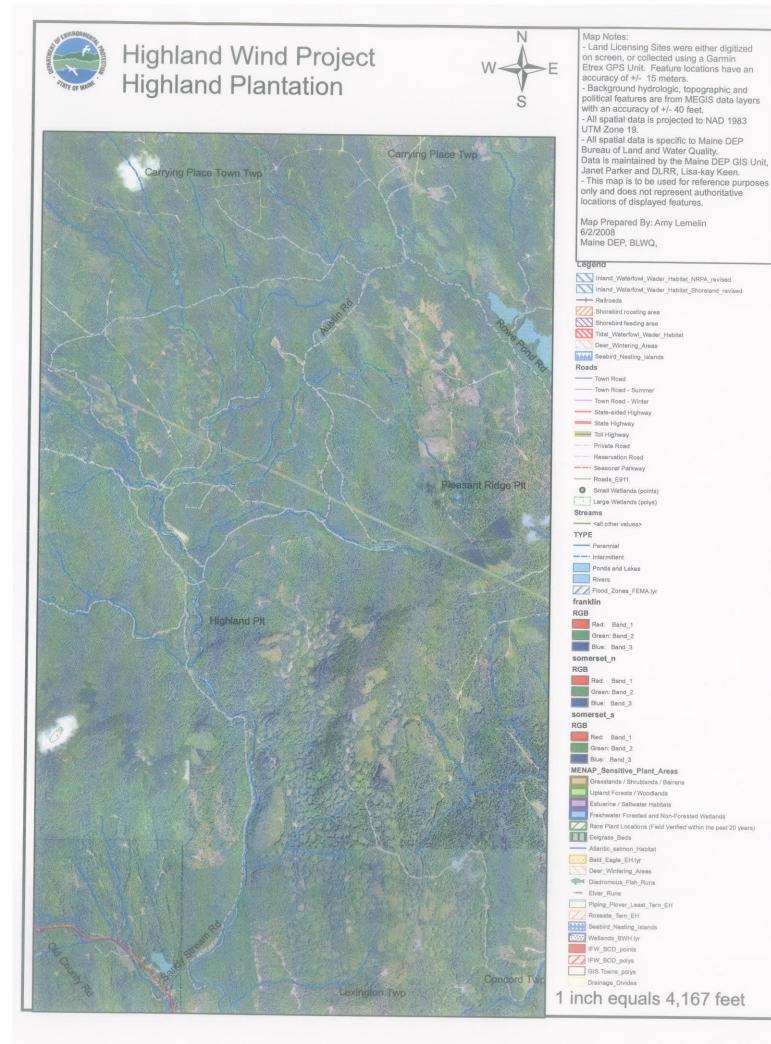
PORTLAND 312 CANCO ROAD PORTLAND, MAINE 04103

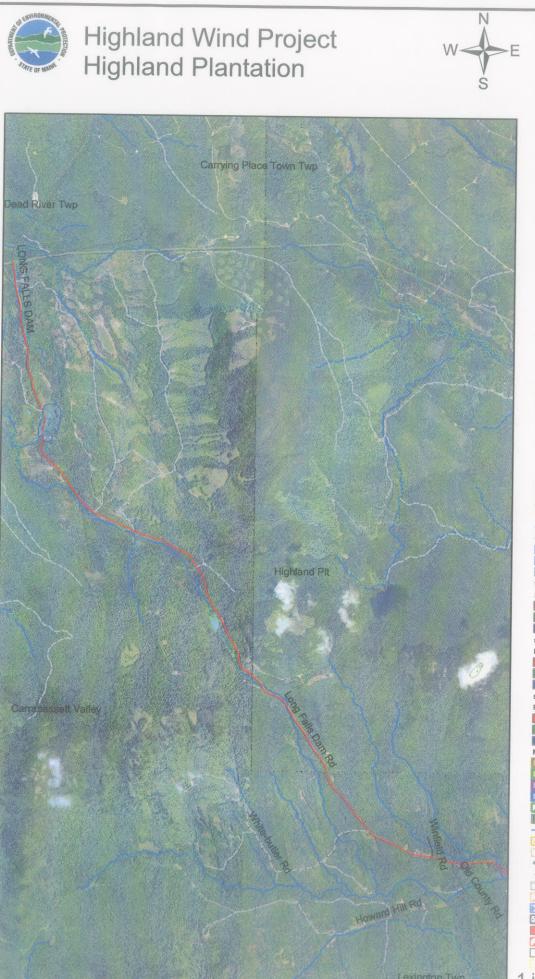
PRESQUE ISLE 1235 CENTRAL DRIVE, SKYWAY PARK PRESQUE ISLE, MAINE 04769-2094 (207) 941-4570 FAX: (207) 941-4584 (207) 822-6300 FAX: (207) 822-6303 (207) 764-0477 FAX: (207) 760-3143

Map Notes:

Land Licensing Sites were either digitized on screen, or collected using a Garmin Etrex GPS Unit. Feature locations have an accuracy of +/- 15 meters.
Background hydrologic, topographic and political features are from MEGIS data layers with an accuracy of +/- 40 feet.
All spatial data is projected to NAD 1983

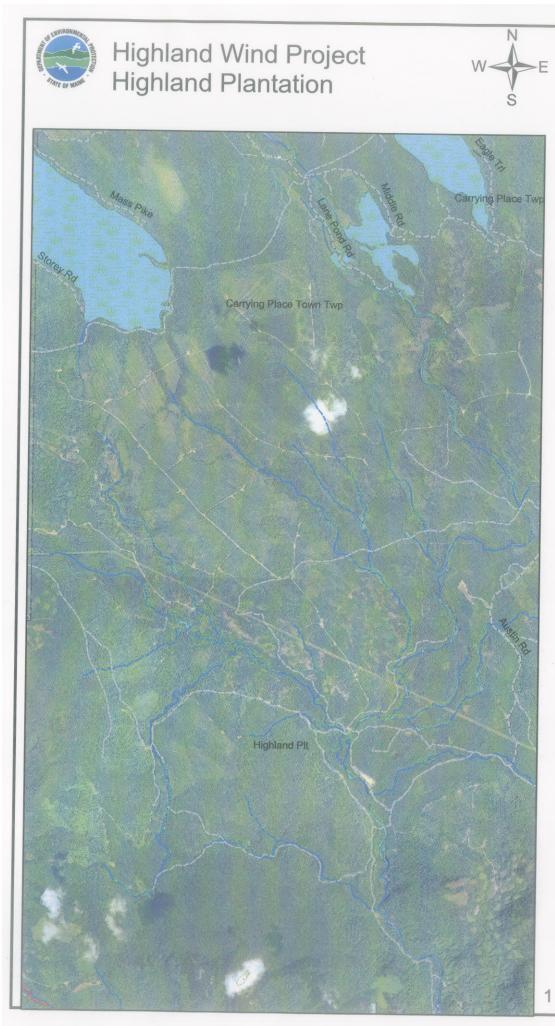

UTM Zone 19.


- All spatial data is specific to Maine DEP Bureau of Land and Water Quality.


Data is maintained by the Maine DEP GIS Unit, Janet Parker and DLRR, Lisa-kay Keen. - This map is to be used for reference purposes

only and does not represent authoritative locations of displayed features.

Map Prepared By: Amy Lemelin 6/2/2008 Maine DEP, BLWQ,



- Land Licensing Sites were either digitized on screen, or collected using a Garmin Etrex GPS Unit. Feature locations have an accuracy of +/- 15 meters. - Background hydrologic, topographic and political features are from MEGIS data layers with an accuracy of +/- 40 feet. All spatial data is projected to NAD 1983 UTM Zone 19. - All spatial data is specific to Maine DEP Bureau of Land and Water Quality. Data is maintained by the Maine DEP GIS Unit, Janet Parker and DLRR, Lisa-kay Keen. - This map is to be used for reference purposes only and does not represent authoritative locations of displayed features. Map Prepared By: Amy Lemelin 6/2/2008 Maine DEP, BLWQ, Legena Inland_Waterfowl_Wader_Habitat_NRPA_revised Inland_Waterfowl_Wader_Habitat_Shoreland_revised Railroads Shorebird roosting area Shorebird feeding area Tidal_Waterfowl_Wader_Habitat Deer_Wintering_Areas Seabird_Nesting_Islands Roads ----- Town Road ------ Town Road - Summer Town Road - Winter - State-aided Highway State Highway Toll Highway Private Road Reservation Road ----- Seasonal Parkway ----- Roads_E911 Small Wetlands (points) Large Wetlands (polys) Streams = <ail other values> TYPE - Perennial ---- Intermittent Ponds and Lakes Rivers Flood_Zones_FEMA.lyr franklin RGB Red: Band 1 Green: Band_2 Blue: Band_3 somerset_n RGB Red: Band 1 Green: Band_2 Blue: Band_3 somerset_s RGB Red: Band_1 Green: Band_2 Blue: Band 3 MENAP_Sensitive_Plant_Areas Grasslands / Shrublands / Barrens Upland Forests / Woodlands Estuarine / Saltwater Habitats Freshwater Forested and Non-Forested Wetlands Rare Plant Locations (Field Verified within the past 20 years) Eelgrass_Beds Atlantic_salmon_Habitat Bald_Eagle_EH.lyr Deer_Wintering_Areas Diadromous_Fish_Runs - Elver_Runs Piping_Plover_Least_Tern_EH Roseate_Tern_EH Seabird Nesting Islands Wetlands_BWH.lyr IFW_BCD_points IFW_BCD_polys GIS. Towns_polys Drainage_Divides 1 inch equals 4,167 feet

Map Notes:

Map Notes:

- Land Licensing Sites were either digitized on screen, or collected using a Garmin Etrex GPS Unit. Feature locations have an accuracy of +/- 15 meters.

- Background hydrologic, topographic and political features are from MEGIS data layers with an accuracy of +/- 40 feet. - All spatial data is projected to NAD 1983

UTM Zone 19.

- All spatial data is specific to Maine DEP Bureau of Land and Water Quality. Data is maintained by the Maine DEP GIS Unit, Janet Parker and DLRR, Lisa-kay Keen. - This map is to be used for reference purposes only and does not represent authoritative locations of displayed features.

Map Prepared By: Amy Lemelin 6/2/2008 Maine DEP, BLWQ,

Legend

Inland_Waterfowl_Wader_Habitat_NRPA_revised Inland_Waterfowl_Wader_Habitat_Shoreland_revised Shorebird roosting area Shorebird feeding area Tidal_Waterfowl_Wader_Habitat Deer_Wintering_Areas Seabird_Nesting_Islands Roads - Town Road - Town Road - Summe Town Road - Winter State Highway Toll Highway Private Road Reservation Road ----- Seasonal Parkway - Roads E911 Small Wetlands (points) Large Wetlands (polys) Streams <all other values> TYPE - Perennial Intermittent Ponds and Lakes Rivers Flood_Zones_FEMA.lyr franklin RGB Red: Band_1 Green: Band_2 Blue: Band_3 somerset_n RGB Red: Band_1 Green: Band 2 Blue: Band_3 somerset_s RGB Red: Band 1 Green: Band_2 Blue: Band_3 MENAP_Sensitive_Plant_Areas Grasslands / Shrublands / Barrens Upland Forests / Woodlands Estuarine / Saltwater Habitats Freshwater Forested and Non-Forested Wetlands Rare Plant Locations (Field Verified within the past 20 years) Eelgrass_Beds Atlantic_salmon_Habitat Baid_Eagle_EH.lyr Deer_Wintering_Areas Diadromous_Fish_Runs Elver_Runs Piping_Plover_Least_Tern_EH Roseate_Tern_EH Seabird_Nesting_Islands Wetlands_BWH.lyr IFW_BCD_points IFW_BCD_polys GIS. Towns_polys Drainage_Divides 1 inch equals 4,167 feet

JOHN ELIAS BALDACCI

GOVERNOR

STATE OF MAINE DEPARTMENT OF INLAND FISHERIES & WILDLIFE

WILDLIFE DIVISION Region D 689 Farmington Road Strong, Maine 04983

ROLAND D. MARTIN COMMISSIONER

Phone (207) 778-3324 FAX (207) 778-3323

August 28, 2008

Lisa MacDonald Stantec Consulting 30 Park Drive Topsham, ME 04086

Dear Ms. MacDonald:

I received your 13 August 28, 2008 letter requesting Significant and Essential Wildlife Habitat information for the property in Highland Plantation. Enclosed are the results of my review.

Essential Habitats:

Essential Habitats are defined as "areas currently or historically providing physical or biological features essential to the conservation of an endangered or threatened species in Maine and which may require special management considerations". Essential Habitat protection in Maine currently applies to bald eagle, roseate and least tern, and piping plover nest sites, but additional listed species may receive attention in the future.

According to MDIFW records, there are no Essential Habitats known to be associated with this property.

Significant Wildlife Habitats:

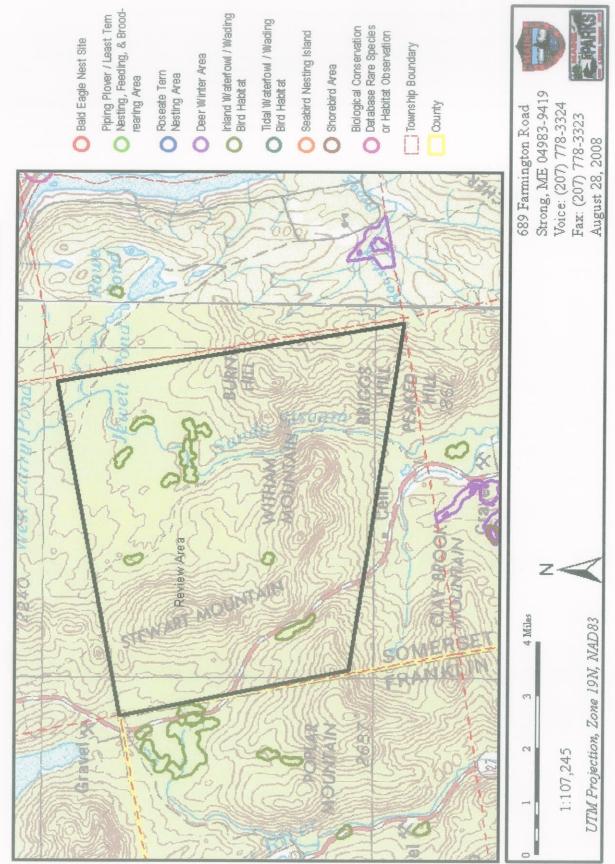
The Natural Resources Protection Act, administered by the Maine Department of Environmental Protection, provides protection to certain natural resources including Significant Wildlife Habitats. Significant Wildlife Habitats are defined by the NRPA as:

- Habitat for state and federally listed endangered and threatened species.
- High and moderate value deer wintering areas (DWAs) and travel corridors.
- High and moderate value waterfowl and wading bird habitats (WWHs), including nesting and feeding areas.
- Shorebird nesting feeding and staging areas.
- Seabird nesting islands.

Waterfowl and Wading Bird Habitat (WWH):

According to MDIFW records this parcel is associated with several WWHs, all are rated either Moderate or High Value. Please see the enclosed map(s). The Maine DEP and Maine IFW recommend that towns place Moderate and High Value WWHs in Resource Protection. Therefore you should check with LURC for harvest regulations. If the town does not have this area in Resource Protection, it is still important to maintain a 250' undisturbed (permanent clearings, roads, etc.) buffer. Within this buffer, uneven-aged forest management should be used if the landowner is going to harvest any trees. Volume removal should not exceed 30% in a 15year period and a well-distributed overstory should be maintained. No trees should be cut within 75 feet of the shore.

Threatened, Endangered or Special Concern Species


Finally, the department maintains a statewide database of Threatened and Endangered wildlife species and habitats, or Species of Special Concern. In general, these records are not the product of recent or intensive surveys for T/E species. Review of department records show no such habitats associated with your project area.

If you have any questions or would like further assistance please contact this office, we would be glad to help.

Yours truly,

Robert C. Cordes

Robert C. Cordes Asst. Regional Wildlife Biologist

Search for Wildlife Observations & Habitat

Maine Department of Inland Fisheries & Wildlife 689 Farmington Road, Strong, ME 04983-9419 Phone: (207) 778-3324, FAX: (207) 778-3323

Site-Specific Search of Wildlife Observations and Habitat

SEARCH PARAMETERS

County:	Franklin, Somerset
IF&W Region:	D
Township(s):	Carrabassett Valley, Carrying Place Town Twp, Dead River Twp, Highland Plt, Lexington Twp
Search Center:	414772 east, 4994581 north (UTM NAD83 coordinates)
Search Area:	35.95 sq. miles
Date:	Thursday, August 28, 2008

RESULTS

Essential Wildlife Habitats

BALD EAGLE NEST SITES None Found

PIPING PLOVER / LEAST TERN NESTING, FEEDING, AND BROOD-REARING AREAS None Found

ROSEATE TERN NESTING AREAS None Found

Natural Resource Protection Act (NRPA) Habitats

Title 38, Chapter 3, Article 5-A, Section 480 of M.R.S.A. identifies habitats protected under the Natural Resources Protection Act (NRPA). Included in the definitions section (480-B) is "Significant Wildlife Habitat," which means areas that have been mapped by MDIFW or are within any other protected natural resource including habitat for listed endangered/threatened animal species; high/moderate value deer wintering areas; high/moderate value waterfowl/wading bird habitat; shorebird nesting, feeding, and staging areas; and seabird nesting islands. Although all of these habitats are mapped by MDIFW, to date only seabird nesting islands have gone through the formal NRPA process and are regulated. Shorebird areas are regulated as mapped under recent amendments to NRPA. Specific deer wintering areas and waterfowl/wading bird habitat (inland and tidal) have been mapped and designated "Candidate NRPA," indicating they potentially meet the NRPA Significant Habitat criteria but have not been formally zoned. Recent amendments to NRPA identified criteria to determine high and moderate Waterfowl and Wading bird habitats for protection under NRPA. Data requested for NRPA purposes (such as waterfowl and wading bird habitat, seabird nesting islands, and shorebird areas) should be obtained from Maine DEP.

SEABIRD NESTING ISLANDS None Found

DEER WINTER AREAS None Found

INLAND WATERFOWL/WADING BIRD HABITATS

Areas rated as high or moderate qualify as Candidate NRPA habitats. The mapped boundary includes a 250-ft upland zone that is used by wildlife associated with the wetland. This data set was developed in accordance with NRPA and the Comprehensive Planning and Land Use Regulation Act (Growth Management).

Code	Rating	Acres	Wetland Acres
UMO-9443	moderate	41	11.69
UMO-9454	moderate	35	0
UMO-10621	moderate	29	0
UMO-10707	moderate	33	0
UMO-10752	moderate	165	48,44
UMO-10949	high	22	0
UMO-10982	moderate	74	19.76

CODE = Unique identifier assigned by MDIFW to the polygon. Polygons with a code beginning with "UMO" were identified by the University of Maine analysis of wetland habitats in 2002. These polygons do not have corresponding records in MDIFW's databases.

RATING = *Inland* waterfowl/wading bird habitats with a "high" or "moderate" rating are considered as Candidate NRPA.

ACRES = Size of the IWWH in acres.

WETLAND ACRES = size of entire wetland in acres (this may encompass several *IWWH* polygons).

TIDAL WATERFOWL/WADING BIRD HABITATS None Found

SHOREBIRD AREAS None Found Land Use Regulation Commission (LURC) Deer Winter Areas and Seabird Nesting Islands None Found

Rare, Threatened, or Endangered (RTE) Species Observations (Natural Heritage data)

POINTS OBSERVATIONS BUFFERED BY 0.25 MILES None Found

MAPPED HABITAT POLYGONS None Found

MAINE HISTORIC PRESERVATION COMMISSION 55 CAPITOL STREET 65 STATE HOUSE STATION AUGUSTA, MAINE 04333

EARLE G. SHETTLEWORTH, JR.

September 18, 2008

Ms. Lisa MacDonald Stantec Consulting 30 Park Drive Topsham, ME 04086

Project: MHPC #1598-08 – Highland Wind Project Town: Highland Plantation, ME

Dear Ms. MacDonald:

In response to your recent request, I have reviewed the information received August 15, 2008 to initiate consultation on the above referenced project in accordance with Section 106 of the National Historic Preservation Act.

No archaeological survey has been done in the project area, so there are no known archaeological sites. Archaeological survey will be necessary for prehistoric/Native American archaeological sites at powerline and access road crossings of streams, and where powerlines or access roads intersect glacial outwash/esker surficial deposits. In addition, a survey for bedrock exposures that may have been used as stone tool raw material sources (quarries) by Native Americans must be undertaken on the highlands were turbines and associated access roads and powerlines will be located. A list of qualified prehistoric archaeologists is enclosed along with material explaining the Phase I/II/III approach to archaeological survey. This information can also be found on our website: www.maine.gov/mhpc/project_review This office must approve any proposal for archaeological fieldwork.

Regarding architectural resources, I have concluded that there are no National Register listed or known National Register eligible properties in the project area. However, no architectural survey of the project area has ever been conducted. I have concluded that additional information is necessary to identify historic above ground properties within the proposed undertaking's area of potential effect (APE). Therefore, in order to determine whether such resources exist, a Section 106-specific architectural survey will need to be completed in accordance with our survey guidelines and associated forms, which are both downloadable from our website: www.maine.gov/mhpc/project_review (see tabs in the white box on the left side of the webpage under Project Review) Please also find attached our revised photographic policy to be referenced in lieu of the policy in our on-line survey manual. Any computer generated template other than that provided by MHPC must be approved by MHPC prior to submission.

1

September 18, 2008 MHPC #1598-08

No changes to the survey forms are to be made without consulting MHPC. Please note that the APE may include properties that have been surveyed as part of prior project reviews. A list of historic preservation consultants is enclosed for your information.

Once the information mentioned above is received, we will forward a response regarding the results of our evaluation. Please contact Robin Stancampiano of my staff if we can be of further assistance in this matter.

Sincerely,

Kich F. Mohney

Kirk F. Mohney Deputy State Historic Preservation Officer

enc.

MAINE HISTORIC PRESERVATION COMMISSION 55 CAPITOL STREET 65 STATE HOUSE STATION AUGUSTA, MAINE 04333 Prehistoric Archaeologists Approved List: Paviow and Compliance Consulting/Constanting (Augusta)

Review and Compliance Consulting/Contracting (Active)

EARLE G. SHETTLEWORTH, JR. DIRECTOR

Ms Edna Feighner (207-879-9496) NH Division of Historical Resources PO Box 2043 Concord NH 03302-2043 Efeighner@NHCHR.state.nh.us

Richard P Corey (207-778-7012) PO Box 68 E Wilton ME 04234-0068 rcorey@maine.edu

Ms. Sarah Haugh (207-879-9496 x238) Tetra Tech 451 Presumpscot St Portland ME 04103 sarah.haugh@tetratech.com

Dr Richard Will (207-667-4055) TRC/Northeast Cultural Resources 71 Oak St Ellsworth ME 04605 FAX: 207-667-0485 willtrc@adelphia.net

Dr Ellen Cowie (207-778-7012) Archaeology Research Center University of Maine at Farmington 139 Quebec St Farmington ME 04938-1507 <u>ecowie@maine.edu</u>

Dr Bruce J Bourque (207-287-3909) Maine State Museum 83 State House Station Augusta ME 04333-0083 bbourque@abacus.bates.edu

Dr Nathan Hamilton (207-780-5324) Dept of Geography & Anthropology University of Southern Maine Gorham ME 04038

Geraldine Baldwin (914-271-0897) John Milner Associates Inc 1 Croton Point Ave Ste B Croton-on-Hudson NY 10520 FAX: 914-271-0898 GeraldineBaldwin@aol.com

LEVEL 1

James A Clark (207-667-4055) TRC/Northeast Cultural Resources 71 Oak St Ellsworth ME 04605 <u>clark.ja@gmail.com</u>

Edward Kitson (207-778-7012) Archaeology Research Center University of Maine at Farmington 139 Quebec St Farmington ME 04938 <u>kitson@maine.edu</u>

Mr. Michael Brigham (207-778-7012) Archaeology Research Center University of Maine at Farmington 139 Quebec St Farmington ME 04938 brigham@maine.edu

Mr Brian Valimont (207-251-9467) New England Archaeology Co LLC 117 Cat Mousam Rd Kennebunk ME 04043 <u>newarch1@verizon.net</u>

LEVEL 2

Dr Jonathan Lothrop (412-856-6400) GAI Consultants 570 Beatty Rd Monroeville PA 15146 <u>j.lothrop@gaiconsultants.com</u>

Robert N Bartone Archaeology Research Center University of Maine at Farmington 139 Quebec St Farmington ME 04938 b_bartone@maine.edu

Dr Leslie Shaw (207-725-3815) Dept of Sociology & Anthropology Bowdoin College Brunswick ME 04011 e-mail: <u>lshaw@bowdoin.edu</u>

Dr William R Belcher US Army CILHI 310 Worchester Ave Bldg 45 Hickam AFB HI 96853-5530 wbelcher@msn.com

Dr. Robert Goodby (603-446-2366) Monadnock Archaeological Consulting 16 Fox Hill Rd Stoddard NH 03464 MonadArch@surfglobal.net Dr Stuart Eldridge (207-879-9496) Tetra Tech 451 Presumpscot St Portland ME 04103 <u>stuart.eldridge@tetratech.com</u>

Dr Victoria Bunker (603-776-4306) PO Box 16 New Durham NH 03809-0016 vbi@worldpath.net

David Putnam (207-762-5078) 47 Hilltop Rd Chapman ME 04757 putnamd@umpi.edu

Dr Steven L Cox (207-342-7790) 57 Ghent Rd Searsmont ME 04973 <u>stevencox@fairpoint.net</u>

Edward Moore TRC/Northeast Cultural Resources 71 Oak St Ellsworth ME 04605 FAX: 207-667-0485

GAHISTORIC PRESERVATION & ARCHAEOLOGISTS CONSULTANTS LISTOPrehistoric Archaeologists R&C Active.doc

PHONE: (207) 287-2132

PRINTED ON RECYCLED PAPER

ANGUS S. KING, JR.

MAINE HISTORIC PRESERVATION COMMISSION 55 CAPITOL STREET 65 STATE HOUSE STATION AUGUSTA, MAINE 04333

EARLE G. SHETTLEWORTH, JR.

DIRECTOR

CONTRACT ARCHAEOLOGY GUIDELINES

June 10, 2002

This document is provided as background information to agencies, corporations, professional consultants or individuals needing contract archaeological services (also known as Cultural Resources Management archaeology) in Maine. These guidelines are based on state rules (94-089 Chapter 812).

Project Types

The vast majority of contract archaeology survey work falls into one of three categories. **Phase I** surveys are designed to determine whether or not archaeological sites exist on a particular piece of land. Such work involves checking records of previous archaeology in the area, walking over the landscape to inspect land forms and look for surface exposures of soil and possible archaeological material, and the excavation of shovel test pits in areas of high probability.

Phase II surveys are designed to focus on one or more sites that are already known to exist, find site limits by digging test pits, and determine site content and preservation. Information from Phase II survey work is used by the Maine Historic Preservation Commission (MHPC) to determine site significance (eligibility for listing in the National Register of Historic Places). **Phase III** archaeological work, often called data recovery, is careful excavation of a significant archaeological site to recover the artifacts and information it contains in advance of construction or other disturbance.

Archaeological sites are further divided into two broad categories of culture, **prehistoric** (or Native American), and **historic** (or European-American). Different archaeological specialists are usually needed for prehistoric or historic sites because the nature of content and preservation and site locations are quite different.

Scope of Work

In responding to a project submission, the MHPC may issue a letter specifying which type of archaeological survey is needed (prehistoric, historic or both) and at what level (Phase I, II, or III). Often the response letter contains further information, such as the suspected presence of an historic site of a certain age, or a statement that only a portion of the project parcel in question is sensitive for prehistoric sites and only that portion needs archaeological survey.

Once the project applicant has one or more scopes of work (proposals) from appropriate archaeologists (see below), the applicant should submit their preferred proposal *(without attached financial information or bid total)* to the MHPC for approval. MHPC will not comment upon cost, but will comment on the appropriateness of the scale and scope of the work. An approval from MHPC of the scope of work is the applicant's guarantee that, if the field and laboratory work are done according to the scope, and appropriately described in writing, the results will be accepted by MHPC.

The final written report on the project must also be submitted to MHPC for review and comment.

PRINTED ON RECYCLED DATER

Finding an Archaeologist

At the time that MHPC issues a letter requiring archaeological survey work, MHPC will also supply one (or more) lists of archaeologists (Levels 1 and/or 2, historic or prehistoric) appropriate to the type of work (Phase I, II, III, historic or prehistoric). Archaeologists on the Level 2 Approved Lists can do projects of any level, including Phase I archaeological survey projects. Level 1 archaeologists are restricted to doing Phase I surveys, and certain planning projects for municipal governments.

MHPC maintains lists of archaeologists interested in working in different geographic areas of Maine, and those who are qualified in different types of work. The archaeologists themselves indicate their availability (except for short-term absence) to MHPC on a periodic basis, so archaeologists on the list can be expected to respond to inquiries. The applicant should solicit proposals or bids for work from archaeologists whose names appear on the list supplied by MHPC.

These archaeologists' names are taken from lists of archaeologists approved for work in Maine by MHPC under a set of rules establishing minimal qualifications, such as previous supervisory experience in northern New England, and an appropriate graduate degree. However, the inclusion of an archaeologist on one of these lists should not be interpreted as an endorsement by the MHPC beyond these limited qualification criteria. Moreover, the MHPC cannot recommend the services of an individual archaeologist.

Project Final Report

Whatever the archaeological survey result, a final report on the project should be submitted by the applicant to the MHPC. The MHPC will review the report, and issue further guidance or issue a "clearance" letter for the project.

CARLEY ALL DELEVE

archaeological arreage is semired (prehistorie, Discovier or birds) and at veltar level-liftence (, H, er 12). Other the response letter contains firsher information, such as the susported presence of an birthsite of a cartain age, or a measures that only a partian of the project parel in quasies in another fire preliments area and only that termine state and another other parels in quasies in another fire preliments area and only that termine state and another parts are trained.

the state of the second of the second second second and the second second of the second second second second se the second s

The line which any property is a set of the project must also be adjulized to hantly for policy and

MAINE HISTORIC PRESERVATION COMMISSION 55 CAPITOL STREET 65 STATE HOUSE STATION AUGUSTA, MAINE 04333

> EARLE G. SHETTLEWORTH, JR. DIRECTOR

Maine Historic Preservation Commission

Photographic Policy

Supplement to the <u>Guidelines for Identification: Architecture and Cultural Landscapes</u> Survey Manual. 26 June 2008

Architectural Survey

The following is required of grant funded, MDOT, and Federal agency surveys and encouraged with volunteer surveys.

A. Black and White Film.

Each resource shall be photographed with black and white film. This film shall be developed and a contact print made from the negatives. The negatives and contact print shall be indexed to the survey forms and the corresponding digital images (see below) and submitted with the survey.

If the facilities are available, surveyors may choose to print each film image, utilizing a true black and white photographic process and printed preferably on non-resin coated fiber based paper. The finished photographs need to be thoroughly washed, printed with borders, and measure $3\frac{1}{2}$ x 5 inches. These photographs may be mounted on the survey forms using archivally safe adhesive, such as Elmer's Glue. Photographs attached with paperclips or staples will not be accepted.

B. Digital Images

An identical (or nearly identical) image shall be taken of each resource with a digital camera. The original image size must be no smaller than 1600 x 1200pixels at 300 pixles per inch. The digital images shall be saved in RGB color format. All digital images shall be burned onto a CD-R Gold or DVD-R Gold disk, and labled with project name/ pin #/ surveyor name and date. The individual images must be labeled in a manner that allows them to be linked to the specific survey form.

MAINE HISTORIC PRESERVATION COMMISSION 55 Capitol Street State House Station 65 Augusta, Maine 04333

Each digital image shall be uploaded onto survey form in the MHPC/MDOT Survey website, (once it is on-line). A test image, in black and white, shall then be digitally printed directly onto a blank survey form (using the required cover-stock). If the printed image is clear (no bleeding), then all the survey images can be printed directly onto the forms (in black and white), when the forms are printed from the website. If the test image is not clear, then all the digital images should be printed onto photographic paper as specified below and this image will then be affixed to the submitted copy of the survey using archivally safe adhesive. The digital images shall be indexed to the survey forms and the black and white negatives.

Digital image printing: The following printer/ink/paper combinations have been found to meet a 75 year archival standards. All digital images printed for architectural surveys must meet this standard.

<u>NOTE</u>: The list below includes products known at this time to meet the minimum documentation specifications established for the submission of architectural surveys. The list is not intended to be restrictive or comprehensive, and does not constitute, and shall not be taken as, endorsement by the Maine Historic Preservation Commission of any of the specific products or manufacturers identified.

Epson Stylus Photo 1400	Epson ClariaA Hi-Definition Inks@	Premium Presentation Paper Matte Epson Ultra Premium Glossy Photo Paper
Epson Style Mate	Epson Picture Mate Pigment Inks	Epson PictureMate Paper
Epson Stylus CX4800 (contains scanner)	Epson DURABrite Ultra Pigmented Inks	Premium Presentation Paper Matte Epson Ultra Premium Glossy Photo Paper
		Epson
Hewlett-Packard Photosmart 325 and 475	HP Vivera 95 dye-based Inks	HP Premium Plus Photo Paper
Hewlett-Packard Photosmart 8450	HP Vivera dye-based Inks	HP Premium Plus Photo Paper
Hewlett-Packard Photosmart B9180	HP Vivera Pigment Inks	HP Advanced Photo Paper Glossy
		HP Photo Matte Paper
Hewlett-Packard Photosmart C6180 (all in one series)	HP Vivera Inks	HP Premium Plus Photo Paper
Lexmark Home Photo Center P6250	Lexmark Evercolor Dye/ Pigment Hybrid Photo Inks	Lexmark Premium Photo Paper High Gloss

MAINE HISTORIC PRESERVATION COMMISSION 55 Capitol Street State House Station 65 Augusta, Maine 04333

National Register Photographs.

All photographs provided to MHPC for submission with a National Register of Historic Places nomination must conform to the National Register Photographic Policy as stated by the National Park Service. This policy is available on line at: http://www.nps.gov/history/nr/policyexpansion.htm

MAINE HISTORIC PRESERVATION COMMISSION 55 CAPITOL STREET 65 STATE HOUSE STATION AUGUSTA, MAINE 04333

EARLE G. SHETTLEWORTH, JR. DIRECTOR

Historic Preservation Consultants

The following list includes architectural and landscape historians, historians, and preservation planners who appear to meet the minimum National Park Service professional qualification standards in 36 CRF 61. Inclusion on this list does not represent an endorsement by the Maine Historic Preservation Commission.

Nicholas C Avery 2326 East Main Rd Portsmouth RI 02871 401-683-2122 hortus@avery-design.net

Deirdre A Brotherson 16 K St Concord NH 03301 603-225-7204

Martha B Deprez 17 West St Portland ME 04102 207-772-4312 or 774-5561

Charlton Hudson PO Box 22 Lincolnville ME 04849-0022 207-338-1638

Rosalind Magnuson 14 Sea Garden Circle Kennebunk ME 04043 207-967-3543

Ann Morris (Historian) 60 Lake Ave Rockland ME 04841 207-594-4601

Deborah Thompson 117 Norfolk St Bangor ME 04401 207-947-8016 Ann G Ball 119 Princess Point Rd Yarmouth ME 04096 anneball@maine.rr.com

Richard M Candee 6 Scituate Rd York ME 03909 207-363-6635

Pamela Griffin (Landscape History) 291 Mere Point Rd Brunswick ME 04011 Work: 207-871-0003 Home: 207-729-3018

Thomas B. Johnson 184 Portland St South Beriwck ME 03908 (603) 783-9511 ext. 206

Steven C Mallory 1504 Shurpike Rd Shushan NY 12873 scmallory@aol.com

Woodward D Openo PO Box 618 Somersworth NH 03878-0618 603-692-6057

Wick York PO Box 334 Stonington CT 06378-0334 wyork@portone.com Rose-Marie Ballard PO Box 1209 Damariscotta ME 04543 207-633-3890

Erik Carson 56 Ryder Rd Yarmouth ME 04096 207-846-3536

Edward L Hawes PhD PO Box 787 Brunswick ME 04011 207-729-5878 Fax: 207-725-3989 ehawes@polar.bowdoin.edu

Kari Ann Laprey 5 Groundnut Hill Rd Cape Neddick ME 03902 207-361-2601

Sara K Martin 75 Leighton St Bangor ME 04401 207-990-5744 saramartin2000@yahoo.com

Roger G Reed 19 Terrace Ave Newton MA 02161 617-739-7542 Fax: 617-964-1672 Gregory Farmer Agricola Corporation (Documentation/Planning) PO Box 861 Chicopee MA 01014-0861 413-592-3875 Rochelle L Bohm 644 Hammond St Bangor ME 04401 207-990-3585

Christopher W Closs & Co PO Box 530 Hopkinton NH 03229-0530 603-746-4789

Robin A S Haynes 46 Edwards St Bath ME 04530 207-442-7301

Carolyn Lockwood 773 High St Bath ME 04530 207-443-6605 olops@gwi.net

Theresa Shea Mattor (Landscape History) 28 My Ln Hollis ME 04042 207-727-5059 ivyland@sacoriver.net

Janet Roberts 40 Weymouth St Brunswick ME 04011 207-729-8967

Henry Amick Amick Museum Resource Dev 3003 Washtenaw Ave Ste 1-E Ann Arbor MI 48104 734-994-1004 henry@henryamick.com

G:\HISTORIC PRESERVATION & ARCHAEOLOGISTS CONSULTANTS LISTS Historic Preservation Consultants.doc

7/93 REV 09/10/08

Barba & Wheelock Architecture Preservation & Design 500 Congress St Portland ME 04101-3403 207-772-2722

Hardlines Design Company 4608 Indianola Ave Columbus OH 43214 614-784-8733 Fax: 614-784-9336

Bruce G Harvey Kleinschmidt Associates 225 Greenfield Pkwy Ste 115 Liverpool NY 13088 315-463-5013 Fax: 315-463-5126

Lynne Emerson Monroe Preservation Company 5 Hobbs Road Kensington NH 03833 603-778-1799

Henry Wyatt Southport Historical & Architectural Consulting PO Box 312 West Southport ME 04576-0312 207-633-4217 southarch@aol.com

Rita Walsh VHB/Vanasse Hangen Brustlin, Inc 101 Walnut St PO Box 9151 Watertown MA 02471-9151 617-924-1770 ext 1286 Fax: 617-923-2336 rwalsh@vhb.com Circa, Inc PO Box 28365 Raleigh NC 27611 919-834-4757 Fax: 919-834-4756 www.circa-inc.com

Cindy Hamilton Heritage Consulting Group 89 Bethleham Pike Ste 200 Philadelphia PA 19118 215-248-1260 <u>CHamilton@Heritage-</u> Consulting.com

New England Preservation Collaborative Inc PO Box 132 Montpelier VT 05601 802-999-7928 Fax: 802-846-7544 www.nepreservation.com

Roxanne Eflin Preservation Planning Associates 56 Joy Valley Rd Buxton ME 04093 207-929-5630 Fax: 207-929-5620 Cell: 207-229-9465 roxanneeflin@yahoo.com www.preservationplanningasso ciates.com

Amy Cole Ives Sutherland Conservation & Consulting 20 Warren Street Hallowell ME 04347 207-242-0618 amycoleives@sutherlandcc.net EBI Consulting 21 B St Burlington MA 01803 781-273-2500 Fax: 781-273-3311

Richard Casella Historic Documentation Company Inc 490 Water St Portsmouth RI 02871-4229 401-683-3483 Fax: 401-683-4217

Lucinda Brockway (Landscape History) Past Designs 53 High St Kennebunk ME 04043 207-985-4326 cindy@pastdesigns.com

Public Archaeology Lab 210 Lonsdale Ave Pawtucket RI 02860 401-728-8780

Christine Beard Leslie Donovan Tremont Preservation Services, LLC 21 Market Street Suite 250 Ipswich, MA 01938 978-356-0322 978-356-0811 (fax) Douglas J Kelleher Epsilon Associates Inc 3 Clock Tower Pl Ste 205 Maynard MA 01754 978-897-7100 dkelleher@epsilonassociates.com

History Matters 1502 21st St NW 2nd F1 Washington DC 20036 202-223-8845 www.historymatters.net

Powers & Company Inc 211 North 13th St Ste 500 Philadelphia PA 19107 215-636-0192 www.powersco.net

Matt Bivens SCI Engineering 130 Point West Blvd St Charles MO 63301 636-949-8200 mbivens@sciengineering.com

TTL- Architects LLC 28 Danforth Street, Suite 213 Portland ME 04101-4596 207-761-9662 ttlarch@aol.com

STATE OF MAINE DEPARTMENT OF CONSERVATION 93 STATE HOUSE STATION AUGUSTA, MAINE 04333-0093

PATRICK K. MCGOWAN

August 27, 2008

Lisa MacDonald Stantec Consulting 30 Park Drive Topsham, ME 04086

Re: Rare and exemplary botanical features, Proposed Highland Wind Project, Highland Plantation, Maine.

Dear Ms. MacDonald:

I have searched the Natural Areas Program's digital, manual and map files in response to your request of August 13, 2008 for information on the presence of rare or unique botanical features documented from the vicinity of the project site in the Town of Highlands Plantation, Maine. Rare and unique botanical features include the habitat of rare, threatened, or endangered plant species and unique or exemplary natural communities. Our review involves examining maps, manual and computerized records, other sources of information such as scientific articles or published references, and the personal knowledge of staff or cooperating experts.

Our official response covers only botanical features. For authoritative information and official response for zoological features you must make a similar request to Steve Timpano, Environmental Coordinator, Maine Department of Inland Fisheries and Wildlife, 284 State Street, Augusta, Maine 04333.

According to the information currently in our Biological and Conservation Data System files, there are no rare botanical features documented specifically within the project areas. This lack of data may indicate minimal survey efforts rather than confirm the absence of rare botanical features. Note also, that Witham Mountain has been identified through landscape analysis as having the potential to support exemplary natural habitat. We recommend that a survey be conducted to determine if the forest on the ridge tops and upper slopes of the mountain meet the criteria for designation as an exemplary forest type.

If a field survey of the project area is conducted, please refer to the enclosed supplemental information regarding rare and exemplary botanical features documented to occur in the vicinity of the project sites. The list may include information on features that have been known to occur historically in the area as well as recently field-verified information. While historic records have not been documented in several years, they may persist in the area if suitable habitat exists. The enclosed list identifies features with potential to occur in the area, and it should be considered if you choose to conduct field surveys.

MAINE NATURAL AREAS PROGRAM MOLLY DOCHERTY, DIRECTOR PHONE: (207) 287-8044 Fax: (207) 287-8040 TTY: (207) 287-2213 Letter to Lisa MacDonald Comments RE: Proposed Highlands Wind Project, Highlands Plantation August 27, 2008 Page 2 of 2

This finding is available and appropriate for preparation and review of environmental assessments, but it is not a substitute for on-site surveys. Comprehensive field surveys do not exist for all areas in Maine, and in the absence of a specific field investigation, the Maine Natural Areas Program cannot provide a definitive statement on the presence or absence of unusual natural features at this site.

The Natural Areas Program is continuously working to achieve a more comprehensive database of exemplary natural features in Maine. We would appreciate the contribution of any information obtained should you decide to do field work. The Natural Areas Program welcomes coordination with individuals or organizations proposing environmental alteration, or conducting environmental assessments. If, however, data provided by the Natural Areas Program are to be published in any form, the Program should be informed at the outset and credited as the source.

The Natural Areas Program has instituted a fee structure of \$75.00 an hour to recover the actual cost of processing your request for information. You will receive an invoice for \$75.00 for our services.

Thank you for using the Natural Areas Program in the environmental review process. Please do not hesitate to contact me if you have further questions about the Natural Areas Program or about rare or unique botanical features on this site.

Sincerely,

Douglas Suitor Associate Information Manager Maine Natural Areas Program 207-287-8044 douglas.suitor@maine.gov

Enclosures

If a field dursey of the project area is conduct of predering the field as a committed supplemental information regarding rare and axemplary botanical teatures documented to occur in the vicinity of the project effect. The far may include information on femures and have been incomin to occur historically in the area as well as necently field-varified information. While bistoric records have not been documented in several years, losy and persist in the area if suitable habitat and is. The enclosed list identities features with potential to occur in the area, and it should be considered if you choose to conduct field surveys.

March Park Array Park

Rare and Exemplary Botanical Features in the Project Vicinity	ical Featur	es in th	e Projec	ct Vicinit	y 8/27/2008
Documented within a Four-Mile Radius of the Proposed Highland Wind Project, Highland Plantation, Maine.	adius of the Propo	osed Highlar	id Wind Proje	ect, Highland I	Plantation,
Scientific Name Common Name	Last Seen	<u>Global</u> Rarity Rank	<u>State</u> Rarity Rank	State Protection Status	Habitat Description
Listera auriculata Auricled Twayblade	1896-08-20	G3G4	S2	F	Alluvial banks, calcareous silts or crevices, alder-thickets, and swamps.
Listera auriculata Auricled Twayblade	1978	G3G4	S2	Т	Alluvial banks, calcareous silts or crevices, alder-thickets, and swamps.
Erigeron hyssopifolius Hyssop-leaved Fleabane	1906-07	G5	S2	SC	Calcareous rocks, talus and gravels.
Arnica lanceolata Hairy Arnica	1919-07-09	C3	S2	н	Ledgy or gravelly shores or wet cliffs, often subalpine.
					Page 1

STATE RARITY RANKS

- S1 Critically imperiled in Maine because of extreme rarity (five or fewer occurrences or very few remaining individuals or acres) or because some aspect of its biology makes it especially vulnerable to extirpation from the State of Maine.
- S2 Imperiled in Maine because of rarity (6-20 occurrences or few remaining individuals or acres) or because of other factors making it vulnerable to further decline.
- S3 Rare in Maine (20-100 occurrences).
- S4 Apparently secure in Maine.
- S5 Demonstrably secure in Maine.
- SH Known historically from the state, not verified in the past 20 years.
- SX Apparently extirpated from the state, loss of last known occurrence has been documented.
- SU Under consideration for assigning rarity status; more information needed on threats or distribution.
- S#? Current occurrence data suggests assigned rank, but lack of survey effort along with amount of
- potential habitat create uncertainty (e.g. S3?).
- Note: State Rarity Ranks are determined by the Maine Natural Areas Program.

GLOBAL RARITY RANKS

- G1 Critically imperiled globally because of extreme rarity (five or fewer occurrences or very few remaining individuals or acres) or because some aspect of its biology makes it especially vulnerable to extinction.
- G2 Globally imperiled because of rarity (6-20 occurrences or few remaining individuals or acres) or because of other factors making it vulnerable to further decline.
- G3 Globally rare (20-100 occurrences).
- G4 Apparently secure globally.
- G5 Demonstrably secure globally.
- Note: Global Ranks are determined by NatureServe.

STATE LEGAL STATUS

- Note: State legal status is according to 5 M.R.S.A. § 13076-13079, which mandates the Department of Conservation to produce and biennially update the official list of Maine's Endangered and Threatened plants. The list is derived by a technical advisory committee of botanists who use data in the Natural Areas Program's database to recommend status changes to the Department of Conservation.
- E ENDANGERED; Rare and in danger of being lost from the state in the foreseeable future; or federally listed as Endangered.
- T THREATENED; Rare and, with further decline, could become endangered; or federally listed as Threatened.

NON-LEGAL STATUS

- SC SPECIAL CONCERN; Rare in Maine, based on available information, but not sufficiently rare to be considered Threatened or Endangered.
- **PE** Potentially Extirpated; Species has not been documented in Maine in past 20 years or loss of last known occurrence has been documented.

Visit our website for more information on rare, threatened, and endangered species! http://www.mainenaturalareas.org/docs/rare_plants/factsheets.php

United States Department of the Interior

FISH AND WILDLIFE SERVICE

Maine Field Office – Ecological Services 1168 Main Street Old Town, ME 04468 (207) 827-5938 Fax: (207) 827-6099 208-SL-0351

In Reply Refer To: 53411-2008-SL-0351 FWS/Region5/ES/MEFO

August 25, 2008

Lisa McDonald Stantec 30 Park Drive Topsham, ME 04068

Dear Ms. McDonald:

Thank you for your letter dated August 1, 2008 requesting information or recommendations from the U.S. Fish and Wildlife Service (Service) for a potential wind power site in Highland Plantation, Maine. One of the purposes of this letter is to advise you of applicable federal wildlife laws, including the Endangered Species Act (ESA), the Migratory Bird Treaty Act, and the Bald and Golden Eagle Protection Act. We do this so you can make an informed decision regarding site selection, project design, and the general requirements of these Acts. Preconstruction surveys may allow for the project to be designed in such a way to avoid or minimize the impacts to federally protected species.

Project Name/Location: Highland Wind Project, Highland Plantation, Maine

Federally listed threatened and endangered species

This project occurs within the range of the Canada lynx (*Lynx canadensis*) in Maine, a federallythreatened species under the jurisdiction of the Service. There have been no formal surveys in Highland Plantation, although lynx have been documented in adjacent townships (Carryingplace 1994, Pleasant Ridge 1996, Concord 1996, and Dead River 1948, 1957). Highland Plantation is not within the proposed critical habitat for the Canada lynx.

Canada lynx occur throughout northern Maine and could occur within your project area. Canada lynx in Maine prefer to use regenerating spruce-fir habitats having high stem densities. These regenerating stands support high populations of snowshoe hare (*Lepus americanus*), the primary food of the Canada lynx. Highest hare densities are generally present about 12 to 30 years after clearcutting or heavy partial harvesting. Forest practices that diminish habitat quality for snowshoe hares may have an adverse affect on Canada lynx. We have developed *Canada lynx habitat management guidelines for Maine*. Please email (mark mccollough@fws.gov) or call (207 827-5938 x.12) if you are interested in obtaining a copy.

Section 9 of the Endangered Species Act prohibits the take of any federally listed animal species by any person subject to the jurisdiction of the United States. As defined in the ESA, take means "to harass, harm, pursue, hunt, shoot, wound, kill, trap, capture, or collect, or attempt to engage in any such conduct." "Harm is defined to mean "an act which kills or injures wildlife. Such acts may include significant habitat modification or degradation that results in death or injury to listed species by significantly impairing essential behavioral patterns, including breeding, feeding or sheltering" (50 CFR §17.3). "Harass" means "an intentional or negligent act or omission which creates the likelihood of injury to wildlife by annoying it to such an extent as to disrupt normal behavioral patterns which include, but are not limited to, breeding, feeding, or sheltering."(Id).

Take incidental to an otherwise lawful activity may be authorized by one of two procedures. If a Federal agency is involved with the permitting, funding, or carrying out of the project and a listed species will be adversely affected, then initiation of formal consultation between that agency and the Service pursuant to section 7 of the ESA is required. Such consultation would result in a biological opinion addressing the anticipated effects of the project to the listed species, and may authorize a limited level of incidental take. If a Federal agency is not involved in the project, and federally listed species may be taken as a result of the project, then an incidental take permit pursuant to section 10(a)(1)(B) of the ESA may be obtained. The Service may issue such a permit upon completion of a satisfactory habitat conservation plan for the listed species that would be taken by the project.

Construction activities may cause adverse effects to the federally-threatened Canada lynx. The Service recommends that preconstruction surveys for Canada lynx be conducted using winter snow tracking surveys in the townships where construction of towers, roads, transmission lines, and other associated facilities are to be located. In the absence of snow tracking data, Canada lynx will be assumed to be present at densities found elsewhere in northwestern Maine. Habitat modeling may be a useful tool in identifying where past, present, and future lynx habitat occurs in relation to proposed developments. These data should be shared with the Service and federal permitting agencies (FERC, Army Corps of Engineers, or others) that will be required to consult with the Service according to Section 7 of the Endangered Species Act.

Other protected species and rare natural communities:

Several protected species or habitats of concern may occur in your area (see attached map). Peregerine falcons (state endangered) may occur in the area and a nesting location occurs at nearby Henhawk ridge. Spring salamanders (state special concern) have also been noted in the area.

We recommend that you contact the Maine Department of Inland Fisheries and Wildlife for additional information on state-threatened and endangered wildlife and wildlife species of special concern. The Maine Endangered Species Act may protect some of the species in your project area. Steve Timapano Maine Department of Inland Fisheries and Wildlife 284 State Street State House Station 41 Augusta, ME 04333-0041 Phone: 207 287-5258

We recommend that you contact the Maine Natural Areas Program for additional information on state-threatened and endangered plant species, plant species of special concern, and rare natural communities.

Lisa St. Hilaire Maine Natural Areas Program Department of Conservation 93 State House Station Augusta, ME 04333 Phone: 207 287-8046

Bald and golden eagles

Occasional, transient bald eagles (Haliaeetus leucocephalus) and golden eagles (Aquilla chrysaetos) may occur in the area. Based on the information currently available to us, the nearest bald eagle nest occurs on the Kennebec River in adjacent Carryingplace Township (see attached map). No golden eagle nesting areas are known within the vicinity of Highland Plantation, but Maine Inland Fisheries and Wildlife receives frequent reports of golden eagles in the western Maine mountains during the summer months and during migration. The bald eagle was removed from the federal threatened list on August 9, 2007 and is now protected from take under the Bald and Golden Eagle Protection Act and the Migratory Bird Treaty Act. "Take" means to pursue, shoot, shoot at, poison, wound, kill, capture, trap, collect, molest or disturb. The term "disturb" under the Bald and Golden Eagle Protection Act was recently defined within a final rule published in the Federal Register on June 5, 2007 (72 Fed. Reg. 31332). "Disturb" means to agitate or bother a bald or golden eagle to a degree that causes, or is likely to cause, based on the best scientific information available, 1) injury to an eagle; 2) a decrease in its productivity, by substantially interfering with normal breeding, feeding, or sheltering behavior; or 3) nest abandonment, by substantially interfering with normal breeding, feeding, or sheltering behavior.

Further information on bald eagle delisting and their protection can be found at <u>http://www.fws.gov/migratorybirds/baldeagle.htm</u>.

Please consult with our new national bald eagle guidelines, which can found at <u>http://www.fws.gov/migratorybirds/issues/BaldEagle/NationalBaldEagleManagementGuidelines</u>.<u>pdf</u>.

These Guidelines are voluntary and were prepared to help landowners, land managers and others meet the intent of the Eagle Act and avoid disturbing bald eagles. If you believe your project

will result in taking or disturbing bald or golden eagles, please contact our office for further guidance. We encourage early and frequent consultations to avoid take of eagles.

Please contact the Maine Department of Inland Fisheries and Wildlife and Maine Natural Areas Program for an up to date account of bald eagle nests in these project areas.

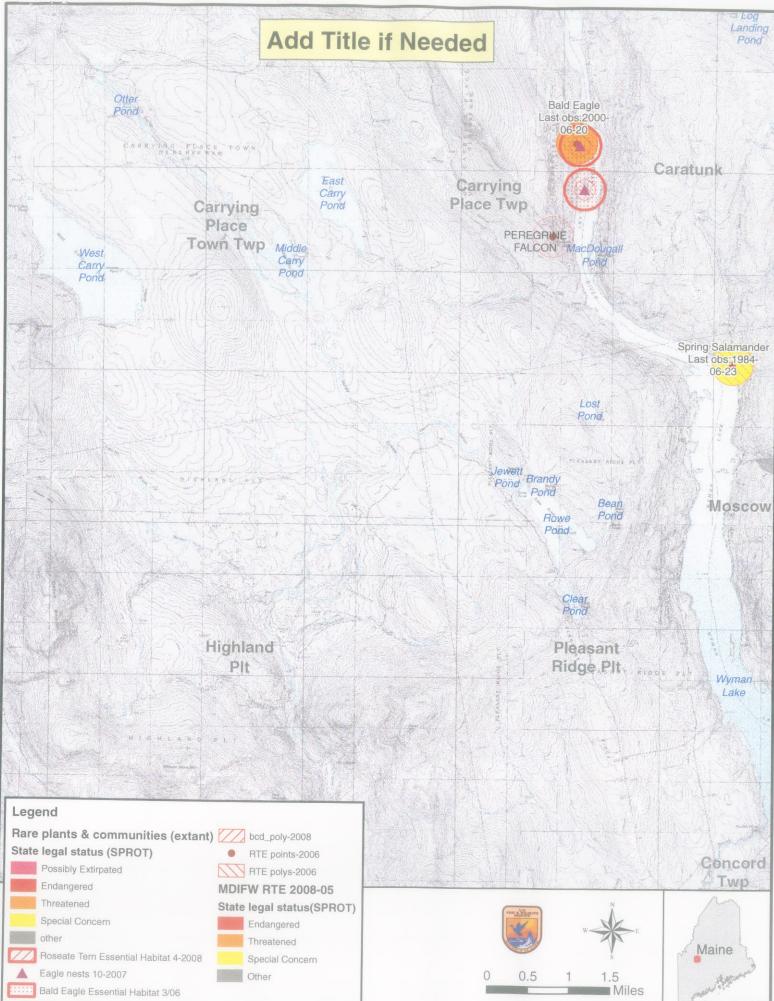
Wind energy projects can affect bald eagles by direct take of resident or transient birds or by introducing new sources of disturbance (noise, significant changes to the landscape). The effect of wind power development on bald eagles has been poorly studied.

Bird and Bat Concerns

Wind energy is renewable, produces no emissions, and is considered to be generally environmentally friendly technology supported by the Department of the Interior. However, wind energy projects can adversely affect wildlife, especially birds and bats and their habitats. Operational wind turbines can adversely affect wildlife in a variety of ways. Foremost, the potential exists for bird and bat collision within the rotor-swept area of each turbine. The potential for collision with resident or migratory species of birds and bats is affected by many factors but location of the wind turbines appears to be one of the most important. The potential harm makes careful evaluation of wind facilities essential. Each proposed development site is unique and requires individual evaluation. The Service's policy on wind energy development should be consulted as you develop this project. It can be found at http://www.fws.gov/habitatconservation/wind.pdf .

The potential collision hazard of proposed and alternative sites can be assessed by preconstruction studies of the spatial and temporal uses of the airspace by birds, bats and insects (insects are included because they are prey for birds and bats). Guidance on avoiding and minimizing wildlife impacts through proper evaluation of potential wind power sites, proper location and design of turbines and associated structures and pre- and post-construction monitoring can also be found at <u>http://www.fws.gov/habitatconservation/wind.pdf</u>.

Wetlands


Your project will likely require bridging, filling, or degrading certain wetlands or other waters of the United States under jurisdiction of section 404 of the Clean Water Act, which may require permits be acquired from the U.S. Army Corps of Engineers. In the event section 404 permits are necessary, the Service will make recommendations to avoid, minimize and mitigate impacts to fish and wildlife resources.

In summary, to ensure that the proposed areas for wind energy development in Highland Plantation are developed in the most environmentally sound manner, we recommend that you follow the guidance on avoiding and minimizing wildlife impacts as found on our website. If you have any questions, please call Mark McCollough, endangered species biologist, at (207) 827-5938 ext.12, Wende Mahaney, federal projects and wetland biologist at (207) 827-5938, or Fred Seavey, federal energy projects biologist at (207) 827-5938.

Sincerely,

hit Mordstran

Lori H. Nordstrom Project Leader Maine Field Office

Data from USFWS, MDIFW & MNAP

Area of detail