
Electromagnetic fields from subsea power cables & potential effects on marine species

Dr. Zoë L Hutchison

Research Fellow

Electromagnetic fields from subsea power cables & potential effects on marine species

- What are electromagnetic fields (EMFs)?
- How do we characterize EMFs?
- Known EMF effects on marine life
- Methods used in assessments
- Advancing our understanding
- Broader offshore wind context

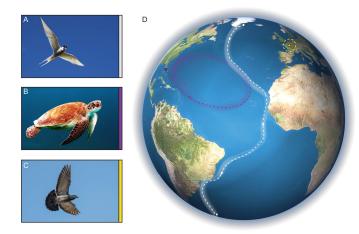
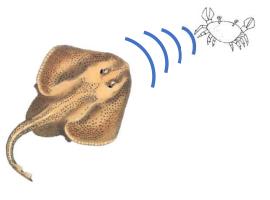
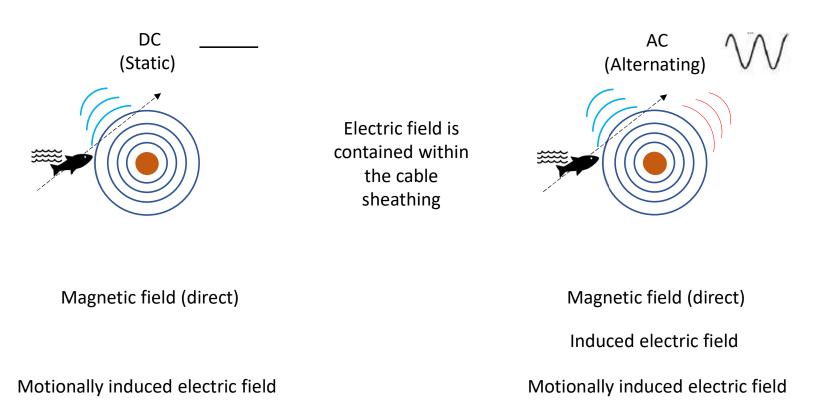
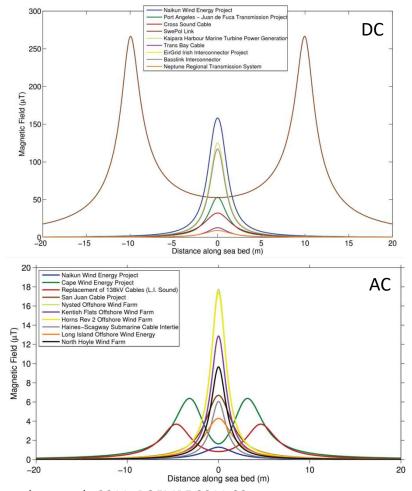




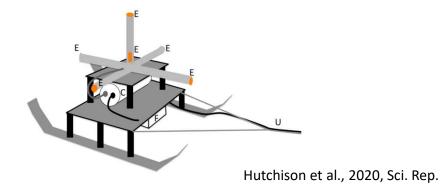
Image Source: Nordmann et al., 2017

What are Electromagnetic Fields?

Two interacting components, electric and magnetic fields = electromagnetic fields


What are Electromagnetic Fields?

Adapted from Hutchison et al., 2020, Oceanography


Adapted from CMACS, 2003; Gill et al., 2012, IEEE

How do we characterize EMFs?

Normandeau et al., 2011, BOEMRE 2011-09

- EMFs (magnetic fields) are usually modelled and rarely measured
- Modelled & measured EMF from the Cross Sound Cable (buried, 330MW, HVDC)
 - Power transmission
 - Variable burial depth
 - Interaction with the local geomagnetic field
 - AC fields as well as DC fields

Known EMF Effects on Marine Life

Stankevičiūtė et al., 2019 Jakubowska et al., 2019

9 Stankevičiūtė et al., 2019

Malagoli et al., 2004

Scott et al., 2018

Love et al., 2015, Love et al., 2017

Hutchison et al., 2020

Taormina et al., 2020

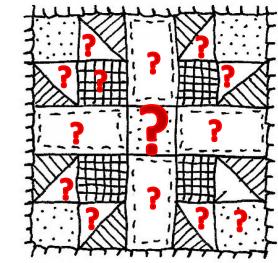
Known EMF Effects on Marine Life

Westerberg & Lagenfelt, 2008 Hutchison et al., forthcoming 2021

Wyman et al., 2018

Ball et al., 2016

Kimber et al., 2011, 2014

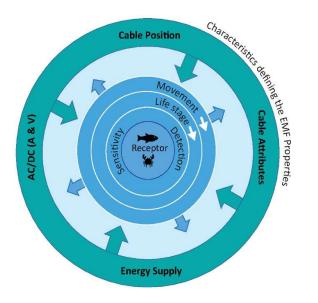

Gill et al., 2009 Hutchison et al., 2020

Variety of Methods

Numerous species & a variety of endpoints

Range of techniques

- In situ free-ranging
- In situ mesocosm
- Aquarium

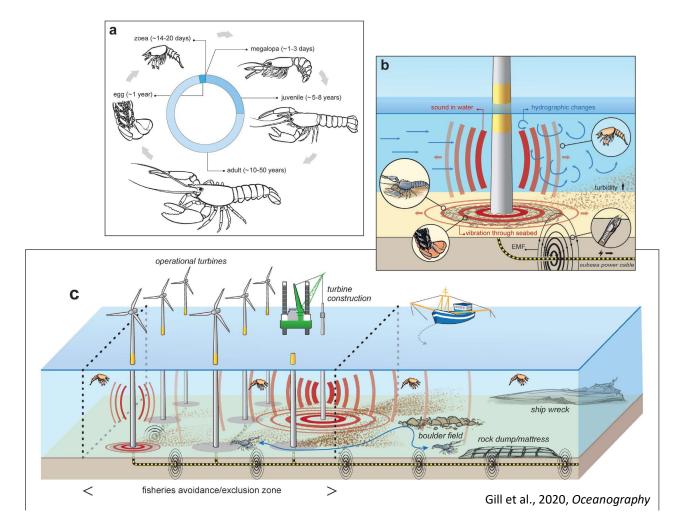


Range of exposures

- AC, DC
- Intensity
- Spatially variable
- Temporally variable

Key Importance: Relevance to Offshore Wind

Advancing our Understanding



Adapted from Hutchison et al., 2020, Oceanography

Take the vantage point of the receptive species

- Take their position in space and time
- Consider how they perceive their sensory environment
- Which cues are important at that time
- More informed by OSW cable characteristics

Broader Offshore Wind Context

Taormina et al., 2020 Mar. Environ. Res.

HDR, 2020, BOEM Report No. 2020-044

Resources of Interest

Reviews

- Hutchison, Z. L., D. H. Secor, and A. B. Gill. 2020a. The interaction between resource species and electromagnetic fields associated with electricity production by offshore wind farms. Oceanography, 33(4):96–107, https://doi.org/10.5670/oceanog.2020.409.
- Gill, A. B., and M. Desender. 2020. Risk to Animals from Electromagnetic Fields Emitted by Electric Cables and Marine Renewable Energy Devices; Pp. 86–103. In OES-Environmental 2020 State of the Science Report: Environmental Effects of Marine Renewable Energy Development Around the World. A. E. Copping, and L. G. Hemery, eds, Report for Ocean Energy Systems (OES) <u>https://doi.org/10.2172/1633088</u>.

Studies on the Cross Sound Cable, Lobsters and Skates

- Hutchison, Z. L., A. B. Gill, P. Sigray, H. He, and J. W. King. 2020b. Anthropogenic electromagnetic fields (EMF) influence the behaviour of bottom-dwelling marine species. Scientific Reports, 10(1):4219, <u>https://doi.org/10.1038/s41598-020-60793-x</u>.
- Hutchison, Z. L., P. Sigray, H. He, A. B. Gill, J. King, and C. Gibson. 2018.
 Electromagnetic Field (EMF) Impacts on Elasmobranch (Shark, Rays, and Skates) and American Lobster Movement and Migration from Direct Current Cables. OCS Study BOEM 2018-003 pp. <u>https://espis.boem.gov/final%20reports/5659.pdf</u>

Thank you!

Acknowledgements

- John King, University of Rhode Island
- Andrew B Gill, Cefas, Pangalia
- Peter Sigray, KTH Royal Institute of Technology
- Haibo He, University of Rhode Island
- David H. Secor, University of Maryland
- BOEM as funders of previous work